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IN the framework of the sdg-interacting boson model (sdg-IBM1), we study the nuclear 
structure of Os isotopes. Recent calculations of E2 and E4 transitions in the Os isotopes 

that can not be clarified in the sd-boson models need this extension. We illustrate how gamma-
unstable and triaxial shapes arise from special Hamiltonian sdg- model choices and explore 
ways to restrict the number of free parameters through conditions of consistency and coherence. 
Os nuclei, a satisfactory explanation of E2 and E4 properties is obtained, which also predicts 
complex shape transitions in these isotopes.
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Introduction                                                                   

One of the most difficult tasks for collective 
models of nuclei has been the classification of 
transitional nuclei. The triaxial nature of their 

energy surface, which is neither γ -rigid as in the 

Davydov-Filippov model [1] nor γ -unstable as 
in the Wilets-Jean model [2], is a complicating 

characteristic of these nuclei, but γ -soft, which 
requires the introduction of more elaborate 
geometric models such as the generalized 
collective model [3]. More recently, the Interacting 
Boson Model (IBM) [4] has provided the 
transitional nuclei with a very basic explanation 
based on the O(6) limit and its perturbations 
[5,6]. The O(6) limit was particularly effective in 
explaining the E2 transition between low-lying 
Pt isotope levels [5,6]. Its main disadvantages 
are (i) the energy surface is unstable, leading to 

too much staggering in the quasi-γ  band [7], (ii) 
the quadrupole moments disappear [8], (iii) the 
B(E2) values drop too quickly due to the boson 
cut-off [9], (iv) the E4 properties are not described 
[10-18]. Within the standard IBM (i.e., sd-bosons 
with one- and two-body interactions), none of 
the above issues could be satisfactorily solved 
and the model needs to be expanded. The easiest 
way to achieve this is to introduce interactions of 
higher order that could be motivated as a result of 

g-boson renormalization. While this may resolve 
a specific problem, e.g., a special choice of cubic 

interaction introduces a γ -soft component in the 
energy surface and thus addresses the staggering 
problem (i) [ref.7], it is not simple to solve all the 
above problems (i)-(iv) in a consistent way. A 
second extension includes the degree of freedom 
of the proton-neutron (IBM-2) that for example, 
solves the issue of the quadruple moment (ii) 
[ref.19], but fails in other aspects. Another 
addition strongly implied by the above points (iii) 
and (iv) is the inclusion of the g-boson.

A detailed collection of experimental data 
indicating the need to include the g-boson in the 
IBM calculations is now available [see ref.5 for a 
review]. However, due to the technical difficulties 
of large-scale base space diagonalization and the 
excessive number of parameters (32), progress 
on the theoretical side was slow. To date, the 
application of the sdg-model has been restricted 
primarily to deformed nuclei, where this need is 
particularly acute. In order to deal with the main 
basic problem, various approximation schemes 
were used, e.g. truncating the base either to a 
maximum of one g-boson [20] or using an SU(3) 
basis [21]. Another solution has been the method 

of analytical N/1  expansion [22], which is 
particularly suitable for deformed nuclei with
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 . For transitional nuclei where boson 
numbers are relatively smaller ), exact 
diagonalization will be preferred, and in larger 
mainframes it is still possible. The aim of this 
paper is to perform such an exact analysis using 
the computer code SDGBOSON [23], and to 
illustrate that it is possible to address the above-
mentioned problems within a restricted set of 
parameters.

Classes of sdg-model Hamiltonians suggested 
by an analysis of shapes [24] to be acceptable for 
the isotopes of the Os are discussed in Sect.2. The 
dependency of parameters on various physical 
quantities is studied in order to limit the number 
of parameters in a physically realistic way. For 
feature calculations in this region, the systematics 
provided in this section would be useful. From 
a sect. 3, in the calculation of Os isotopes, these 
ideas are used. The emphasis here is on those 
properties of E2 and E4 that require the explicit 
introduction of g-boson for understanding.

The sdg-Interacting Boson Model (sdg- IBM1)
The Interacting Boson Model (IBM) suggests 

that the observed properties of the nuclei’s low-
lying collective states emerge from the interplay 
of two effects: firstly, the strong interaction 
between identical particles (proton-proton and 
neutron-neutron); secondly, the strong interaction 
between quadrupole-quadrupole and non-identical 
particles (proton-neutron). The Interacting Boson 
Model (IBM) assumes that the even-even nucleus 
consists of an inert core plus some valence 
particles, which tend to pair together in states 

with angular momentum 0=J  and 2=J
, outside the closed shells at 50, 82, 126, and 
called s-bosons and d-bosons respectively, these 
pairs are treated as bosons. The total number of 

bosons N in a given nucleus is the proton, πN  

and neutron sum νN . The number of bosons is 
always half the number of nucleons of valence (or 
holes) counted from the nearest shell that is closed 

N = νπ NN + . Between protons and neutrons, 
no distinction is made, therefore called IBM-1.

In the few past years considerable 
experimental data on E4 matrix elements and 
strength distributions has accumulated and their 
theoretical understanding (using models or 
microscopic theories) is a challenging problem. 
One of the models well suited for this purpose 
is the sdg-interacting boson model (sdg-IBM 
or simply gIBM); here the IBM with s ( 0=l
) and d ( 0=l ) bosons is extended to include 
g ( 0=l ) bosons.

 
For a practical study of experimental results, 

the sdg-model requires far too many parameters 
(32 in total). Therefore the application of the 
model depends on identifying a simple set of 
parameters which capture the essential physics. 
We are driven in this process by a recent study of 
shapes [24] which showed that I one-body terms 
control the transition from spherical to deformed 
shape but do not affect the degree of freedom of γ
, (ii) odd multipole interactions do not play a role 
in shapes (iii) quadrupole interaction always leads 
to an axial shape, except that when the diagonal 
terms disappear ( 0=llq ), resulting in a −γ
unstable shape, (iv) stable triaxial shapes that are 
−γ soft can be obtained for some hexadecapole 

interaction choices. The points above imply that 
the shape of a Hamiltonian is [4]:

The description of transitional nuclei should 
be adequate. Here are given by the different 
multipole operators [4]:

∑ +=
µ

µµ ggng
…………………………………….… (2)

)1(~)1(~ ][60][10 µµ ggddL ++ +=

)2(~
44

)2(~~
24

)2(~
22

)2(~~ ][][][][ µµµµµ ggqdggdqddqsddsQ ++++++ +++++=

)4(~
44

)4(~~
24

)4(~
22

)4(~~
4 ][][][][ µµµµµ gghdggdhddhsggsT ++++++ +++++=

   …………………… (3)

   ….. (4)

…….. (5)
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This Hamiltonian contains 10 parameters i.e., 

the single g-boson energy, gε , ,1κ  ,2κ and 4κ
, which are the strength parameters for the dipole, 
quadrupole and hexadecapole interactions, and 

the jlq  and jlh  quadruple and hexadecapole 
parameters. Although the number of free 
parameters is significantly smaller, a further 
reduction would be desirable.

First, we consider a special case of Eq.(1) with 

044422 === κqq  which has a    γ -unstable 
energy surface and thus preserves the O(6) limit’s 
successful characteristics, such as the well-known 

O(5) selection rule 1±=∆τ  for the transitions of 
E2 [25]. To illustrate this approximate realization 
of the symmetry of O(5) in the model of sdg.

Both the successful features of the O(6) limit 

and its failures resulting from the γ -unstable 
nature of its energy surface are shared by the 
above choice of the Hamiltonian. The inclusion 
of a hexadecapole interaction, as indicated in (iv) 
above, as in Eq.(1) could contribute to a triaxial 

shape that is γ -soft. However, phenomenological 
determination of the parameters of the 

hexadecapole jlh  poses a problem as the E4 data 
is rather scarce. To avoid parameter proliferation, 
we determine from a commutation condition that 
ensures that the mean fields of quadrupole and 
hexadecapole are coherent [22]. That is, we are 

imposing 0],[ =−− qh  that yields:

The Hamiltonians considered in the previous 
paragraphs showed how in the sdg-model with 
a limited number (4-5) of parameters, various 
shortcomings of the O(6) limit could be rectified. 
A common feature of these Hamiltonians is 
that the selection rules for E2 are preserved and 
therefore the non-vanishing quadrupole moments 
observed in transitional nuclei are not described. 

This clearly requires the condition ,04422 == qq
in the quadrupole operator Eq.(4) to be relaxed. In 
the following, with a general quadruple operator, 
we consider the Hamiltonian (Eq.(1)) but with the 

hexadecapole parameters still determined from 
the condition Eq.(6). In addition, we will continue 
to use the consistent operators E2 and E4 [5,6,7]:

No new parameters are added in the determination 
of electromagnetic transitions, so that, apart from 

the effective charges 2e and 4e . 

To summarize the above systematic studies, it 
is possible to explain the E2 and E4 properties in 
the Hamiltonian with a general quadrupole and a 

coherent hexadecapole operator if 04 <κ . While 

the staggering systematics implies a positive 4κ , 
such an option ruins the excellent explanation of 
the properties of E2 and is not favored. Obviously, 
a simultaneous solution to all the problems noted 
in the introduction necessitates easing one of the 
conditions of coherence or constancy. This will 
create new parameters that we would rather stop.

Results and Discussion                                                 

Energy Spectra
Using the insights gained in the previous 

section, we now proceed to perform fits to the Os 
data. We do not try to fit each individual nucleus 
in depth here but we emphasize the overall pattern 
instead. The number of variable parameters is held 
to a minimum in this way. However as a result, 
we foresee some small differences between the 
calculated and experimental data. Furthermore, 

since the energy of the    g-boson state ( += 4πK
band) in the transitional region is almost constant, 

the gεκ /  ratio is almost constant. In each 
isotopic chain, it is held roughly constant. The 

three parameters )/,,( 421 gεκκκ  are primarily 
correlated with the lowest-lying bands. On 
the other hand, the quadrupole parameters are 
modified to suit the transitions of E2 and E4. The 
parameters are indicated in Table 1.

Here we examine the 188-194Os for which E4 data 
is available. Figures 1 - 4 display the determined 
spectrum for Os in sdg-IBM1 and experimental 
results, visibly improving the agreement between 
the calculated and experimental level schemes. 
This occurs because the isotopes of the Os are 

more deformed and the undesired effects of the γ
-unstable limit on the quasi-β  and quasi-γ  band 

,2422
  qh   ,4424

  qh    242422442444 /)1( qqqqqh     ……… (6) 
 
 

where jljl qljq   2000  and jljl hljh   4000 . When ,04422  qq  Eq. (6) gives                  

02422   qh ,  024 
h ,   242444 /1 qqh  …………  ….. (7) 
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energies are thus greatly reduced. The lower lying 
4+ (g-boson) state that requires smaller g-boson 
energy is another major change (see Table (1)). The 
mixing of the g-boson in the sd-states is therefore 
greater in the Os isotopes and is predicted to play 
a more important role in low-lying spectroscopy.

The )2(/)4( 11
++= EER  ratios are especially 

significant as the transition rotor ( )6(O rotor) 
progresses, with the exception of the range from 
3.077 to 2.634. From the energy spectra results, 

we see the += 4πK in the 190-194Os isotopes are 
and are well described. But for 188Os isotope, 

the += 4πK band-head energy levels are greater 
than the experimental 0.05 MeV. In general, the 
energy of the first excited )0( 2

+  state is high, as 
this state is perceived as the band head of the beta 
band. Instead of spherical nuclei, the yrast band 
spectra are identical to those of deformed nuclei. 
The second excited state of )0( 3

+  states decays 
primarily to +

22  states in 188-190Os.

It is found that the sdg-IBM1 does not 
integrate high-spin states into calculations. The 
calculated levels of energy are always higher than 
experimental levels, and the discrepancies increase 
as one goes up to higher-spin states. It has been 
shown that when g-bosons are used in IBM, the 
calculated energy levels for higher spin states will 
be lowered. It is also assumed that the g-boson 
must be used if we intend to integrate high-spin 
states into the calculations.

Electric Transition Probability  
The determined E2 matrix elements 

are compared in Table 3 with the available 

experimental data of 188-192Os. From the transition 
)02;2( 11

++ →EB (normalized to experimental 
)02;2( 11

++ →EB value), the boson effective 
charges is given in Table 3.  We see this effective 
charges re vary smoothly from isotope to another. 
The determined E2 matrix elements generally 
agree well with the data especially for the 
stronger E2 transitions which correspond to those 
permitted by the O(6) limit selection rule 1±=∆τ
. While differences remain in detail, the weaker 
transitions that would be forbidden at the O(6) 
limit are relatively well described. Remember 
that in a systematic study of smoothly changing 
parameters, these deviations from the calculated 
values are not constant (i.e., sometimes smaller 
and sometimes larger) and are thus not easily 
rectified. For the E2 transitions from the +

32  state 
of Os isotopes, the most glaring difference exists. 
The determined values are an order of magnitude 
smaller than those observed, resulting from the 
persistence of the O(6) limit 0=∆σ selection 
law. To address this problem, more theoretical 
work on more efficient ways of breaking the O(6) 
symmetry is required. Also it would be desirable 
to shed more light on systematics with further 
experimental analysis of the E2 transition from 
the 2−= Nσ  levels.

In the Table 4, a comparison between sgd-
IBM1 and experimental data for E2 matrix 
elements is shown. Again with less variations 
compared to the experimental values, the average 
agreement is much higher. Worth noting here are 
the E2 transitions from the +

34  (g-boson) state 
that are fairly well explained. If the g-bosons 
were weakly coupled, these transitions would be 
minimal, and such a good explanation would not 
have been practicable.

TABLE 1. Sdg-IBM1 Hamiltonian Parameters for Os isotopes (in MeV units).

Isotopes N
gε 1κ 2κ 4κ

188Os 10 0.620 0.005 -0.041 -0.014
190Os 9 0.530 0.0125 -0.033 -0.012
192Os 8 0.500 0.015 -0.030 -0.011
194Os 7 0.450 0.015 -0.035 -0.010

TABLE 2. Effective charges in ).( be  Units for 188-194Os isotopes.

Isotopes 188Os 190Os 192Os 194Os

2e
 

).( be 0.129 0.136 0.143 0.151
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TABLE 3. Reduced Matrix Elements for electric transition probability for Os isotopes.

Isotopes Transitions Exp.   sdg-IBM1 

 

188Os

1.584±  0.022 1.582

++ → 11 24 2.646± 0.057 2.521

++ → 11 46 3.257± 0.109 3.244

++ → 11 68 3.950± 0.329 3.820

++ → 12 22 0.866± 0.023 0.984

++ → 12 02 0.483± 0.010 0.371

++ → 12 20 0.077± 0.029 0.144

++ → 12 44 1.098± 0.09 1.210

++ → 22 24 1.775± 0.113 1.633

++ → 12 24 0.283± 0.018 0.0044

++ → 12 66 1.442± 0.406 1.261

++ → 22 46 2.456± 0.274 2.500

++ → 12 46 0.127± 0.025 0.334

++ → 23 44 1.643± 0.246 0.611

++ → 23 24 0.837± 0.149 0.855

190Os

++ → 11 02 1.539± 0.013 1.542

++ → 11 24 2.366± 0.042 2.371

++ → 11 46 2.970± 0.515 2.887

++ → 11 68 3.712± 0.105 3.710

++ → 12 22 1.095± 0.030 1.118

++ → 12 02 0.456± 0.012 0.455

++ → 22 20 0.387± 0.032 0.389

++ → 12 20 0.118± 0.011 0.123

++ → 12 44 1.439± 0.031 1.500

1.871± 0.040 1.881

0.202± 0.007 0.221

++ → 12 66 1.766± 0.184 1.788

++ → 22 46 2.598± 0.156 2.601

++ → 12 46 0.194± 0.090 0.199

++ → 23 44 1.578± 0.113 1.580

1.600
++ → 23 24 0.775± 0.065 0.709

++ → 13 24 0.052± 0.006 0.060

++ → 13 44 199.0≈ 0.221

++
i

E
f JTJ )2(

++
i

E
f JTJ )2(

++ → 11 02

++ → 22 24
++ → 12 24

++ → 13 34
091.0
340.0543.1 +

−



18

Egypt. J. Phys. Vol. 50 (2022) 

BILAL R. OBAID et al.

Experimental data are taken from refs. [26, 27,28]
In order to evaluate the quadrupole moment 

for fist and second excited states )2( +
iQ , we 

depend on the following equation [30]:
                                                                                                                                                      

                                                                          (9)

 The parameters of the quadrupole operator 
(Eq.(3)) are given in Table 5, Which were 
evaluated with the available experimental values. 

The quadrupole moments of the +
12 and +

22
states are shown Table 6, and agree well with the 
experimental values. The drop in the quadrupole 
moments with increasing spin, which was 
encountered in the Os isotopes. In Table 6, we 
show the quadrupole moment calculations up to 
high spins which predict a prolate-oblate shape 

transition around . The available data 
have rather large error bars, and more precise 

measurements extending to higher spins would be 
desirable. 

Less complete is the E4 data on the Os 
isotopes. So far the (p,p’) experiments have 
only been performed for 192Os [15], and the E4 
data is fairly well described in this case. For 

the )40(4 31
++ →E  transitions, the other E4 

data comes from ),( 'αα  experiments which 
are sensitive to the reaction details and are 
therefore less reliable. On the other hand, the 

)40(4 11
++ →E transitions are extracted from 

the more reliable (e,e’) experiments, and are 
reproduced in the calculations quite well.

The E4 transitions that are one of the main 
motives for the present study are discussed. Since 
in each isotope there are only a few transitions 

192Os

++ → 11 02 1.457± 0.018 1.466

++ → 11 24 018.0
038.0115.2 +

−
2.210

++ → 11 46 010.0
08.093.2 +

−
2.890

++ → 11 68 17.0
15.058.3 +

−
3.611

++ → 12 22 030.0
016.0224.1 +

−
1.321

++ → 12 02 08.0
014.0425.0 +

−
0.432

++ → 12 42 12.0
07.035.0 +

−
0.352

++ → 12 20 012.0
013.0066.0 +

−
0.075

++ → 22 20 044.0
056.0449.0 +

−
0.450

++ → 12 44 10.0
08.035.1 +

−
1.330

++ → 22 24 1.637± 0.050 1.700

++ → 12 24 018.0
010.0125.0 +

−
0.128

++ → 12 64 20.0
18.040.0 +

−
0.410

++ → 12 66 30.0
20.049.1 +

−
1.451

++ → 22 46 13.0
012.090.2 +

−
2.930

++ → 12 46 0.067± 0.076 0.064

++ → 23 44
1.19± 0.22 1.220

++ → 13 34 20.0
36.063.1 +

−
1.66

++ → 23 24 12.0
14.079.0 +

−
0.777

++ → 13 24 064.0
046.0113.0 +

−
0.115

TABLE 3. Cont.
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known, we tend to hold the effective charge 

constant for all Os isotopes at 0343.04 =e
2eb , calculated from fitting the 192Os transition 

++ → 11 40 . Table (7) compares the matrix 

elements of the E4 determined using the consistent 
E4 operator (Eq.(8)) with the experimental 
data available. The overall agreement between 
the calculations and different measurements is 
excellent, provided that the E4 operator is derived 
from that of E2.

TABLE 4. Quadrupole parameters in (e.b) Units for Os isotopes.

Isotopes
22q 24q 44q

188Os -0.240 0.900 0.50
190Os -0.262 0.900 0.50
192Os -0.281 0.900 0.50
194Os -0.300 0.900 0.50

 

TABLE 5. Quadrupole moments (e.b) Units for Os isotopes.

sdg-BM1Exp.+
iJNuclei

-1.540-1.46(4)a+
12188Os

1.0331.00(25)b+
22

-1.201-1.18(3)c+
12

190Os 0.9980.9(4)c+
22

-0.887-0.96(3)d+
12

192Os -0.91-0.8(3)d+
22

-0.878-+
12194Os

a- [26]         b- [27]        c- [28]       d-[29]      

TABLE 6. E4 matrix elements for Os isotopes in 2eb Units.

Isotopes 
)40(4 11

++ →E )40(4 21
++ →E )40(4 31

++ →E
Exp. sdg-IBM1 Exp. sdg-IBM1 Exp. sdg-IBM1

188Os 0.217(11)a 0.214 - 0.185 0.109c 0.111

190Os 0.212(12)a 0.210 - 0.160 0.078c 0.089

192Os 0.220(10)a 0.223 0.116(29)b 0.112 0.108(27)c 0.106

194Os - 0.224 - 0.101 - 0.100

a- [14]       b-[15]     c-[10]
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Fig. 1. Comparison between experimental data [26] and IBM-2 calculated energy levels for 188Os isotope.
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Fig. 2. Comparison between experimental data [27] and IBM-2 calculated energy levels for 190Os isotope.
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Fig. 3. Comparison between experimental data [28] and IBM-2 calculated energy levels for 192Os isotope.
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Fig. 4. Comparison between experimental data [29] and IBM-2 calculated energy levels for 194Os isotope.
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Concluding Remarks                                                               

In this study, we have discussed some 
special features of the sdg-boson model that are 
important to the transitional nuclei description. 
In particular, we have shown how a quadrupole 

Hamiltonian can achieve the γ -unstable limit 
and how a coherent hexadecapole interaction 

can induce γ -soft triaxiality. In more general 
terms, we have also considered the Hamiltonian 
model and have established systematic patterns 
for different physical quantities of interest. The 
number of free parameters is an overbearing 
concern in the sdg-model. We have limited 
this number to nine (7 in the Hamiltonian and 
two effective charges) by different consistency 
and coherence conditions, which are often 
kept constant or change smoothly within an 
isotopic chain. This approximately doubling 
of the parameters relative to the sd model is 
well justified given that 30-40 pieces of data 
are clarified for each nucleus. It should also be 
emphasized that some of the E2 and E4 data, 
irrespective of the number of parameters used 
in the sd-models, cannot be represented without 
g-bosons.

In summary, a coherent overview of the E2 
and E4 properties in the Os using a restricted 
set of parameters, isotopes were obtained. The 
problems with the transitions of quadrupole 
moments, yrast E2 and E4, which cannot be 
clarified in the sd-models, have been resolved 
satisfactorily. The complex shape transitions 
that could be checked with the new 4π -detector 
systems “Euroball” and “Gamma-Sphere” are an 
important prediction of the current calculations.
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