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Abstract— Gyroscopes are sensors that are used for
motion measurement. They are generally used to measure
rotation rate of moving equipment. There are different types
of gyroscopes including mechanical, micro-electro-
mechanical (MEMS) and optical gyroscopes. Gyroscope
signal suffers from internal noise due to internal device
operation and external noise of the environment. This paper
presents a proposed hybrid technique that includes both
Kalman filter and wavelet denoising. Results show the
superiority of this proposed technique to the other filters.
Arranging the filters in cascaded hybrid structure has an
effect on the performance of the hybrid technique. Using
Kalman filter as a first stage is better than using the wavelet
as a first stage. For the comparison, two evaluation metrics
are used: Signal-to-Noise Ratio (SNR) improvement and
correlation coefficient.

Keywords— Gyroscope, DWT, Wavelet denoising, Kalman
filter, noise reduction.

I. INTRODUCTION (HEADING 1)

Gyroscope is a very essential component in most
motion detection equipments. The basic idea of operation
of the gyroscope is transforming the angular movement of
an abject into an electrical signal [1]. Different types of
gyroscopes exist such as mechanical, MEMS and optical.
Mechanical gyroscope is a free wheel that takes a certain
3D space. This wheel works based on conservation of the
angular momentum principle. An angle acquisition unit is
used to pick the orientation angle. This type has been
developed based on using MEMS through the utilization of
the Coriolis Effect that transforms motion into an electrical
signal based on the motion of a metal sphere connected to
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a group of springs [2]. The type of interest in this paper is
the fiber optic gyroscope. It is composed of a source,
detector, optical directional coupler and optical fiber coil.
It is based on Sagnac effect [3]. Two beams are entered at
the same time into the optical fiber coil in opposite
directions. These two beams are extracted from an optical
source in two equal-length paths: clockwise and counter
clockwise. Any rotation of the coil is either clockwise or
counter clockwise leading to difference in signal paths. A
photo detector is used to interpret the received optical
signal into an electrical signal. Phase comparison is
performed between the original signal from the source and
the received signal. Phase difference is interpreted after
that as a signal, which is further processed. This phase
signal which directly reflects the orientation measured may
suffer from some uncertainty represented as noise [4]. It is
feasible to use some signal processing and noise reduction
techniques on this signal.

Fiber Optic Gyroscope (FOG) consists of fiber coil,
detector, light source, phase modulator and coupler. Noise
can be generated by these parts of the device leading to
accuracy degradation of strap down inertial navigation
system SINS [5-6], such as structural resonance and drift
errors resulting from variation of stress in fiber coil, and
then accumulation of errors occurs. These drifts are
submerged in the noise due to weak Sagnac effect.

Fractal and white noise are the main noise in FOG [7],
and some fractal noise may have deterministic relationship
with environmental effect such as temperature. Accuracy is
limited by external environment noise and internal noise,
due to internal device operation [8].
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Yu and Stubberud presented an extend Kalman filter
(EKF) to incorporate MEMS sensors to increase the
accuracy [9]. The first recommended technology of
gyroscope was by Ploen and Bayard [10]. They presented a
virtual system of gyroscope that has four combined
sensors. To increase the accuracy of the micro-electro-
mechanical system (MEMS) gyroscope, a Kalman filter is
designed to combine measurement outputs from the
sensors of a gyroscope array.

Digital signal processing is important to detect signal
of Integrated Optic Gyroscope (IOG). The output of the
I0G contains many types of noise that exist in a wide
range of frequencies. The main noise types are shot noise,
thermal noise and relative intensity noise which all have
Gaussian distributions [11,12]. In the frequency domain,
the noise frequency spectrum is overlapped to the signal
frequency spectrum. The noise that exists outside the band
of transmission can be filtered out by a normal filter, while
the noise that is overlapped with the signal cannot be
separated. So, to extract signal from noise, we can use
band pass filter (BPF). When 110G is rotated, a square
wave signal is detected from photodetector, which is
uncorrelated with noise. It can be easily separated.

The accuracy of the gyroscope can be improved by
removing the noise from the data. Characterization of
gyroscope sensors is more helpful with long term error
modeling to increase the accuracy of the sensor. Errors like
quantization error, drift rate ramp error, and angle random
walk error may appear [13].

Signals of the gyroscope that have errors can be
cleaned by applying wavelet denoising [14-15].
Computing the decompositions of the wavelet of the noisy
signal is the main idea to adjust the obtained coefficients of
the wavelet transform for noise reduction. Replacing
coefficients affected by noise by zero values or other
suitable values helps in reconstructing the signal using
these coefficients.

In this paper, we discuss types of gyroscopes,
gyroscope sensors, gyroscope signal and noise and will
improve the signal and reduce the noise using wavelet
denoising with various wavelet transforms and various
levels of wavelet decomposition. This wavelet denoising
technique has a high impact on accuracy of the sensor. A
hybrid technique based on Kalman filtering and wavelet
denoising is introduced in the paper to enhance gyroscope
signal quality..

Il. EASE OF USE

This section presents the main types of gyroscope such as
mechanical, optical and micro-electro-mechanical systems
(MEMS).

This section presents the main types of
gyroscope such as mechanical, optical and
micro-electro-mechanical systems (MEMS).

106

1 1 1
Mechanical Micro-Electro- Optical
Mechanical (MEMS)

Fig. 1 Types of Gyroscopes

A. Mechanical

Mechanical gyroscope allows rotation in the 3D space
due to containing a free wheel mounted on two gimbals.
The free wheel works based on the conservation of angular
momentum principles. Hence, during a mechanical
gyroscope rotation, the orientation of the wheel stays
regular with changing the angle between nearby gimbals
[16]. An angle acquisition unit is used to pick the
orientation angle. Existence of moving parts is a
disadvantage for mechanical gyroscope, which causes drift
of the output over time to friction.

B. MEMS gyroscopes

Micro-electro-mechanical system (MEMS) gyroscopes
depend on the effect called Coriolis force. A MEMS
gyroscope consists of a mass attached to a solid frame by
springs. MEMS sensors are shown in Fig 1. They are
constructed using silicon micro-machining techniques.
MEMS gyroscopes usually have many advantages such as
small size, low cost, low power consumption, high
sensitivity, good linearity and high precision [17]. MEMS
gyroscopes depend on parameters, where mass m is
moving with velocity v and the angular velocity .

Fc=-2m(wxv) Q).
Coriolis Effect:

Coriolis force effect transforms the sensor motion into
electrical signal depending on the motion of the mass,
which is connected to a group of springs [18,19]. The
main idea of MEMS gyroscope depends on sensor
vibration. Whenever external force of rotation occurs, new
vibrations occur through the sensor [20]. We can define the
Coriolis force as the physical quantity indicating inertia at
work on a revolving coordinate system.
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Fig. 2 MEMS Sensor

C. Optical Gyroscopes

The main type of optical gyroscopes is Fiber Optic
Gyroscope (FOG). The angular velocity of FOG can be
measured by light interference. A FOG contains a large
coil of optical fiber that represents the path of the optical
signal that exits the source of light. Then, a detector is
used to detect the signal. For measuring the rotation, we
have two beams entering to the fiber coil in opposite
directions. If the sensor is rotating in the same direction of
a beam of light source, the path will be longer for the light
beam path than the other path, as illustrated in Figure 2.
This process is called Sagnac effect [21]. Then, these
beams, which exit the fiber coil are combined [22,4]. As a
result of this combination, a phase shift depending on
length difference path for these beams is produced. After
combination of these beams, a beam is produced, which
has a strength depending on the angular velocity [23]. The
intensity of the combined beam should be measured to
find the angular velocity. Figure 3 shows a sample of
optical gyroscope.
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Fig. 3 Optical gyroscopes

Optical Gyroscope Signal: -

We have two beams entering to the fiber coil in opposite
directions as shown in Fig 4. If the coil is rotating in the
same direction of a beam of light source, the path will be
longer for the light beam path than the other path. This
path difference enables to measure the rotation rate of the
sensor.

Optical fiber light path

( -~

Beam Split

Inputfoutput signal

-_——’p

Beam Split

Figure 4. FOG Cail

For the first path, the distance will be:

a_=2ﬁR—R0W_:mL_=jZEL )
cC+R6O

where R is the radius of the fiber coil, is the angular
velocity and c is the speed of the light beam.

For the other path, the distance will be:

27cR

ct, =27R +ROt, =ct, =——
c—-R&

®)



The difference distance traveled by each signal is:

dL —c(t, ~t )= 2R | —— 1 4
C-R&) (c+R&)
dL:ZﬂcR[ C+RO) _(-RO) }:mR{ZRH'.} (6)
(€?-R%0?) (+R%?) (©*-R%0?)
c >R?%97? )
Path difference:
2 L]
dL = 47R 6 ®
C

where R is the radius of the fiber coil,
velocity and is the speed of the light beam.

is the angular

Table 1 Types of Gyroscopes

Type Mechanical MEMS Optical
Component Spin axis, Springs and Fiber coil,
gimbal and rotor mass detector,
coupler and
light source
Main idea Mechanical parts | Coriolis effect | Sagnac effect
based on move to make
angles
Advantages Simple, cheap Simple, more Highest
accurate accuracy,
small size
Disadvantages Bad accuracy Loss in Not simple
converting
motion to
electrical signal

I1l. TRADITIONAL TECHNIQUES FOR NOISE REDUCTION IN
GYROSCOPE SIGNALS

The main challenge of low-cost gyroscope signal is
noise, bias and scaling factor, all of these challenges
reduce accuracy of the sensor. So, the calibration for this
type of gyroscopes is needed before implementation. Thus,
linear encoders can be used to calibrate the sensor [24].

Keep your text and graphic files separate until after the
text has been formatted and styled. Do not use hard tabs,
and limit use of hard returns to only one return at the end
of a paragraph. Do not add any kind of pagination
anywhere in the paper. Do not number text heads-the
template will do that for you.
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A. Kalman Filtering

We have 4 parts in the system to improve the
performance of this type of gyroscope, i.e. the encoder
with DC motor to measure velocity and position, Kalman
filtering to filter out the signal of the gyroscope and a part
to compensate for errors by adaptive compensator as
shown in Fig. 5.

Signal of
Gyroscope
Model

1 DbC
Motor

Kalman
Filter

©Oe

Adaptive
| Compensat
or

|

Fig. 5. Block diagram of signal conditioning

where r is the reference input and 6, is the
angular displacement from encoder.

@, zé(é— 0) +V, )

where @, is the measured angular velocity and

6 is the actual angular velocity, o is a scaling
factor and & is bias factor, while A=m? , and the

measurement noise of the gyroscope v, . Then
can get bias of the gyro by

(10)
Where 17, is Gaussian noise. State space model

can be obtained at zero bias:

AN

P 000 | [M A
o |- t 1[9—0}
A -10]| 4 M, L
w g -

g
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From Fig. 5, removing the noise by using
Kalman filtering, we compensate for the errors
by computing the parameters using nonlinear
least squares method. We compare the encoder
with the signal of the gyroscope [25].

X = Ex+Fu+Go 12)

og



Z=Hx+v (13)

where X is the state estimation of Kalman filtering, which
is given by [9] :

X = Ex+M(z—HXx) (14)
where Kalman gain is,

M=PH'S' (15)
Then to get P from the below equation:
P=EP+PE+GQG" + MSM' (16)

The 4, denotes the signal from the Kalman

filtering, w is a process noise, M is the gain of
the Kalman filter, S is the covariance matrix of
the state estimation, Q is the covariance matrix
, G is a covariance matrix of observation
(measurement) and e is the error.

where Q =[5 0; 0 5]and S
M =[-2.1320.2373]

=1.1, and

Then state space for Kalman Filter is:

AN

5 0 0]lo M, A

= + 0, -0 (17)
A -1 0| M, [L° °
® 04

g

To get the least squares error (LSE)

e =0, —HA@] (18)
LSE =37 (0.0), —6,(),)’ (19)

From equation (11), we obtain

Minimize

f (a,0)= Z,nzl(de ) _é\g t) )’ (20)

where p= [a&]T

P :[ak 5k] (21)

where k is circulation cycle and n is the number
of data samples of the signal that exits the
Kalman filter.
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The effects of Q is significant and it affects the
overall performance of the filter. A basic way to
think of Q is that it is a weighting factor.
Considering a larger Q is equivalent to
considering a larger uncertainty in the state
equations, which is equivalent to trusting the
result of these equations less, which effectively
means that the filter should correct more with
the measurement update.

B. Wavelet Denoising

An efficient technique to reduce noise is using wavelet
denoising. Wavelet transform enables to accomplish
frequency and time signal analysis [26]. We can get
information with high resolution in the frequency and
time domains using continuous wavelet transforms.

Wavelets have many sorts. Here, we will discuss two
types: Haar and Daubechies wavelets [27]. We can
consider that Haar wavelet is a particular case of the
Daubechies wavelet.

The simplest wavelet type is the Haar wavelet. A
discrete signal is resolved into two half-signals with the
Haar transform. The first half signal is a working
average or direction and the second half signal is a
working difference or variation..

1 1

P (U)=1+U and U :E( ')
(22)
P(z):;(z+2+z‘1):;(z+1)(1+ 7)=G,(2H,(2)
(23)
Then
Ho(2)=5 L+ 27) (22)
G,(2)=(z+1) (25)
Using these equations:

H,(2)=2"G,(-z) and G,(z)=2"H,(-z) (26)
with k=1, we get:
G,(2) = zH,(~2) = % z(l— 2_1): %(z -1) (27)

Equations (25) and (27) are not causal, but can

be implemented if the whole signal is available.
H(2) =27'Gy(-2)=2"(-z+1)=(z* -1)
(28)



X(z)

P(Z)=01+2)@1+az) (29)
Going through the factorization process with
a=1/2, we get:
1 2 -1 -2
Ho(z)=§(—z +22+6+221—77) (30)
1 4
Go(z)=5(2+2+z ) (31)

Using Eq 26 with k=1, we get:
G,(2) = zH,(-2)= % 2(-22-22+6-221-72) (32)

H,(2) =27'G,(~2)= % 2 (-z+2-2")  (33)

Xo(z (112){Xo(2)+ Xo(-2)}

N HO(Z)}@@L/, G,(2)

L, Hl(z)T G \ G,(z)]

X1(z) (12){Xa(2)+ Xu(-2)}
Fig 6. The wo-vand decomposition-reconstruction filter
bank

We choose a high threshold for
denoising, which is sufficient for large
variations of the noise in the signal. This
threshold will remove most of the power of the
noise. Right now, thresholding is composed of
two types. The first thresholding type is hard
thresholding and the second thresholding type is
soft thresholding. We use rigrsure thresholding
technique, which is based on Stein's unbiased
estimate of risk (quadratic loss function). We
can get an estimate of the risk for a particular
threshold value t. Minimizing the risks in t gives
a selection of the threshold value [28]

For the first thresholding type which is hard:

X x|>TH

fhard (X) = (34)
0 x| <TH

For the first thresholding type which is soft:

X X|>TH
£ (0= 2x—TH TH/2<x<TH (35)
¥ TH +2x ~TH<x<-TH/2

0 X|<TH /2

x is the coefficients of the high frequency
components and TH indicates the value of the
threshold.

IV. THE PROPOSED HYBRID TECHNIQUE FOR NOISE
REDUCTION

The proposed technique to reduce the gyroscope noise
is to merge wavelet denoising with Kalman filtering.
Wavelet denoising is shown in fig. 5. The wavelet
transform performs correlation analysis. Therefore, the
output is expected to be maximal, when the input signal
most resembles the mother wavelet.

We suggest the utilization of several parallel
structures for more noise reduction as illustrated in Figs
(7.a) to (8.b). These structures are investigated and
compared in performance.

Y@ Different realizations of the hybrid approaches

are considered. In the first one, both Haar wavelet
denoising and Kalman filtering are implemented in parallel
and the results are averaged.

Noisy signal filtered signal

Kalman Filter

A 4

> averaging >

A

Haar Wavelet
> denoising

Fig (7.a) Parallel Hybrid structure of Kalman
filtering and Haar wavelet denoising

In the second one, both Haar wavelet denoising and
Daubechies wavelet denoising are implemented in parallel
and the results are averaged.

Haar Wavelet denoising

—_—) averaging  |——p

»| Daubechies Wavelet
denoising

Noisy signal filtered signal

Fig (7.b) Parallel hybrid structure of Daubechies
wavelet denoising and Haar wavelet denoising
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In the third one, both Haar wavelet denoising and
Kalman filtering are implemented in cascaded mode,
where the output of the Kalman filtering is the input of
Haar wavelet denoising.

Noisy signal filtered signal

Kalman Filter —

A

Wavelet Denoising

Fig (8.a) Cascaded hybrid structure of Kalman
filtering and Haar wavelet denoising

In the fourth one, both Haar wavelet denoising and
Kalman filtering are implemented in cascaded mode,
where the output of the Haar wavelet denoising is the input
of the Kalman filtering.

noisy signal filtered signal

Wavelet Denoising Kalman Filter

Fig (8.b) Cascaded hybrid structure of Haar wavelet
denoising and Kalman filtering

V. RESULTS

Table 2 shows the parameters of Kalman filtering and
wavelet denoising used in the simulation experiments.

Table 2 Dataset specifications [25,26,28]

Parameter Definition

Process noise parameter of

Q Kalman filter (0.01, 0.9)

N 3 and 7 levels of wavelet
Decomposition Level

stages
I/P SNR Input signal to noise ratio
O/P SNR Output signal to noise ratio

SNR Improvement (O/P SNR — 1/P SNR)

Correlation Coefficient
(Cor-Co-Eff)

Correlation between output

signal and the input signal

Input Signal Output of gyroscope sensor is

(simulated Gyroscope Signal) (deg / sec)

The input signal is the output of Gyroscope sensor during
the rotation of the sensor. The input signal is simulated as
shown in Fig (9) [29]. The noisy gyroscope signals at
input SNR=-20 dB is shown in Fig (10). The noisy
gyroscope signals at input SNR=20 dB is shown in Fig
(12).
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Fig 9. I/P Gyroscope signal
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L
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Fig (10) I/P Gyroscope signal at SNR=-20 dB
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L

w
o
T

gyroscope signal
w
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Fig (11) I/P Gyroscope signal at SNR=20 dB

0 1000 2000 3000

We have used Haar and Daubechies DB2 wavelet
filters and Kalman filtering for denoising of the gyroscope
signal at different SNRs. Different values of filter
parameters are presented to show the effect of the chosen
value on the performance. One of disadvantages of
Kalman filtering is the longer processing time compared
to wavelet denoising.
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Fig 13. O/P signal for Kalman filtering at Q=0.01
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Fig 12. O/P signal for Kalman filtering at Q=0.01
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Table 3 Kalman filtering output metric values

Filter Parameters | SNR SNR Improve Cor-
1/P O/P -ment Co-eff
Ka]man Q=0.9 -20 1.3796 21.3796 | 0-2563
Pmcglt:;oise Q=09 10 | 11.383L | 21.3831 | 0.6746
Parameter Q=0.9 10 29.3575 | 19.3575 | 0.9901
Q={01,9} Q=0.9 20 33.5419 | 13.5419 | 0.9962
Q=0.01 -20 10.9018 | 30.9018 | 0.6238
Q=0.01 -10 20.3619 | 30.3619 | 0.9261
Q=0.01 10 30.5736 | 20.5736 | 0.9924
Q=0.01 20 30.8919 | 10.8919 | 0.9930

Table 3 reveals that the best value in improvement is
30.9018 dB at input SNR = -20 dB and process noise
Q=0.01 and the best correlation coefficient is at input
SNR =20 dB and process noise Q=0.01
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Fig 14.0/P signal for Haar wavelet at 7 levels of
decomposition
when input SNR= -20 dB
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Fig 15. O/P signal for Haar wavelet at 7 levels of
decomposition
when input SNR= 20 dB
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Table 4 Haar Wavelet filter output metric values

Filter Param SNR SNR O/P Improve- Cor-
eters 1P ment Co-eff
o THaar -20 -4.9623 15.0377 0.1409
Wavelet THaar -10 7.3308 17.3308 0.4885
THaar 10 42.3129 32.3129 0.9995
Decomposition | 7Haar 20 45.2884 25.2884 0.9997

Levels (3,7)

3Haar -20 -5.0597 14.9403 0.1331
3Haar -10 6.5016 16.5016 0.4408
3Haar 10 34.1191 24.1191 0.9967
3Haar 20 441147 24.1147 0.9996

Table 4 reveals that the best value in improvement is
32.3129 dB at input SNR= 10 dB and number of
decomposition levels=7. The best correlation coefficient is
at input SNR=20 dB and number of decomposition
levels=7 due to the low noise level.
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Fig 16. O/P signal for DB2 wavelet at 7 levels of
decomposition when input SNR= -20 dB
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Fig 17. O/P signal for DB2 wavelet at 7 levels of
decomposition when input SNR= 20 dB

Table 5 Daubechies wavelet filter output metric values
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T T T T T T T

noisy signal
kalman/wavelet outpu
simulated signal

Gyro Signal

20 L L L L L L n

(0] 1000 2000 3000 4000 5000 6000 7000
iterations

Fig 18. O/P signal for parallel mode Haar — Kalman at
Q=0.01 and 7 levels of decomposition when input SNR=-
20 dB

8000

iterations
Fig 19. O/P signal for parallel mode Haar — Kalman at
Q=0.01 and 7 levels of decomposition when input
SNR=20 dB

Table 6 Parallel Mode Haar-Kalman output metric values

Filter Parameters | SNR SNR Improvement | Cor- Filters Parameters SNR SNR i mDrovement Cor-
P o Co-eff I/p olP P Co-eff
7DB2 20 | 48243 | 151757 | 0.1245 77|_||3a§;- 20 | -5.0490 14.951 0.1414
Daubichies o 0 | 7o 173865 | 0.4865 THaar- g | 72111 172111 | 0.4914
Wavelet 7DB2 10 | 37.4063 27.4063 0.9984 7DB2 : : :
Decomposition | 7DB2 | 20 | 366649 | 166649 | 0.998L | | pyqrwavelet | OS5 | 10 | 397058 | 297058 | 09991
Levels (3.7) 3DB2 | -20 | -48961 | 151039 | 0.1416 with I
3DB2 | -10 | 6.9405 | 169405 | 0.4739 Daubechies oEs | 20 | 420344 | 220344 | 0.9995
Wavelet
3DB2 10 | 33.6526 -
236526 | 0.9963 | | pocomposition 33%3;; 20 | -49710 15029 | 0.1368
3DB2 20 | 41.9701 21.9701 0.9995 Levels 3
@7 3Da§£' 10 | 7.2745 17.2745 | 0.4931
Table 5 reveals that the best value in improvement is 3Haar- 10 | 348872 08872 00972
27.4063 dB is at input SNR= 10 and number of 3DB2 ' : '
decomposition levels=7. The best correlation coefficient is 33%6;;- 20 | 441575 24.1575 0.9997
at input SNR=20 dB and number of decomposition

levels=3 due to low noise level and more levels of
decompositions leading to more noise.
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Table 6 reveals that the best value in improvement is
25.1555 dB is at input SNR= 10 dB and process noise
Q=0.01 with number of decomposition levels=7. The best
correlation coefficient is at input SNR=20 and number of
decomposition levels=7 and process noise Q=0.9
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|| simulated signal
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. . L . . . .
(0] 1000 2000 3000 4000 5000 6000 7000 8000
iterations

Fig 20. Filtered signal for parallel mode Haar — DB2 at 7

levels of decomposition when input SNR= -20 dB
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hybrid parallel (Haar-DB2) filtered sign:
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Fig 21. O/P signal for parallel mode Haar — DB2 at 7
levels of decomposition when input SNR= 20 dB

Table 7 reveals that the best value in improvement is
29.7058 dB is at input SNR=10 and number of
decomposition levels=7.
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Table 7 Parallel Mode Haar-DB2 output metric values

Filters

Param
eters

SNR
O/P

Improve-
ment

Cor-Co-
eff

Haar
Wavelet
with
Kalman

Decompos
ition
Levels(3,7
)

Process
noise
Parameter
Q={0.01
,0.9}

THaar

Q:-0.9

-1.8661

18.1339

0.1846

THaar

Q:-0.9

9.2472

19.2472

0.5494

THaar

Q:-0.9

10

34.6886

24.6886

0.9971

THaar

0=0.9

20

39.3579

19.3579

0.9990

THaar

Q:-0.0

0.6070

20.607

0.2345

THaar

000

12.4743

22.4743

0.7178

THaar

Q=-0.0

10

35.1555

25.1555

0.9974

THaar

Q=-0.0

20

36.9118

16.9118

0.9982

3Haar

Q=-0.9

-1.9691

18.0309

0.1780

3Haar

Q:-0.9

9.1210

19.121

0.5595

3Haar

Q:-0.9

10

32.6872

22.6872

0.9954

3Haar

Q:-0.9

20

38.5642

18.5642

0.9988

3Haar

Q:-0.0

0.5089

20.5089

0.2560

3Haar

Q:-0.0

12.2586

22.2586

0.7018

3Haar

Q:_0.0

10

34.3822

24.3822

0.9969

3Haar

Q:_0.0

20

36.6706

16.6706

0.9981
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Table 8 Cascaded Mode 7 levels Haar wavelet then Table 9 Cascaded Mode Kalman- 7 levels Haar wavelet
Kalman output metric values output metric values
Filters Paramete SNR SNR Improve- | Cor-Co-
Filters Parameters SII;IPR SNR O/P improvement Cog—f?o— 7Hr5 I’ orp ment eff
aar-
2;2';' 20 | 20638 22.0638 0.2067 Q=09 20 | 13235 ) 213235 | 02379
THaar-
Q=0.9- -10 | 13.4628 | 23.4628 | 0.7451
T Haar 10 | 18.3946 283946 0.8879 Wavelet 0=0.9
Kalman Q=0.9- then THaar-
then 7Haar 10 39.1728 29.1728 0.9990 Kalman Q=09 10 38.2849 28.2849 0.9988
let =0.9- .
e Srar 20 | 420781 22.0791 0.999% O: process gi%ag 20 | 429948 | 22.9948 | 0.9996
Q: process noise Q=0.01- "o . -
parameter 7Haar -20 | 125599 325599 0.6998 noise 7Haar 20 | 109361 | 309361 | 0.6909
7 Levels Q=0.01- 10 | 264251 36.4251 0.9819 |o7a rfmeﬁer =
decomposition THaar ' : ' decommesio | 2H 1 g0 | 219770 | 31977 | 0.9489
Q=0.01- ecompositio Q=0.01
S Haar 10 | 31.3047 21.3047 0.9936 n T
9001 0.01 10 31.6101 | 21.6101 | 0.9940
e 20 | 320553 12,0553 0.9946 Q=0.
= 7Haar- 20 | 317651 | 117651 | 0.9942
Q=0.01 : : '

Table 8 reveals that the best value in improvement is L .
31.977 dB is at input SNR= -10 and process noise Q=0.01 Table 9 reveals that the best value in improvement is
with number of decomposition levels=7 and the best \:jv(?iﬁ%r}u(rjni:rt "Z)?‘Ut dsetlc?n: E)l's?ti?)nnd F:L?/Z‘i:i;m's_?hg_%g;
correlation coefficient is at input SNR=20 and number of ) Ot decompx DO
decomposition levels=7 and process noise Q=0.9 correlatloq _coeff|0|ent is at input SNR_—20 and number of
decomposition levels=7 and process noise Q=0.9
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Fig 26. O/P signal for cascaded mode Haar — Kalman at
Q=0.01 and 3 levels of decomposition when input SNR= -
20dB

0o 1000 2000 3000 8000

noisy signal
wden-kalman signal
simulated signal

3.5

Gyro Signal
w

2.5

L L L L
4000 5000 6000 7000

iterations

Fig 27. O/P signal for cascaded mode Haar — Kalman at
Q=0.01 and 3 levels of decomposition when input SNR=
20dB
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Table 10 Cascaded Mode 3levels Haar wavelet then
Kalman output metric values

SN
Filters Parameters R SNR Improve | Cor-Co-
1P o/pP -ment eff
3Haar-
Q=09 -20 1.3252 21.3252 0.2598
SHaar- | 14 | 123408 | 22.3408 | 0.7133
Wavelet Q=0.9
then 3Haar-
Kalman 0=0.9 10 | 345778 | 24.5778 | 0.9970
3Haar-
Q: process Q=09 20 41.2847 | 21.2847 0.9994
noise 3Haar-
parameter 0=0.01 20 | 10.9299 | 30.9299 | 0.6085
3 Levels 3Haar-
decomposit 0=0.01 -10 | 20.8240 | 30.824 | 0.9367
ion 3Haar-
Q=0.01 10 31.3164 | 21.3164 0.9936
3Haar-
Q=0.01 20 31.7827 | 11.7827 0.9943

Table 10 reveals that the best value in improvement is
30.9299 dB at input SNR= -10 dB and process noise
Q=0.01 with number of decomposition levels=7. The best
correlation coefficient is at input SNR=20 dB and number
of decomposition levels=7 and process noise Q=0.9
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Fig 28. O/P signal for cascaded mode Kalman — Haar at
Q=0.01 and 3 levels of decomposition when input SNR= -
20dB
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Fig 29. O/P signal for cascaded mode Kalman — Haar at
Q=0.01 and 3 levels of decomposition when input SNR=
20dB
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Table 11 Cascaded Mode Kalman then 3 levels Haar
wavelet output metric values

8000

8000

Filters Parameters SNR SNR Improve | Cor-Co-
1P Oo/P ment eff
Kalman Q=0.9- 3Haar -20 2.2429 22.2429 0.2970
W;r:/eer; . | Q=09-3Haar | 10 | 151438 | 251438 | 0.8215
Q: Q=0.9- 3Haar 10 34.7329 24.7329 0.9971
process Q=0.9- 3Haar 20 42.3766 22.3766 0.9995
pa?;r;feeter Q=0.01- 3Haar -20 10.8853 | 30.8853 0.5662
3 Levels Q=0.01- 3Haar -10 20.1395 30.1395 0.9227
deci;’ig‘npos Q=0.01-3Haar | 10 | 29.4059 | 19.4059 | 0.9901
Q=0.01- 3Haar 20 31.9414 11.9414 0.9945

Table 11 reveals that the best value in improvement is
30.8853 dB at input SNR= -20 dB and process noise
Q=0.01 with number of decomposition levels=3 and the
best correlation coefficient is at input SNR =20 dB and
number of decomposition levels=3 and process noise
Q=0.9

Figure 30 shows the highest improvement in SNR
and the lowest improvement in SNR for every filter at a
certain parameter and a comparison with the simulated
signal in Fig 9.




SNR Improvement

40

-20 -10 10 20

1/P SNR

w
o

SNR Improvement
[
[=] [=]

H Kalman Haar Wavelet

Hybrid(Kalman-Haar) Hybrid(DB2-Haar)

m Hybrid(Wavelet then Kalman) m Hybrid(Kalman then Wavelet)

Fig 30. SNR improvement for every technique
Table 12 Comparison between output metric values
of different techniques at (Q=0.01 and 7 levels of
decompositions)

Filters SNR Improvement Correlation Coefficient
SNR input 20 -10 10 20 20 -10 10 20
Kalman 3090 | 30.36 | 2057 | 10.89 | 0.6238 | 0.9261 | 0.9924 | 0.9930
Haar Wavelet 15.037 | 1650 | 24.12 | 2528 | 0.1409 | 0.4408 | 0.9967 | 0.9997
Hybrid(Kalman-
Haar) 2060 | 2247 | 2515 | 1691 | 02345 | 07178 | 0.9974 | 0.9982
Hybrid(Haar-
0B2) 1495 | 17.21 | 29.71 | 22.03 | 01414 | 04914 | 09991 | 0.9995
Hybrid(Wavelet
3093 | 3197 | 21.61 | 11.76 | 0.6909 | 09489 | 0.9940 | 0.9942
then Kalman)
Hybrid(Kalman
3256 | 36.42 | 21.30 | 12.05 | 0.6998 | 0.9819 | 0.9936 | 0.9946
then Wavelet)
Table 12 reveals that the best value in improvement is
36.42 dB at input SNR= -10 with number of

decomposition levels=7

V1. CONCLUSION

An efficient technique has been proposed to decrease the
noise from gyroscope signal. This technique uses hybrid
methods to denoise the signal. In the first method, both
Haar wavelet denoising and Kalman filtering are
implemented in parallel and the results are averaged. In
the second method, both Haar wavelet denoising and
Daubechies wavelet denoising are implemented in parallel
and the results are averaged. In the third method, both
Haar wavelet denoising and Kalman filtering are
implemented in cascaded mode where the output of the
Kalman filtering is the input of the Haar wavelet
denoising. In the fourth method, both Haar wavelet
denoising and Kalman filtering are implemented in
cascaded mode, where the output of the Haar wavelet
denoising is the input of the Kalman filtering. Wavelet
denoising depends on a thresholding strategy. On the
other hand, the Kalman filtering depends on estimation
theory. In the worst case of SNR, the cascaded structure
comprising Kalman filtering and then Haar wavelet
denoising achieved the best performance. The rationale
behind this conclusion is the difference between the basic
theory of the two stages. The probolistic nature of Kalman
filtering estimation removes most of the noise. The
remaining noise is removed during the wavelet
thresholding process.
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