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Abstract—Recently, blockchain is considered the most reliable data storage technology that stores data in blocks. Many 

cryptocurrency frameworks such as Bitcoin, therefore, utilize blockchain technologies to preserve all past details on blocks. 

These blocks are related as a chronological link list and can be changed to a fork structure. Which there are two types of 

fork: accident fork which appears when two blocks are published in the blockchain at the same time. On the other hand, 

there are selfish miner attackers who have supercomputer properties to generate illegal blocks and maximizing their illicit 

reward (intentional fork). A set of blockchain transactions will be rollbacked when the malicious fork appears in the Bitcoin 

environment, therefore, user waiting times and illicit miner rewards will increase. In this paper, The proposed algorithm is 

a lightweight algorithm (Memory pool publisher) that has used the Bitcoin memory pool as a publisher of blocks to prevent 

the Bitcoin environment's malicious fork and rollbacked transaction. The findings show that the major cause of the 

malicious fork is the multiplicity of blockchain publishers of blocks in the bitcoin environment. The proposed algorithm 

success to solve the limitation of the previous fork. Which has a strong potential to prevent the intentional and accident fork 

problem, and the rollback problem. Therefore minimize user waiting times from 60 minutes to 10 minutes by makes one 

block publisher to the blockchain. 
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I. INTRODUCTION 

Online currency exchange, such as Bitcoin[1], is a safe idea to move currency between users without any fees[1]. Bitcoin uses 
P2P technology and works with no confident third party jurisdiction, which may function as a bank, a CA, a notary, or other 
centralized services[1]. Bitcoin uses P2P (peer-to-peer technology) technology. The owner has absolute ownership of his bitcoins 
and will invest them anytime and anywhere without requiring any centralized authority. Bitcoin architecture is open-source, and no 
one owns or manages it. Besides, Bitcoin is a cryptographically protected electronic payment mechanism that facilitates transactions 
involving virtual currencies in the form of digital tokens called Bitcoin coins (BTC or simply bitcoins). 

There are a variety of implementations in blockchain technologies, such as cryptocurrency [2], Internet [3], and the supply chain. 
The government [4] continuously use blockchain software capable of creating consensus in a shared environment. A distributed 
ledger is developing as the name means, a blockchain is a series of data blocks that have a single way hash function to 
cryptographically chain to each other. Blockchains use these logical frameworks. Blockchain is like the liked list structure that stores 
chronological blocks of data. On other hand, many attackers may be changed this chain to a malicious fork. A malicious fork happens 
when two blocks are published in the blockchain (Accident fork) at the same time, or a miner has supercomputer properties that 
produce a series of blocks as a branch and does not publish this branch to the blockchain after reaches the length of the main branch 
(Intentional fork) [5], which is referred to as the "Selfish Mining Attack" to maximizing the miner's illicit reward [6]. 

 Our motivation from this study: our proposed algorithm aims to keep the blockchain as a linked list, prevent the malicious fork, 
reduce user waiting time, and reduce illicit miner rewards. 

 Our Contribution to this study:  the Memory pool algorithm is presented to prevent the malicious fork and ensure that the 
blockchain is maintained as a linked list. Memory pool publisher is recommended and therefore the rollback problem is avoided, as 
well as reducing user waiting times and illicit miner rewards. Memory pool publisher makes one block publisher in the Bitcoin 
environment and divides block construction into two phases. The miner creates the block and transfers this block to the memory pool 
in the first phase. The memory pool publishes all received blocks to the blockchain in the second phase. 

The paper is organized as follows: Section II presents a review of the previous work that highlighted the malicious fork. In section 
III, the proposed algorithm is introduced to try to prevent the malicious fork. Section IV presents the result of a comparison between 
the previous work algorithms that tried to prevent the malicious fork and the Memory pool publisher algorithm. Finally, Section V 
introduces the conclusion of the Memory pool publisher algorithm. 

II. BACKGROUND 

 The framework of Bitcoin includes a set of nodes: user, miner, and memory pool [7]. Users would be able to send and receive 
currency [7,8]. Each transformation is stored in a transaction and each set of transactions are stored in blocks. Each transaction 
includes lock time, sender key, sender signature, the final amount after this transformation of the sender (change), receiver key, and 
transformation amount and fee that only use fees to accelerate the transaction processing. The block is produced to validate a series 
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of transactions in an average of ten minutes. [9], which contains block id, header, and body. The block header contains the version 
of the Bitcoin system, previous block id, timestamp of the block generation, nonce, shared target, and Merkle root address. To create 
blocks, the Bitcoin framework requires at least one miner who enters the scheme as a user and builds new blocks to win any Bitcoins 
using his computing tools [7]. The miner obtains from the memory pool a group of transactions and verifies the transaction signature 
and the sender's possession of the amount and fee of the transaction. To prevent the user from being able to send the same currency 
to more than one user at the same time[10,11], which is called "double-spend attacks" each sender may make only one transaction at 
the same block. Then, as the first transaction in the block, the miner produces a transaction reward, builds a block, and stores this 
block in the local blockchain, and transfers this block to all other miners. When the other miners receive a block, check the previous 
block id and approve this block if the previous id is located in the local blockchain and the block id is lower than the shared target. 
Otherwise, the miners would reject this block. All transactions are processed in the memory pool and sorted by the highest fee, where 
the transaction with a high fee is first confirmed. Then the memory pool gives all miners a series of ordered transactions based on 
the block size [9,12]. However, owing to certain attacks on the bitcoin infrastructure, or where two blocks are stored at the same time 
in the blockchain, those transactions are undone and returned to the memory pool [7]. 

 Blockchain is a framework connected to the list but can be modified to a structure fork. There are two types of forks: a useful 

fork or a malicious fork. Using the useful fork to upgrade the soft or hard Bitcoin system or blockchain laws [13]. For instance, If the 
block size is 8 megabytes, up to 16 megabytes must be modified. The hard fork is used when the two types of block sizes are 8 and 

16 MB. The soft fork is used when only the current block size (16 M) is used. There are two types of malicious fork: accident and 

intentional fork. The intentional fork is shown in Fig. 1 consists of two branches the honest branch and the private branch (attacker’s 

branch). The miner must choose the highest branch as the main chain or if the two branches are equal in length, pick a random branch 

as the main chain [7, 14]. Other branch transactions are rollbacked to the memory pool [15]. Consequently, the miner is unable to get 

all the blocks in the blockchain and cannot check the sender's amount. The rollback issue is an incomplete process for a transaction 

and this incomplete transaction is returned to the memory pool. Furthermore, rollback is a user time-consuming issue. At the end of 

a transaction, the user waits for transaction confirmation. A transaction will be confirmed after the release of six blocks in the 

blockchain [16]. So, the user waiting time is six blocks after the block that includes his transaction. If the six blocks or his block were 

rollbacked, the waiting period will increase. For illustration, If the attacker has 10 percent of mining resources, the probability of 

publishing the next block after two blocks is 10 percent, 1 percent after four blocks, and 0.1 percent after six blocks, therefore, all 
block transactions are confirmed after generating six blocks in the same branch [16]. 
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III. RELATED WORK 

 There are many ways proposed in the literature that has dealt with the malicious fork issue. This section reflects research efforts 
to address the malicious fork issue and comparison between them by three metrics: accident fork, intentional fork, and rollback 
transactions. There are two viewpoints on all research efforts that address the issue of the malicious fork. 

A. First Viewpoint. 

 Some authors select one branch as the main branch and rollback the other branches to maintain the blockchain as a linked list 
structure.  In [17] the block timestamp is used to select the main chain. The selection of the main branch depends on the timestamp of 
each branch's last block. This algorithm selects a branch as the main chain with the most recent timestamp and if all branches have 
the same timestamp, picks the first obtained branch timestamp as the main chain. Otherwise, the largest block length branch is 
selected as the main chain. In [18] The weight of a branch is used instead of the length of the branch to select the main chain. Each 
block requires a waiting time for the other miners to publishing. For all blocks, this algorithm assumes the propagation delay time is 
constant. The branch weight is determined by accumulating the branch length and the complete blocks are published in the other 
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Fig.  1.  Intentional fork. 
Note: this figure is a graph which show the Intentional fork issue 
 

Fig.  2.   Publish or perish example. 
Note: this figure is a graph which show the Publish or perish 
algorithm and the uncle blocks. 
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branch during the delay time of each block of the branch (uncle block). The main branch with the largest weight is picked by the 
algorithm. For instance, as shown in Fig. 2, blockchain contains two branches: black and red which each block has a propagation 
delay time, and calculate the branch weight by accumulating the branch length and uncle blocks. The weight of the black branch is 
3+3=6 and the weight of the red branch is 4+1=5. Then the miners accept the black branch as the main chain and rollback the red 
branch though the length of the red branch greater than the length of the black branch. In [20] the expected block number is used to 
select the main chain. This algorithm saves the expected block number in all un-confirmed transactions of the memory pool depend 
on the fee of the transaction, block size, and blockchain length. When the malicious fork has occurred, this algorithm will calculate 
the truth state of all branches depend on the expected block number of all transactions. It determines the main branch with the highest 
truth state. For instance, as shown in Fig. 3, every Memory pool transaction contains the expected block number and when appear a 
fork in the blockchain accepts the branch with the less wrong expected number. The number of the wrong expected number of the 
green branch is 4 and 1 for the red branch. Therefore then accept the red branch and rollback all transactions of the green branch. 
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Table 1. A comparison between the advantages and disadvantages of related work algorithms. 

Algorithm Accident 
fork 

Intentional fork Rollback 
transaction 

Limitations 

One weird 
trick [17] 

Remove the 
accident 
fork 
depending 
on the 
timestamp. 

Failed to remove the 
intentional fork. 

Rollback 
too many 
transactions. 

• Pick the private branch and back off from the public 
branch. 

• Fail to solve the accident fork problem, because the 
miner will select the recent branch and rollbacks 
the other honest branches. 

Publish or 
perish [18] 

Failed to 
remove,  

Remove the intentional 
fork, pick the highest 
weight branch as the 
main branch, and 
rollback the other 
branches to the 
memory pool.  

Rollback 
too many 
transactions. 

• The propagation delay time is assumed to be 
constant, however, is the opposite of reality. 

• The algorithm fails if it does not have time to create 
another branch. 

• Lacks to solve the accident fork problem, because 
all branches have the same weight. 

• Increase the load of the miner to the weight of each 
branch. 

Countering 
[19] 

Failed to 
remove. 

Remove the intentional 
fork, pick the most 
correct expected block 
branch as the main 
branch. 

Rollback 
too may 
transaction. 

• Fail to calculate the expected block number if the 
transaction was waiting for more time in the 
memory pool. 

• Fail to solve the accident fork problem. 

Zeroblock 
[21] 

Failed to 
remove. 

Prevent the intentional 
fork. 

Rollback 
may 
transactions. 

• Increase the load of the miner to generate the dummy 
block every interval. 

•  Fail to solve the accident fork problem. 
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Fig.  3.  Countering selfish mining in blockchains example. 
Note: this figure is a graph which show that each transaction 
contains the expected block number and the blockchain contains 
two branches: red and green. 
 

Fig.  4. Zeroblock: Timestamp-free prevention of  the block-
withholding attack in Bitcoin example. 
Note: this figure is a graph and shows that Miner A and C are 
Honest Miners and Miner B is an attacker. 
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B. Second Viewpoint. 

 Some authors try to prevent the fork to keep the blockchain as a linked list structure. In [20] the dummy block is used to prevent 
the intentional fork. The time is divided into intervals. Miner will receive or generate a block for each interval, otherwise, generate a 
dummy block. The dummy block does not contain transactions however contains only a nonce to the next block “Zeroblock”. Each 
miner will generate a block depend on the nonce of the previous dummy block and send this block to all miners, or receives a block 
from the other miner and compare between the nonce of the received block and the nonce of the previous dummy block. The miner 
accepts the block that contains the nonce of the previous dummy block. For instance, as shown in Fig. 4, there are three miners (A, 
B, and C) and four intervals. In the first interval, miner A generated a block and sent it to miners B and C. In the second interval, all 
miners don’t discover a new block therefore a dummy block is generated and saved in all miners (A, B, and C). In the third interval, 
the dummy block is generated and saved in miners A and C, however, miner B discovered a new block and sent this block to miners 
A and C. In the fourth interval, miner A and miner C rejected this block, because the nonce of the previous block not the same as the 
nonce of the received block. 
 Although these algorithms tried to solve the malicious fork issue, however, there are some shortcomings as shown in table 1. 
One weird trick [17] failed to solve the intentional fork and rollback too many transactions because it accepts the recent timestamp 
branch and rollbacked the other branches. Publish or perish [18] failed to solve the accident fork and too many transactions because 
it depends on the weight of each branch and all branches contain the same weight and it picks one branch as the main chain and 
rollback other branches to the memory pool. Countering [19] failed to the accident fork because all branch transactions contain the same 
expected block number and rollback many transactions pick one branch as the main chain and rollback all transactions of all other 
branches. Zeroblock [20] failed to remove the accident fork because all branches contain the same block nonce and rollback many 
transactions if more than one miner generates a block at the same period. 
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Fig. 5. Memory pool publisher algorithm phases. 
Note: this figure is a block diagram which show that Memory pool publisher 
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IV. PROPOSED ALGORITHM 

In this section, two subsections will be illustrated. The first briefly explains how the proposed Memory pool publisher algorithm 

tries to prevent the malicious fork and its deference from the original bitcoin scenario. The second subsection explains the proposed 

Memory pool publisher algorithm notations, input, output, and steps taken to avoid malicious fork. 

 

A. Memory pool publisher description 

After reviewing the previous work and analyzing the limitations of related work algorithms, all related work algorithms try to 

solve the malicious fork itself, not solve the reasons for occurring these forks. The multiplicity of blockchain publishers in the 

bitcoin environment are the cause for the incidence of the malicious fork problem. In the original bitcoin scenario, all miners can 
publish any number of blocks at any time which leads to the multiplicity of blockchain publishers, therefore, the malicious fork has 

appeared. The proposed algorithm is a new lightweight algorithm and aimed to avoid the existence of malicious fork problems by 

preventing the multiplicity of blockchain publishers in the blockchain. At the same time, the miner's efforts are used only for the 

process of generating blocks, not in additional works like the Publish or perish [18] and Zeroblock algorithm [20]. As well as, 

additional space don’t use in the transactions like the Counting algorithm [19]. 

The Memory pool publisher algorithm tried to prevent the miner from publishing blocks and make it concentrate solely on 

generating the blocks. The memory pool is assumed to be trusted (not malicious) such as the original scenario of the bitcoin 

environment, the memory pool is assumed to be trusted and is used to stores the unconfirmed transactions [1]. The Memory Pool 

makes only the publisher of blocks in the blockchain framework. The block construction is divided into two phases: generation and 

publishing. The miners responsible for the generation phase, and the memory pool to the publishing phase. As shown in Fig. 5, the 

miner receives a set of transactions (input), and the miner applies some sequential steps: firstly, check the user authentication. 

Secondly, the miner checks the user amount compared to the transformation amount to ensure the correctness of the transformation. 
Thirdly, miners find the maximum fee for all received transactions. Fourthly, the miner generates the Merkle root address by 

merging each adjacent transaction ids by applying the SHA256 hash function [21,22]. SHA256 hash function generates one address 

as a parent of these adjacent ids, and this process is repeated until generating one address from all input transactions (Merkle root 

address) [23]. Fifthly, the miner builds an initial form for the block as shown in Fig. 6a which saves the maximum fee instead of 

the previous block ID. Finally, the miner sends this block to the memory pool (output). Then, the memory pool receives a set of 

blocks (input), and some sequential steps are applied to these blocks: firstly, the Memory pool sort the received blocks in a shared 

stack depends on the timestamp and maximum fee of the initial form of the block. Which the memory pool sorts the received blocks 

depend on the block timestamp to chronological order. If the memory pool received two or more blocks and these blocks contain 

the same timestamp, sorting this block depends on the maximum fee because users pay fees to accelerate the confirmation of their 

transaction. Secondly, the Memory pool replaces the maximum fee by the previous block id as shown in Fig. 6b to connect this 

block by the last block of the blockchain. Thirdly, the memory pool publishes these blocks into the blockchain. Finally, the memory 
pool publishes the blockchain (output). 

After the Memory Pool algorithm has been implemented, the advantage of the unification of publishers has come which the 

memory pool just is the publisher of the Bitcoin environment. Therefore, the Memory pool cannot publish two blocks at the same 

time (accident fork) and all private blocks of the selfish mining attacker (intentional fork) will receive by the Bitcoin publisher 

(Memory pool) and publishes serially. As a result, the blockchain all time remains a straight line. Therefore, the rollbacked issue is 

prevented, minimize illicit miner rewards, and user waiting time are and are reduced from 60 to 10 minutes. Which the user waits 

in the original scenario after confirming six blocks and each block takes 10 minutes to generate.  On the contrary, all related work 

algorithms allows publishing the block/blocks to all miners any time therefore the malicious fork has appeared. 

B. The Memory pool publisher algorithm 

A brief overview of the Memory pool publisher algorithm generation and publishing phases is provided in this section. Their 

notations, inputs, outputs, and implementation steps are discussed below: 

 

1. Generation Phase algorithm 

For the legibility purpose of the proposed algorithm, some notations are presented as follows: 

1. NTs: {tx1, tx2,..., txn}: the new transactions that need to be confirmed. 

2. BC: {b1, b2,..., bn} : the shared blockchain. 

3. VTs: {tx1, tx2,..., txn}: all transactions of the trusted user with enough currencies to transformation (VerifiedTransactions). 

4. NB: the generated block. 

5. MF: the maximum fee of the new transactions. 

6. balanced: calculated current amount of the sender. 

7. MRA: Merkle root address. 
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8. ID: identifier of the new block. 

9. merkle: a function to generate the Merkle root address. 

10. build: a function to build the block. 

11. TX: a transaction that includes a set of attributes: sender public key (sender), Receiver public key (receiver), the final 

amount of the sender after the transformation (change), Transformation amount (transformation), a fee to accelerate the 

transformation process [24], and Transaction signature (sig). 

As shown in algorithm 1, the input data is the new transactions and shared blockchain. The output is the new block. This 

algorithm is divided into four steps: 

1. In the first step at line 5: as shown in Eq. (1) and Eq. (2) The sender is checked by using a transaction signature composed of 

the public key of the sender and all transaction attributes used to produce the signature [25]. The public key is validated and 

approve the transaction if it is legitimate, the transaction signature, and all attributes of the transaction are used. 

Sig = SHA256(private key, attributes)        (1) 

Public key = SHA256(sig, attributes)          (2) 

 

        Algorithm 1: Generation phase Algorithm 

 Input: NTs: new transaction and BC: shared Blockchain 
Output: NB: Block of the new verified transactions 

1  begin 

2 VTs ← φ 

3 MF ← 0 

4 foreach TX ∈ TXs do 

5 if verify(TX[sig], TX[attributes], TX[sender]) =true then 

6 balanced ← 0 

7 foreach block ∈ BC do 

8 foreach transaction ∈block[transaction] do 

9 if transaction[sender] = TX[sender] then 

10 balanced ← 

balanced + transaction[change] 

11  break 

12 else if 

transaction[receiver] = TX[sender] then 

balanced ← balanced+ transaction[transformation] 

13 end if 

14 end foreach 

15 end foreach 

16 if balanced >= TX[transformation] then 

17 VTs ← V Ts ∪ {TX} 

18  if TX[fee] > MF then 

19  MF ← TX[fee ] 

20  end if 

21 end if  

22 end if 

23 end foreach 

24 MRA ← merkle(V Ts) 

25 ID ← generate(MRA) 

26 NB ← build(ID, MRA, V Ts) 

27 return NB 

28 end  
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                                               Algorithm 2: Publishing phase Algorithm 

 Input: NBs: new blocks and BC: shared Blockchain 

Output: BC: new Blockchain 

1 begin 

2 SBs ← sort(NBs, timestamp, fee) 

3 PBID ← BC[lastBlock][ID] 

4 foreach B ∈ SBs do 

5  B ← replace(B, fee, PBID) 

6  PBID ← B[ID] 

7  BC ← BC ∪ {B} 

8  end foreach 

9 return BC 

10 end 

 

 

2. In the second step from lines 7 to 15: verifies the Transformation amount (transformation) by scanning all blockchain 

transactions to calculate the balanced (calculated current amount of the sender). As shown in Eq. (3). For all transactions (TXs), 

If the sender of the new transaction is the sender of the current transaction, the balance is added by the transaction change and 

stop the scanning. However, if it is the receiver of the current transaction, the balance is added by the transformation. Then, 

accept a transaction from the sender if the balanced is greater than the summation of the transformation amount and fee. 

𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 = 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 + {
𝑐ℎ𝑎𝑟𝑔𝑒, 𝑜𝑤𝑛𝑒𝑟 𝑖𝑠 𝑠𝑒𝑛𝑑𝑒𝑟 

   𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛, 𝑜𝑤𝑛𝑒𝑟 𝑖𝑠 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟
         (3) 

 

3. Third step from line 16 to 22: add transaction (TX) to the verified transactions (VTs) and find the maximum fee of VTs. 

4. Fourth step from lines 24 to 27: the Merkle root address (MRA), transaction id (ID), and block are generated. 

 

2. Publishing phase algorithm 

 For the legibility purpose of the proposed algorithm, some notations are presented as shown in Table 3: 

1. NBs: {b1, b2,..., bn} : new blocks that need to be confirmed. 

2. BC: {b1, b2,..., bn} : the shared blockchain. 

3. SBs: {b1, b2,..., bn}:sorted blocks by timestamp and fee. 

4. PBID: the generated block. 

5. sort: the maximum fee of the new transactions. 

6. Replace: calculated the current amount of the sender. 

7. B: a block which includes a set of attributes: Block id (ID), Previous bock id (PBID), Timestamp, System Bitcoin 

version, Merkle root address (MRA), Transactions. 

As shown in algorithm 2, the input data is the new blocks and shared blockchain generated from algorthim1. The output of 

algorithm 2 is the blockchain and this algorithm is divided into three steps: 
1. At line 2: sort the blocks by the smallest timestamp and Maximum fee. 

2. At line 5: replace the Maximum fee with the previous block id. 

3. At line 7: publish the new block to the blockchain. 

After these two algorithms (phases of the memory pool publisher algorithm) are implemented, miners focus solely on the block 

generation processes as the original scenario of the Bitcoin environment (so-called mining pools) [7] and send it to the memory 

pool instead of the blockchain. Which the memory pool is the one responsible for block publishing. As a result of these, the Memory 

pool publisher algorithm succeeds to unify publishers of blocks. Subsequently, the malicious [5,26] fork and rollbacked [27] issues 

are avoided and the user waiting time is reduced to 10 minutes. 
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V. EXPERIMENTAL RESULT AND DISCUSSION 

      In this section, a real case of the Bitcoin system is applied to compare the suggested algorithm provided in this paper and the 

algorithms described earlier in Section III. Three nodes are used with this characteristic: processor: Pentium(R) Dual-Core CPU 

T4200 @ 2.00 GHz, installed memory: 4.00 GB (3.8 GB usable), and system type: 32-bit Operating system. As well as, four nodes 

with this characteristic: processor: Intel(R) Core(TM) i7-7500U CPU @ 2.7GHz 2.9GHz, installed memory: 8.00 GB (7.6 GB 

usable), and system type: 64-bit Operating system, x64-based processor. These machines are used to simulate the bitcoin system 

and are connected via a local peer-to-peer network, in which the seven machines are distributed as follows: One machine is an 

authentication server, for adding users and miners to the system. One machine is a memory pool node. Two machines as user nodes 

(U1, U2) each of which has 5 Bitcoins. Three machines as miner nodes (M1, M2, M3).the transaction size is 2k and each block size 
is 4k (each block contains two transactions). The blockchain starts with one block to confirm five Bitcoins for U1 and five Bitcoins 

for U2. U1 sends 2 Bitcoins to U2 (Transaction 1), U2 sends 3 Bitcoins to U1 (Transaction 2), and repeat these transactions 30 

times automatically (60 transactions total). The memory pool contains 60 transactions which each transaction contains 

transformation amount, sender and receiver, expected block number, and size as shown in Fig. 7a. The results of this experiment 

are analyzed based on three metrics: generation time, the intentional fork [5], and the accident fork [26]. 

 

(a) 

Fig. 7. Blockchain form after applying all algorithms with the intentional fork issue. 

Note: this figure is a block diagram which, (a) show the new transactions of the Memory pool (unconfirmed 

transactions), (b) show the blockchain of the Memory pool publisher, (c) show the blockchain of One weird trick 

algorithm, (d) show the blockchain of Zeroblock algorithm, (e) show the blockchain of Publish or perish algorithm, 

and (e) show the blockchain of Countering algorithm. 
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A. Generation time 
 For the proposed algorithm discussed in this paper, the block generation time was constant, and the algorithms were specified on 

a ten-minute average in section 2 and regulated by the shared target. The shared target is a constraint on the block generation to 

keep the average block generation in ten minutes to reduce the load on the miner [9]. 
 

B. Intentional fork 
 M1 and M2 machines are honest miners, and M3 is a miner attacker with supercomputer characteristics. M3 is trying to win by 

illicit bitcoins by making an intentional fork. The memory pool includes 60 transactions, every two transactions need one block to 

confirm, and each block spends 10 minutes to be generated. Before this experiment starts the blockchain of each miner includes 

one block (two transactions). After 600 minutes of running the Memory pool publisher algorithm as shown in Fig.7b, the blockchain 

of M1, M2, and M3 are increased by 30 blocks. Since each block contains two transactions, therefore transactions that are confirmed 

are 60 transactions. It is inferred from the experiment that the problem of rollback did not arise. But after repeating the same 

experiment with the One weird trick algorithm [17] as shown in Fig. 7c, each miner's blockchain was increased by 21 blocks or 

increased by 42 transactions (42 confirmed transactions) then 18 transactions are returned to the memory pool (18 rollbacked 

transactions). As well as or the Zeroblock algorithm [20] as shown in Fig. 7d, the blockchain will be increased by 13 blocks (26 

confirmed transactions and 34 rollbacked transactions). As shown in Fig. 7e, for the Publish or Perish algorithm [18], the blockchain 

is increased by 21 blocks (42 confirmed transactions and 18 rollbacked transactions). Finally as shown in Fig. 7f, for the Countering 

algorithm [19], the blockchain is increased by 17 blocks (34 confirmed transactions and 26 rollbacked transactions). As shown in 

the experimental results of the intentional fork in Table 2, the rollback problem occurred in all algorithms mentioned in Section III, 

but it did not appear in the Memory pool publisher algorithm. 

Table 2. Intentional Fork Result 

Algorithm Number of transactions 

Before the experiment After the experiment Rollbacked 

One weird trick [17] 2 44 18 

Zeroblock [20] 2 28 34 

Publish or perish [18] 2 44 18 

Countering [19] 2 36 26 

Memory pool publisher  2 62 0         

C. Accident fork 
      The previous experiment is repeated to replace the miner M3 with honest miner M4 and after 600 minutes. As shown in the 

experimental results of the accident fork in Table 3, the rollback problem occurred in the previous algorithms, but it didn’t appear 

in the Memory pool publisher algorithm. Consequently, the accident issue didn’t occur in the Memory pool publisher algorithm.The 

rollback issue appears in all previous algorithms and doesn’t appear in the memory pool algorithm when applying the accident and 

intentional fork as shown in Fig. 8. consequence is that the Memory pool publisher algorithm is designed to prevent the malicious 

forks issue from arising by making the memory pool is just the publisher of the Bitcoin system (unifying block publishers) and 

making the miner just focus on the block construction. 

Table 3. Accident fork result 

Algorithm Number of transactions 

Before the experiment After the experiment Rollbacked 

One weird trick [17] 2 54 8 

Zeroblock [20] 2 57 5 

Publish or perish [18] 2 58 4 

Countering [19] 2 55 7 

Memory pool publisher  2 62 0 

VI. CONCLUSION 

       Malicious forks are the worst challenge of blockchain technologies and thus raise the rollbacked transaction issue, therefore, 

increased transaction confirmation time, and illicit rewards of the miner. Current algorithms have attempted to overcome the 

malicious fork by accepting one branch and rollbacking other branches but have not tried to avoid these forks therefore the rollback 

transaction issue appearing. In this paper, we found that the key source of the malicious fork is the multiplicity of blockchain 
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publishers on the blockchain. Which all miners can publish any number of blocks at any time, therefore, the malicious fork has 

appeared. The Memory pool publisher algorithm is proposed to prevent the malicious fork by unifying publishers of blocks, 

therefore, do not publish two blocks at the same time. The proposed algorithm divides the block construction process into two 

phases: In the first phase, the miner generates a block and saves the maximum fee of all transactions in the block header, and sends 

this block to the memory pool. In the second phase, the memory pool sorts the received blocks by the recent timestamp and the 
maximum block fee if the memory pool receives more than one block with the same timestamp and publishes these blocks to all 

miners. 

     Experimental results show that the Memory pool publisher algorithm prevents the malicious fork, therefore prevents transaction 

rollback problems, and reduces transaction confirmation time to 10 minutes, and reduces illicit miner rewards. The advantages of 

the Memory pool algorism: it keeps the blockchain as a linked list, prevents the malicious fork, and prevents the rollback issue. The 

disadvantages of the Memory pool algorism: the Memory pool bottleneck problem, because the bitcoin system only has one 

publisher. It increases the waiting time of block generations which sending all blocks to the memory pool and publishing them. The 

miner will publish the block directly to the blockchain in the original scenario. Therefore, future work on this object we will try to 

prevent the malicious fork problem with multiple memory pools, support the useful fork in the blockchain. 

 

 
Fig. 8. A comparison between the previous and Memory pool publisher algorithms 
Note: this figure is a column chart that shows that the rollback issue does not appear in the Memory pool publisher. 
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