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Abstract—in this paper, present a computational method 

for solving Fredholm integral equations of the second kind. 

The method based on the application of the shifted Legendre 

polynomials in matrix forms. We create a technique for 

extracting the Legendre coefficients of each polynomial away 

so that each Legendre polynomial is rewritten in the form of 

its coefficient’s matrix multiplied by the monomial basis 

function matrix. This technique significantly reduces the 

round off errors. By using this technique, the unknown and 

the data functions are expressed in two forms; each consists 

of three matrices. The kernel is approximated twice relevant 

to its two variables so that it is transformed into a form 

consists of a product of five matrices. By substituting by the 

approximate unknown function into the left and the right 

sides of the integral equation, we obtain an algebraic linear 

system of the equations without applying the collocation 

points. Moreover, we adapted the Gauss–Quadrature rule in 

an adjustment form and applied it for computing the 

resulted integrals. The convergence in the mean of the 

approximate solution and the kernel are proved. 

Additionally, the maximum norm error is studied, and it is 

found equal to zero. Numerical results are obtained for five 

examples to clarify the simplicity, efficiency, and reliability 

of the method. The obtained solutions are equal or rapidly 
converge to the exact solutions. 

Keywords—Fredholm integral equations; Legendre 

polynomials; Computational methods; approximate solution; 

error estimation. 

 

I. INTRODUCTION  

Integral equations arise in many scientific and 
engineering problems, for instance, image processing, 
inverse problems, bioengineering, electromagnetic, heat-
conduction, radiation, astrophysics, potential and reactor 
theorems, quantum mechanics, diffraction problems, 
scattering in quantum mechanics [1-3]. 

Many initial and boundary value problems in 
engineering and physical science can be easily converted 
to Fredholm integral equations of specific kinds [4-7]. The 
reason for solving initial or boundary value problems 
through integral equation method is due to its ability to 
solve the problem easier, facilitate the proving of the 
uniqueness of the solution, empower to know more 
properties about the solution, and enable for the analytical 

treatments of the singularities of the solution of the original 
problems. 

In [8-11], the authors provided methods for solving 
singular integral equations based on the application of 
orthogonal polynomials with different techniques. These 
methods can be applied for solving nonsingular integral 
equations. There were also some published articles [12-14] 
for solving Volterra integral equations of the second kind 
based on the barycentric Lagrange interpolation with 
various techniques, which are applicable for solving 
second kind Fredholm equations. But we  try here to 
present a new method based on shifted Legendre 
polynomials in matrix form using some innovative ideas. 
There are valuable methods published for the numerical 
solutions of Fredholm integral equations of the second 
kind [15-24].  

Abdullahet al., in [21] presented a method based on 
Toachard Polynomials (T-Ps) to solve linear Fredholm 
integral equation of the second kind. The authors in [22] 
presented an approach that is more efficient than the  
Nystrom method to find out a unique solution of the 
Fredholm integral equation of the second kind. 
Mohammad in [23] presented a method based on the use of 
B-spline quasi-affine tight framelet systems generated by 
the unitary and oblique extension principles. Maleknejad 
and Mahmoudi in [24] applied the hybrid Taylor 
polynomials and Block-pulse functions to estimate the 
solution of the linear Fredholm integral equation of the 
second kind. 

 

The goal of this paper is to introduce a new approach 
for solving Fredholm integral eequations of the second 
kind. The proposed method based on the shifted Legendre 
polynomials in matrix form without applying the 
collocation method in order to reduce the solution to an 
algebraic linear system unlike most of the above-
mentioned methods. We attempt to present a new simple, 
straightforward, and well-organized computational method 
that gives more accurate solutions regardless of the 
analyticity of the unknown functions and the kernels. 
Furthermore, we aspire to establish a method adequate for 
non-degenerate kernels, and singular equations. To reduce 
the round off errors and since integrating the monomial 
basis function is easier than integrating the Legendre 
polynomials, we extract the Legendre coefficients of each 
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polynomial and put them in a separated matrix so that it 
can be expressed as a product of two matrices (the first 
matrix is known coefficients matrix and the second one is 
the monomial basis functions matrix).  

First, we approximate the data function and the 
unknown function by using Legendre polynomials via 
monomial basis matrices of the same degree. The kernel is 
approximated twice in such a manner that the Legendre 
coefficients of the kernel which obtained from the first 
approximation are expanded once again about the second 
variable of the kernel by Legendre polynomial of the same 
degree. Thus, the Legendre coefficients of the kernel can 
be determined through double repeated integral formulas. 
Additionally, and to ensure the ease and accuracy of the 
obtained approximate repeated integrals, the Gauss- 
Legendre rule is adapted in an easy form and applied. 
Furthermore, and to dispense the application of collocation 
points to get an algebraic linear system equivalent to the 
required solution, we replacing the approximate unknown 
function twice into the considered integral equation. Thus, 
without applying collocation points and by utilizing some 
matrix operations, the required solution is transformed into 
the solution of an algebraic linear system.  

Convergence in the mean of the unknown function, and 
the kernel are proved [25,26]. Besides some concepts and 
Euclidean norms of real analysis are applied to estimate the 
total approximation error [27,28]. The solutions of the 
illustrated four examples were exact and strongly converge 
to the exact solutions compared with the solutions obtained 
by the methods given in [21-24], which ensures the high 
accuracy and superiority of the presented numerical 
method. 

II. DOUBLE APPROXIMATE KERNEL METHOD 
 

Consider the linear Fredholm integral equation of the 

second kind  

  ( )  ( , ) ( ) ;   

b

a

u x f x k x t u t dt a x b     

where ( , )k x t  is the kernel, ( )f x  is the data function, 

and ( )u x  is the unknown function. We assume that 

( , )k x t  is not badly behaving function, and it is defined 

on the square   , : ,x t a x t b  and

2
( , )

b b

a a

Mk x t dxdt   ; M is a real number. Moreover, 

we consider the two functions  ( ),  u x f x  belong to 

 2 ,L a b and
 

 
,

max
x a b

f x N


 ; N  is a real number. 

The proposed computational method begins by redefining 

the infinite set of orthogonal Legendre 

polynomials  
0

( )i i
p 




 for 1   to be applicable for 

approximating functions defined on  ,a b . In this 

context, the Legendre polynomials  
0

( )i i
p x




 for 

 ,x a b  can be defined by 
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where the orthogonal property is defined by 
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0;   otherwise 
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i

i j



















It is necessary here to mention that the existence and 

uniqueness theorem of Legendre polynomials confirm that 

if  f x  is a piecewise continuous, and have a finite 

number of extrema, then the series  
0

i i

n

u p x




 ;

 ,x a b  converges to  f x , where x  is a continuous 

point and iu are the Legendre coefficients. However, let 

 nu x  denotes the approximate unknown function, then 

we have 



   

   

0

;

2 1
  ;  0,

n

n i i
i

b

i i
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u x u p x

i
u u x p x dx i n

b a






 



 
 
 









In matrix form Eq. (4), takes the form 

    UP= xu x 

where  
0

U
n

i i
u


  is the required unknown 

coefficients   1 1n row matrix and     
0

P
n

i i
x p x


   

is the column known matrix of order   1n n   whose 

entries  ip x   are defined by (2). Now, by expanding 

each Legendre polynomial  ; 0,ip x i n  into 

Maclaurin polynomial of degree n  we find that 

    UAXu x x 

where 

  
 

 
,0

0
X ;  A  ; ;  , 0, ;

!

j
n nT i i

ij iji ji

p
x x a a i j n

j
        



Here  
0

U
n

i i
u


  is the unknown required coefficients 

  1 1n row matrix,  X
T

x is monomial basis 

polynomial row matrix of order   1 1n  and 

,
A

n

ij i j
a     is a square known coefficients matrix of 
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order      1 1n n .By the same way, let ( )nf x  

denotes the approximant function of the given data 

function  f x , then we have 

    FAXf x x 

Where 
0

F= 
n

j j
f


    is the coefficient row matrix 

whose entries  i
xf  can be computed by applying 

formula (4). Ultimately, sample ( , )nk x t  the approximate 

kernel obtained by approximating the original kernel 

( , )k x t  of Eq.(1) via Legendre polynomials with respect 

to the two variables x  and t respectively. We begin by 

approximating the kernel with respect to x , and then with 

respect to t . Thus, we have 



0

2 1
( , ) ( ); ( , ) ( ) ( ) ( )

bn

n
i a

i
k x t x k x t p x dx

b a
A t p A ti i i i







 



 

Once again, the Legendre coefficients ( )A ti , which are 

functions of the second variable t  are approximated via 

Legendre polynomials of the same degrees to get 



   

0

( ) 0, ;

2 1
 ;  , 0,

( )
n

ij j
j

b

ij i j
a

p t i n

i
A t p t dt i j n

b a

A ti 







  












Substituting ( )A ti  that was given by Eq. (10) into Eq. 

(9), we define the    1 1n n    square matrix 

, 0
C

nT
ij i j

c


     whose entries can be evaluated by 



  

 
2

2 1 2 1
( , ) ( ) ( ) ;  , 0,

b b

j

a a

i j
c k x t p x p t dxdt i j n

b a
ij i

 
 


 

 
Alternatively, and from the previous mathematical 

technique, the approximate kernel ( , )k x t  can now be 

rewritten in the matrix form 

      , P CP    
T

k x t t x  

Now, expanding each Legendre polynomial 

   , ; 0,i jp x p x i n  into Maclaurin polynomial of 

degree n  we find that 

     , X A CAX
T T

k x t t x 

Our strategically planning now may be summarized as 

follows: the two approximate functions   , ( , )n nu x k x t

ofEqs. (6) and (13) are replaced with   , ( , )u x k x t  of 

Eq. (1) to get  nu x  explicitly in the following form 

      = UAXA CAX
T

u x f x x  

where the entries ijx  of the      1 1n n  square 

matrix
, 0

X
n

ij i j
x


   

   can be evaluated by 

    
1 1

, 0

;X X X
1

n
bi j i j

T
ij

ai j

b a
x t t dt

i j

   




 

 

 
 
  






Accordingly,replace  nu x again into both sides of Eq. 

(1) and considering Eq. (8), yields the followinglinear 
system of algebraic equations withoutapplying collocation 

points  

     UAXA CAX  UAXA CAXA CAX =FAXA CAXT T T Tx x x   


Thus, we have 

  U I AXA C F
T

  

Therefore, the solution of system (17) we get the unknown 
coefficients matrix U  and by substituting into Eq. (6) we 

obtain the approximate unknown function ( )nu x . To 

improve the accuracy of the solution of the linear 

algebraic system (17), we adapted the Gauss-Legendre 

quadrature rule for computing andminimizing the round-

off error of the repeated integrals cij that were given by 

Eq. (11). Let 

  
1

( )  =

b m

s s
sa

f x dx f 



 

Where 



 
0 1 02

2

1
1

; ; ,
2

1

 1,  ; 2
2

s s s

s m s

m
s

s

b a b a

P

b a s m

     

 

 

  
     



    

 

   



(19) 

Here, the values  
1

m
s s




 denote the zeros of Legendre 

polynomial  mP x  given by Eq. (2). Now, we attempt to 

make use of the adaptive m-nodes Gaussian quadrature 

rule of Eq. (18) to evaluate the integrals that weregiven by 

Eq. (11). In the context of this rule, the matrix C  whose 

entries are the integrals ;  , 0,ijc i j n  that were given 

by Eq. (11) is now transformed to the block matrix B  of 

order    1 1n n   , with blocks, ijb  of an order 1 1  

such that 

    2

, 0
B ; P Q P ;   1,

n T
ij ij ij s si j

b b s m  


    


 
where 
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2 2 1 2 1
,  ij

i j

b a b a


 


 

  
  
  

    
1

P  0,
m

s i s s
p i n 


    is a row matrix of 

order  1 1n  ,    
1

P
m

s j s s
p 


   

 for each 

0,j n  is a column matrix of order  1 1n    and Q  

is the    1 1n n    matrix such that 

 


, 1

Q
m

sgsg s g
k


  
 

where ,
sg s g    and

  ,sg s gk k   

Similarly, the matrix F whose entries if  can be computed 

by 

    
2 1

  ;  0,

b

i i

a

i
f f x p x dx i n

b a


 



 
 
 

 

(22) 

is defined now by 

      00
1

F ;   ; ;  0,
m

n
i i i s s i s i ii

s

f f f p i n      




   

 
By solving system (17) we can find the unknown 

coefficients matrix U and thereby the approximate 

solution  u x from Eq. (6).  

III. CONVERGENCE IN THE MEAN AND ERROR ESTIMATION 

Convergence in the mean of the approximate unknown 

function  u x , the approximate data function  f x , and 

the approximate kernel  ,k x t  are now proved. For 

convergence in the mean of  u x  we have 

        

       

2

2

2 2
                     2

b

a

b b b

a a a

u x u x u x u x dx

u x dx u x u x dx u x dx

  

  



  

 

 

 
From Eq. (5), and upon the application of the orthogonal 

property of Legendre polynomials given by Eq. (3), we 
find that 

        
0 0

2
APi i j j

i j

a p x a px x xu
 

 

 
 

    
 
  

(25) 

where
2

0
A i

i
a




  
 

an infinite row matrix is whose 

entries, ia can be computed by Eq. (4) and 

   2

0
P i

i
x p x




  
 

 is an infinite column matrix of 

Legendre polynomials given by Eq. (2). Hence, we have 

    
2

AP

b

a

u x dx x
 
 
  


  

where     
0

P i i
xx p




  is an infinite column matrix 

whose entries  i xp  can be computed by the orthogonal 

property formula 

    2
P ; 0

2 1

b

i i

a

b a
x p x dx i

i


  




  

Hence, we have 

    
2

2

0 2 1

b
i

ia

a
u x dx b a

i





 


  

By the same way, we find that 

    
2

2

0 2 1

b n
i

ia

u
u x dx b a

i

 


   

Consequently, by applying the Schwarz inequality, we 

have 

           

   

1 1
1 12 2

2 2

2 2

1 1

1 1
2 22 2

0 0
2 1 2 1

b

a
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i i
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% %%


Furthermore, from Eqs. (28)- (30), we get 

 

    
2

lim 0
n

u x u x


   

For the convergence in the mean of  ,k x t , we find that  

  

   

22
2

0 0

2 22

,  ,
2 1

                     ,

b b n n

ij
i ja a

b b

a a

b a
k x t dtdx c

i

k x t dtdx M b a

 
  
   






 

  

 




(32) 
and since 



     
2

22 2

0 0

2 , ,
2 1

b b n n

ij
i ja a

b a
k x t k x t dtdx M b a c

i  

 
 
 


    


  




Then 

    lim , , 0
n

k x t k x t


  

The goal now is devotedtoestimate the error of 

approximation. Sample the Legendre coefficient of the 

exact solution  u x  by ia , the approximate coefficient of 

the approximate solution  u x by iu and the total error of 
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the approximation by  nE x .   
2n i iE x u u  

where 
2

 .  denotes the Euclidean norm in 
2

،  . 

Returning to Eq. (1) andrewrite it in the form u Tu , 

where operator T  is defined byTu f u  . Similarly, 

the approximate integral equation associated to Eq. (2) 

with the approximate solution y  takes the form

Tu f u    , then we have 

2 2
2

( , ) ( ) ( , ) ( )
b b

a a

Tu Tu u u k x t u x dx k x t u x dx      
  


Or 



1

2 2

( , ) ( ) ( , ) ( )

b b b

a a a

u u k x t u x dx k x t u x dx dt   

 
 
 
 

  
  

 
By Cauchy – Bunyakowski inequality, we have 

  

     
2 2

2
22

2 2

2 22 22

( , ) ( ) ( , )

( , )

b b b

a a a

b b

a
a

k x t u x dx dt k x t u x dt

u x k x t dx dt M b a u x
  
  
  

   



  

  

 



(37) 

and 
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And since,  
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           , ,
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b b
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b b b b

a a a a

k x t k x t dxdt

k x t dxdt k x t dxdt 
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Then 



     
2

2 222 2

2 2
0 0

2 ( , ) ( ) ( , ) ( )

2 1

b b b

a a a

n n

ij
i j

k x t y t dt k x t y t dt dx

b a
M b a u x c u x
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Thus, we proved that 

  
2

lim 0n
n

E x Tu Tu


   

IV. COMPUTATIONAL RESULTS OF FOUR ILLUSTRATIVE 

EXAMPLES 

.we designed Matlab codes to solve Eq. (1) numerically 

using MATLAB 2014a. We solved the four similar 

examples, which are given in [21-24]. In all examples, we 

solved the system given by Eq. (17) to find the unknown 

matrix U and then substituting into Eq. (6) to obtain the 

approximate unknown function in an explicit form. The 

exact solution of example 1 is obtained for 1n   and The 

CPU Time was 6.730626 seconds. The obtained solution is 

of course superior compared with the same example (no. 2) 

solved in [21]. For example, 2 the obtained numerical 

solutions for 1n   is strongly converged to the exact 

solution with absolute errors   3
10E x


  and the CPU 

Time was 3.083038 seconds. The solution gives better 

results than the solution obtained by the method described 

in [22]. The solution of example 3 is strongly converged to 

the exact solution for 5n  with absolute error 

 13 12
10 10iE x

 
  and the CPU Time equals to 

13.220234 seconds, which is superior to the solution 

obtained by the method described in [24]. The solution of 

example 4 is strongly converged to the exact solution for 

2n  with absolute errors  14 9
10 10iE x

 
  , which 

is superior to the solution obtained by the method 

described in [23]. The CPU Time was 3.219080 seconds. 

Tables 1, 2, and 3 show the comparison of the exact 

solutions  iu x  with the obtained numerical solutions 

 iu x  of examples 2, 3, and 4 respectively. In Figures 1, 

2, and 3 the exact solutions are plotted against the 

numerical solutions for examples 2, 3, and 4 respectively.  

 

Example 1. 

   
1

1

4 4
( )u x x x u t dtt



   

whose exact solution is given in [21] by  u x x . For    

1n  , we get  U= 0 1 and  u x x . 

Example 2. 

   
1

1

2 4 3
1

x x x t
u x e e u t dte



   
    

whose exact solution is given in [22] by   1u x  . 

Here, for 1n  , we have  U= 0.99950 -0.00045  

and   0.99950 0.00045u x x   

Example 3. 

      
1

0

( )1 1
x

x e x t u t dte xu       

whose exact solution is given in [24] by   x
u x e . 

For 5n  we have

 U=  0.17423 -2.01913 -0.03356 1.35536 -1.73926 1.34764

and  
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  5 4 3 2
1.88702 0.15299 0.65478 0.42317

0.75623 0.99999.

u x x x x x

x

   

 



 

Example 4. 

     
1

1

2 2
1u x u t dtxt x t



   

whose exact solution is given in [23] by

  210
1

9
u x x  . Here, for 2n  , we have 

 U= 2.671700111 0.000000000 0.560589260 

and   2
0.8408835 2.951994611u x x   









TABLE I.   

 

ix
 

Exact 

Solutions 

Numerical 

Solutions 

Absolute Errors 

  1u x 

 

 iu x   
i

E x  

-1 1 0.999951058172668 0.048941827332172 e-03 

-0.89473 1 0.999903671546538 0.096328453461969 e-03 

-0.78947 1 0.999856284920408 0.143715079591766 e-03 

-0.68421 1 0.999808898294278 0.191101705721675 e-03 

-0.57894 1 0.999761511668149 0.238488331851472 e-03 

-0.47368 1 0.999714125042019 0.285874957981380 e-03 

-0.36842 1 0.999666738415889 0.333261584111177 e-03 

-0.26315 1 0.999619351789759 0.380648210240975 e-03 

-0.15789 1 0.999571965163629 0.428034836370883 e-03 

-0.05263 1 0.999524578537499 0.475421462500680 e-03 

0.05263 1 0.999477191911369 0.522808088630589 e-03 

0.15789 1 0.999429805285240 0.570194714760386 e-03 

0.26315 1 0.999382418659110 0.617581340890294 e-03 

0.36842 1 0.999335032032980 0.664967967020091 e-03 

0.47368 1 0.999287645406850 0.712354593149889 e-03 

0.57894 1 0.999240258780720 0.759741219279797 e-03 

0.68421 1 0.999192872154590 0.807127845409594 e-03 

0.78947 1 0.999145485528461 0.854514471539503 e-03 

0.89473 1 0.999098098902331 0.901901097669300 e-03 

1 1 0.999050712276201 0.949287723799097 e-03 

 

Table1: A comparison of the exact solution   1u x 

of Example (2) with the obtained numerical solutions 

 i
u x% of the presented method for 1n   wit absolute 

errors  i
E x  . 

 

Fig. 1. The graph of the exact solution  
i

u x versus the 

graphsof the numerical solutions  
i

u x%  of Example 

(2) for 1n   with the absolute errors  
i

E x . 

TABLE II.   

 

ix  

Exact Solutions Numerical Solutions Absolute Errors 

 iu x   iu x   
i

E x  

0 1.000000000000000 0.999999999999521 0.4786171 e-12 

0.05263 1.054041242591802 1.054041242591324 0.4787281 e-12 

0.10526 1.111002941084471 1.111002941084567 0.9592326 e-13 

0.15789 1.171042920543823 1.171042920543921 0.9792167 e-13 

0.21052 1.234327535098344 1.234327535098866 0.5220268 e-13 

0.26315 1.301032128860335 1.301032128860857 0.5220268 e-12 

0.31578 1.371341521755806 1.371341521755327 0.4789502 e-12 

0.36842 1.445450521609223 1.445450521608362 0.8610889 e-12 

0.42105 1.523564463901954 1.523564463901333 0.6210587 e-12 

0.47368 1.605899780699929 1.605899780699456 0.4729550e-12 

0.52631 1.692684600326856 1.692684600326236 0.6201705 e-12 

0.57894 1.784159379444528 1.784159379444127 0.4010125 e-12 

0.63157 1.880577569291529 1.880577569291489 0.1426290 e-12 

0.68421 1.982206317926315 1.982206317925836 0.4789502 e-12 

0.73684 2.089327210420374 2.089327210419895 0.1615596 e-12 

0.78947 2.202237049052355 2.202237049051877 0.4778399 e-12 

0.84210 2.321248675664849 2.321248675664370 0.4791722 e-12 

0.89473 2.446691838462353 2.446691838461874 0.4787281 e-12 

0.94736 2.578914105652080 2.578914105651601 0.4791722 e-12 

1 2.718281828459046 2.718281828458567 0.4791722 e-12 

 

Table2: A comparison of the exact solution   1u x 

of Example (3) with the obtained numerical solutions 

 i
u x% of the presented method for 5n   wit absolute 

errors  i
E x . 

 

Fig. 2. The graph of the exact solution  
i

u x versus the 

graphsof the numerical solutions  
i

u x%  of Example 

(3) for 5n   with the absolute errors  
i

E x . 

TABLE III.   
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TABLE III: A COMPARISON OF THE EXACT SOLUTION 

  1u x  OF EXAMPLE (4) WITH THE OBTAINED 

NUMERICAL SOLUTIONS  i
u x% OF THE PRESENTED 

METHOD FOR 2n   WIT ABSOLUTE ERRORS  i
E x  

 
Table III 

 

ix  

Exact Solutions Numerical 

Solutions 
Absolute Errors 

 iu x   iu x
 

 
i

E x  

-1 2.111111111111111 2.111111111111966 8.5265128 E-14 

-0.89473 1.889504462911665 1.889504462568584 3.4308112 E-10 

-0.78947 1.692520775623269 1.692520775619571 3.6979309 E-12 

-0.68421 1.520160049245922 1.520160049233527 1.2394974 E-11 

-0.57894 1.372422283779625 1.372422283779318 3.0699887 e-12 

-0.47368 1.249307479224377 1.249307479216351 8.0260243 e-12 

-0.36842 1.150815635580179 1.150815635584825 4.6458393 e-12 

-0.26315 1.076946752847030 1.076946752840474 6.5560890 e-12 

-0.15789 1.027700831024931 1.027700831027609 2.6780800 e-12 

-0.05263 1.003077870113881 1.003077870299889 2.88500912 e-9 

0.05263 1.003077870113881 1.003077870117312 3.4310332 e-12 

0.15789 1.027700831024931 1.027700831399879 2.97385916e-9 

0.26315 1.076946752847030 1.076946752847591 5.6088467e-13 

0.36842 1.150815635580179 1.150815635580446 3.5718983 e-11 

0.47368 1.249307479224377 1.249307479224445 6.7945649 e-14 

0.57894 1.372422283779625 1.372422283771589 8.0360163 e-12 

0.68421 1.520160049245922 1.520160049249876 3.9539483 e-12 

0.78947 1.692520775623269 1.692520775623308 3.9079850 e-14 

0.89473 1.889504462911665 1.889504462911883 2.1782576 e-13 

1 2.111111111111111 2.111111111111966 8.5265128 e-14 

 

 

Fig. 3. The graph of the exact solution  
i

u x versus 

thegraphsof the numerical solutions  
i

u x%  of 

Example (2) for 2n   with the absolute errors  
i

E x  

 

CONCLUSION 

 
 The Double approximate kernel method is presented 

for solving Fredholm Integral Equations of the Second 
kind. First, the unknown function, the given data function, 
and the kernel are approximated by using double - shifted 
Legendre polynomial of the same degree in matrix form. 
The extracting of the coefficients of Legendre polynomials 
and separated them from the monomial basis functions in 
matrix form significantly reduced the round off errors. The 
kernel is approximated twice with respect to the two 
arguments. The approximated unknown function is 
substituted twice into the integral equation, so that there 
was no need of collocation points, and the solution of the 
integral equation is transformed to the solution of an 

algebraic system of equations without applying the 
collocation points.. The convergence in the mean for both 
the unknown function and the kernel are proved. In order 
to remedy the complexity of the repeated integral formulas 

of Legendre coefficients an adjusted m  nodes Gauss-
Legendre quadrature rule was adapted though block 
matrices and applied for the evaluation of the Legendre 
coefficients integrals. The illustrated four examples 
demonstrate the authenticity and the efficiency of the 
presented method for lower degree polynomials regardless 
of the analyticity or smoothness of the unknown function 
and the kernel, thus ensures the Superiority of the 
presented method compared with other cited methods. 
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