FTIR, EPR, and Optical Absorption Spectra of Vanadium Ions Doped in (B₂O₃–ZnO-Na₂O) Glasses.

M. Ibrahim

Department of Physics, Faculty of Science, Al-Azhar University, Nasr City11884, Cairo, Egypt

Glasses of the composition xV_2O_5 -(100-x)[0.5B₂O₃-0.2ZnO- $0.3Na_2O$], where x = 0, 0.5, 1, 2 and 3 mol% were prepared by melt quenching method. It can be seen that both density ρ and molar volume V_M were found to almost increases by doping of V_2O_5 . FTIR spectra in the frequency range (400-2000 cm^{-1}) were measured for the prepared glasses. It can be seen that studied samples contain the bands characteristic for $B_2O_3 [(\delta (B-O-B)=715 cm^{-1}, \rho (B-O)=1031 cm^{-1})], and V_2O_5 (\rho (V-O)=945)$ cm^{-1}) groups. From the FTIR studies, it was observed that the glasses are made up of BO_3 and BO_4 groups. The Electron Paramagnetic Resonance (EPR) spectra for the glasses doped of V_2O_5 (x ≤ 3 mol %) has been recorded on the x-band ($\gamma = 9.14GHz$) at room temperature. The spin Hamiltonian parameters, dipolar hyperfine coupling parameter, P and Fermi contact interaction parameter, K have been calculated. It has been found that V^{4+} ions in these glasses exist as V^{2+} in octahedral coordination with a tetragonal distortion. Optical absorption spectra for the prepared glasses have been measured by UV-VIS spectrophotometer in the wavelength range (190-1200 nm) at room temperature. The optical energy gap values have been calculated and show indirect transition mechanism. The optical energy gap values E_{g} , have been calculated and were found to decreases with doping of V_2O_5 Also Urbach energy gap ΔE values have been estimated and were found to increases with doping of V_2O_5 .

1. Introduction:-

Vanadium exists in a number of oxide forms, the di-, and sesqui- and pentoxides (VO₂, V₂O₃ and V₂O₅). They have been processed in thin film form and applied as optical and electrical devices. Especially vanadium oxide (V₂O₅), as a wide band gap and n-type semiconductor material, was widely investigated because of its interesting electrochemical performance [1-2], is integration in lithium secondary batteries [3], and its thermo chromic [4-6] and electro chromic properties [7-8].

Glasses containing vanadium ions have attracted much interest in solidstate chemistry and materials science in recent years, since V_2O_5 is known to participate in the glass network with VO₅ pyramidal structural units. Vanadium ions, when mixed in small quantities in the glass matrices, make the glasses suitable for use in memory and switching devices [8]. Several vanadate glasses show semiconducting behavior with the electrical conductivity of 10^{-3} to 10^{-5} (Ω cm)⁻¹, which is known to be due to the electron hopping between V^{4+} and V^{5+} ions existing in the glass network, and are identified as n-type semiconductors for low values of the V^{4+}/V^{5+} ratio [9]. The vanadium ions may also exist in the glass network in V^{2+} and V^{3+} states [9]. A considerable number of spectroscopic and magnetic studies of vanadium ions in a variety of glass systems are also available in the literature. The vanadium oxide structural groups are expected to mix easily in a [ZnO- Na₂O- B₂O₃] glass network, because some of the infrared vibration bands of the structural groups of these ions lie in the same region as those of borate structural units and are expected to occupy a variety of sites with different crystal field strengths due to site variability. EPR studies on a variety of vanadium containing glasses have been reported in the past. Paramagnetic vanadium is generally characterized by an eight the spectrum and exhibits tetragonal distorted octahedral coordination as the Vo^{2+} complex [10-11].

In the present paper we are reporting FTIR, EPR and optical absorption studies on ternary alkali borate glasses doped with V_2O_5 (in mol %).

2. Experimental Technique:-

Glass samples of composition xV_2O_5 -(100-x)[0.5B₂O₃- 0.2 ZnO- 0.3Na₂O], where x = 0, 0.5, 1, 2 and 3 mol% were prepared by conventional melt techniques [12]. High purity ingredients (99.99%) of chemicals are boric acid (H₃BO₃), sodium carbonate (Na₂CO₃), Zinc oxide (ZnO), and vanadium oxide V_2O_5 . The weight quantities of these chemicals in appropriated proportions were thoroughly mixed in an agate mortar. The materials were mixed in appropriate mole percent to get the required composition. Each batch was melted in a porcelain crucible in an electrical furnace and the temperature was raised slowly to 950°C at which point the mixture melted. This temperature was maintained for about 1h. To obtain the homogeneity the melt was shaken frequently. The melt was then poured onto a stainless steel block and was immediately pressed by another stainless steel block at room temperature. The compositions of the glasses studied in the present investigation are given in Table (1).

Density (ρ) of the doped glass samples with x = 0.5, 1, 2 and 3 mol % V₂O₅ were measured by Archimedes method using carbon tetrachloride C Cl₄ (ρ = 1.593 g /cm³) as buoyant fluid. Also molar volume V_M of the prepared samples was calculated according to the relation:- V_M = $\sum xi * mi / \rho$, where x_i is the molar fraction, m_i molecular weight of ith component and ρ is the density of glasses. IR absorption spectra were recorded in the wave number range (400-2000 cm⁻¹) using KBr pellets with a Carl Zeiss Jena spectrometer (UR 20 model).

$0.51 a_2 O_3$, where $x = 0, 0.5, 1, 2$ and 5 more %.							
Samples	B_2O_3	ZnO	Na ₂ O	V_2O_5			
\mathbf{V}_0	50	20	30	0			
V _{0.5}	49.75	19.90	29.85	0.5			
V ₁	49.50	19.80	29.70	1			
V ₂	49.00	19.60	29.40	2			
V ₃	48.50	19.40	29.10	3			

Table (1): Glasses of the compositions of xV_2O_5 -(100-x)[0.5B₂O₃- 0.2ZnO-0.3Na₂O] where x = 0.05 1 2 and 3 mol %

EPR spectra of the doped glass samples were recorded at room temperature (300K) in the X-band (γ =9.14GHz) on an EPR spectrometer (Varian E-112). Magnetic field was modulated by 100 KHz. Polycrystalline DPPH was used as a standard g marker (g=2.0036±0.0002). Time constant = 81.92 ms and sweep time =20.97s. The optical absorption spectra of the doped glass samples were recorded at room temperature using Perkin Elmer UV- VIS spectrophotometer (lambda 20) over the wavelength range (190-1200 nm).

3. Results and Discussions:-

3.1. Density and Molar Volume:-

Density ρ of composition xV_2O_5 -(100-x)[0.5B₂O₃ - 0.2 ZnO - 0.3Na₂O], where x = 0.5, 1, 2 and 3 mol % were measured at room temperature using the Archimedes method according to the relation [12]:-

$$\rho = \rho_0 \left(\mathbf{W}_{air} / \mathbf{W}_{air} - \mathbf{W}_{Liquid} \right) \tag{1}$$

where W_{air} and W_{Liquid} are the weight of the glasses in air and liquid respectively, ρ_0 is the density of liquid(C Cl₄). The density data were used to estimate the molar volume V_M according to the relation:-

$$V_{\rm M} = \sum x \mathbf{i} * m \mathbf{i} / \rho \tag{2}$$

Where *xi* is the molar fraction, m_i molecular weight of ith component and ρ is the density of the prepared glasses. The calculated values of ρ and V_M are Listed in Table (2) and are shown in Fig.(1). It can be seen that, both ρ and V_M show the same trend where ρ and V_M almost increases as x increases. In general, it is expected that the both density and the molar volume should show opposite trend to each other but in the present glasses the behavior is different. However, this anomalous behavior was reported earlier for many other glasses, for example LiBO₂-TeO₂ [13], Li₂O-Tl₂O₃- B₂O₃ [14] and TeO₂-Na₂O-B₂O₃ [15]. The molar volume behavior reveals that an increase in the content of V₂O₅ which leads to the formation of non-bridging oxygen's (NBO_s) and expands (open up) the structure of the light network of B₂O₃-ZnO-Na₂O-V₂O₅ glasses. The larger values of the radii and the bond length of V₂O₅ compared to those of B₂O₃, ZnO and Na₂O

resulted in a formation of excess free volume, which increases the overall molar volume of these glasses. This trend supports the so called open structure idea, which may be attributed to the inability of the voids of the borate network to accommodate such modifier ions without any expansion of the glass matrix.

Table (2): Density ρ and Molar Volume V_M of x V₂O₅ (100-x)[0.5B₂O₃-0.2 ZnO-0.3Na₂O] where x = 0.5, 1, 2 and 3 mol %.

Samples	Density(gm/cm ³)	Molar Volume (cm ³ /mol)		
V _{0.5}	2.647021277	26.53315		
V ₁	2.670127986	26.51365		
V_2	2.672619962	26.90876		
V_3	2.671038603	27.34477		

Fig.(1) : Density ρ and Molar Volume V_M as a doping of V₂O₅.

3.2. FTIR Absorption Spectra:

The infrared spectra of the glasses exhibited absorption peaks. The peaks are sharp, medium weak and broad. The vibration mode of the borate glasses network seems to be mainly active in three infrared regions. Fig.(2) shows the FTIR spectra in the frequency range (400-2000 cm⁻¹) of the xV_2O_5 -(100-x) [0.5B₂O₃- 0.2 ZnO- 0.3Na₂O]where x = 0, 0.5, 1, 2 and 3 mol % glasses. It can be seen that, the first band were centered at about 712, 713, 714, 714 and 713cm⁻¹ for samples with x = 0, 0.5, 1, 2 and 3 mol% respectively, which corresponds to the bond-bending vibration of the B-O-B groups [16]. Second band appeared at about 1016, 1013, 1013, 1012 and 1000 cm⁻¹ for samples x = 0, 0.5, 1, 2, and 3 mol% respectively, which are characteristic for stretching vibrations of B-O bonds involving B⁴⁺and B³⁺ ions respectively [17]. Another broad band centered at 1381, 1382, 1383, 1380 and 1385 cm⁻¹ which is due to the B-O stretching vibration [18]. Another peak centered at 943cm⁻¹ for sample with x = 0 mol %

(free of V_2O_5 content) and disappeared in other samples with V_2O_5 content. This suggests that the number of V-O bonds implied in polyvanadate ions formation (network former role of V_2O_5) increases more rapidly than the number of BO_4^- groups [16].

3.3. EPR Spectra:-

EPR spectra at room temperature for xV_2O_5 -(100-x)[0.5B₂O₃- 0.2ZnO-0.3Na₂O], where x= 0.5, 1, 2 and 3 mol% glasses at dose 50 gray (GY) are shown in Fig.(3). These spectra show features very similar to those found in various alkali borate glasses doped with vanadium ion [19, 20]. The spectra show structure which is due to a hyperfine interaction of an unpaired electron with a ⁵¹V nucleus whose nuclear spin is I = 7/2. These spectra were analyzed by assuming [21, 22] that vanadium is present as vandyl ion in a legend field of C_{4v} symmetry. The axial spin Hamiltonian is of the form [19].

$$H = Bg_{11} B_z S_z + Bg_{\perp} (B_x S_x + B_y S_y) + A_{11} S_z l_z + A \perp (S_x I_x + S_y I_y)$$
(3)

Where B is the Bohr magneton, g_{\parallel} and g_{\perp} are the parallel and perpendicular principal components of the g tensor, A_{11} and A_{\perp} are the parallel and perpendicular principal components of hyperfine coupling tensor, B_x , B_y and B_z are the components of the magnetic field and S_x , S_y , S_z , and I_x , I_y , I_z , are the components of spin operators of the electron and nucleus respectively. The quadruple and the nuclear Zeeman interaction terms have been ignored. The solutions of the spin Hamiltonian Eq.(3) are presented in Eqs.(4) and(5) for the parallel and perpendicular orientation, respectively.

Fig. (2): FTIR spectra for xV_2O_5 -(100-x)[0.5B₂O₃- 0.2ZnO- 0.3Na₂O],where x= 0, 0.5, 1, 2 and 3 mol% *glasses*.

$$B_{\parallel}(m) = B_{\parallel}(0) - mA_{\parallel} - \{(63/4) - m^2\}A_{\perp}/2B_{\parallel}(0)$$
(4)

$$B_{\perp}(m) = B_{\perp}(0) - mA_{\perp} - \{(63/4) - m^2\}A_{11}^2 + A_{\perp}^2/4B_{\perp}(0)$$
(5)

where m is the magnetic quantum number of the vanadium nucleus having values, $\pm \frac{7}{2}$, $\pm \frac{5}{2}$, $\pm \frac{3}{2}$, and $\pm \frac{1}{2}$, $B_{\parallel}(0) = h \nu/g_{11}B$ and $B_{\perp}(0) = h \nu/g_{\perp}B$.

Where h Plank's constant, \mathfrak{v} is the frequency of the spectrometer and B is the Bohr magneton. Measurements for the B_{\parallel} position were taken which correspond to a maximum in the first derivative curve of the parallel hyperfine structure (HFS) component for a given m value, where as the B_⊥ position is enclosed between the first derivative perpendicular peak and its zero [19]. Spin Hamiltonian Parameter of the V₂O₅ ion determined by using Eqs. (4) and (5) for samples with x = 0.5, 1, 2 and 3 mol % are given in Table (3). From the values of these parameters, the dipolar hyperfine coupling parameter, $P = 2\mathfrak{v}\Delta B_e B_N < r - 3 >$ and the Fermi contact interaction term, K are evaluated using the expressions developed by Kivelson and Lee [23]

$$\mathbf{A}_{\parallel} = -\mathbf{P}[\mathbf{K} + 4/7 - \Delta \mathbf{g}_{\parallel} - 3/7 \Delta \mathbf{g}_{\perp}] \tag{6}$$

$$A \perp = -P[K - 2/7 - 11/4 \Delta g \perp] \tag{7}$$

where $\Delta g_{\parallel}=g_{\parallel}-g_{e}$, $\Delta g_{\perp}=g_{\perp}-g_{e}$ ($g_{e}=2.0036$) is the factor of free electron, A_{\parallel} , A_{\perp} are found to be negative by the method proposed by Muncaster and Parke[24]. Fig.(4) show the relation between Δg_{\parallel} and Δg_{\perp} where Δg_{\perp} values are always higher than that of Δg_{\parallel} values.

Fig.(3): EPR spectra of $xV_2O_5 - (100-x)[0.5 B_2O_3 - 0.2 ZnO - 0.3 Na_2O]$ where x = 0.5, 1,2, and 3 mol % at room temperature.

Some physical parameters were estimated and listed in Table(4) such as magnetic field in Gauss H_0 , peak width ΔH , factor depending on experimental condition K, intensity per weight A, modulation amplitude value H_m and receiver gain G_e .

"

Table (3): Spin Hamiltonian parameters of $xV_2O_5 - (100-x)[0.5 B_2O_3 - 0.2 ZnO - 0.3 Na_2O] x = 0.5, 1, and 3 mol % glasses at room temperature.$

Sample	Peak Height(H)	Weight, gm (W)	H/W	g //	g_{\perp}	A//	∆g∥	⊿g⊥	<i>∆g</i> ∥ ∕∆g⊥
V _{0.5}	2772	0.2746	10094.6832	2.00639	2.01322	0.042	0.00279	0.00962	0.29002079
V_I	1587	0.2253	7043.94141	2.00592	2.05768	0.0416	0.00232	0.05408	0.04289941
V_2	1117	0.2526	4422.0111	2.00649	2.01503	0.0429	0.00289	0.01143	0.25284339
V_3	1121	0.2889	3880.23538	2.00649	2.01469	0.0416	0.00289	0.01109	0.26059513

Table (4): H0, is magnetic field in Gauss, ΔH is peak width, K is factor depending on experimental condition =1013, A is intensity per weight, Hm is modulation amplitude value and Ge is receiver gain.

Sampl	e H ₀	$\Delta \mathbf{H}$	Α	К	$\begin{array}{c} \mathbf{H}_{1}=\\ \mathbf{H}_{0}^{*}\Delta\mathbf{H}^{*}\mathbf{A}^{*}\mathbf{k} \end{array}$	H _m	Ge	root PH	H ₂ =H _m * Ge*root PH	$H_3 = H_1 / H_2$
$V_{0.5}$	3460	21.9	10094.683	1.00E+13	8.37581E+22	8	17800	2.522	359132.8	2.33223E+17
V_I	3460	23.02	7043.9414	1.00E+13	6.45762E+22	8	17800	2.525	359560	1.79598E+17
V_2	3460	27.1	4422.0111	1.00E+13	5.61829E+22	8	17800	2.522	359132.8	1.56441E+17
V_3	3460	26.73	3880.2354	1.00E+13	4.70654E+22	8	17800	2.522	359132.8	1.31053E+17

3.4. Optical absorption Spectra:-

Optical absorption spectra, A, were recorded on a UV-VIS double beam spectrophotometer at room temperature in the wavelength range (200-1100 nm). The optical absorption coefficient $\alpha(\omega)$ was calculated using the absorbance A, according to the equation:-

$$\alpha(\omega) = 2.303 \text{ A/d}$$
 (8)

where d is the thickness of the sample.

The relation between the optical absorption coefficient $\alpha(\omega)$ and optical band gap energy E_g in many amorphous materials are related as [25].

$$\alpha \hbar \omega = B \left(\hbar \omega - E_g \right)^r \tag{9}$$

where B is an energy independent constant and r is a constant determines type of the optical transition and can have different values; 1/3, 1/2, 2, and 3 corresponding to direct forbidden, direct allowed, indirect allowed and indirect forbidden transitions respectively. Change in $(\alpha h \omega)^{1/r}$ on photon energy h ω called Tauc's plot [26] has been plotted for r = 1/3, 1/2, 2, and 3, but r= 2 is found to be most suitable. Thus, the present glass system shows indirect allowed transitions. This is expected behavior. Since in amorphous system; indirect transition is the possible one due to lake of translation symmetry [27]. The optical band gap energies of different glass samples are estimated by extrapolation of linear region to meet h ω axis i.e. $(\alpha h \omega)^{1/2} = 0$. The values of E E_{g.} are listed in Table(5) and shown in Fig.(5). It can be seen that, the values of optical band gap were found to decrease gradually with increase of the concentration of V₂O₅.

Fig.(5): Relation between $(\alpha \hbar \omega)^{1/2}$ and photon energy $\hbar \omega$ for $xV_2O_5 - (100-x)[0.5B_2O_3-0.2 ZnO- 0.3Na_2O]$ where x = 0, 0.5, 1, 2 and 3 mol % glasses.

The absorption coefficient Ln (α) of the optical absorption near the band edge shows an exponential dependence on the photon energy $\hbar\omega$ and obeys the empirical relation (Urbach) relation [28]:

$$Ln\alpha = C + \hbar\omega/\Delta E \tag{10}$$

where C is a constant and ΔE is the Urbach energy. Urbach energy is calculated from the inverse slope of the Ln α and photon energy $\hbar \omega$ as shown in Fig.(6). The calculated values of ΔE are listed in Table (5).Urbach energy which corresponds to the width of localized state, is used to characterize the degree of disorder in amorphous and crystalline systems. Materials with large ΔE would have greater tendency to convert weak bonds into defect. It can be seen that, the doping of V₂O₅ leads to increase of ΔE up to 1 mol % then it start to decreases again with doping of V₂O₅ up to 3 mol %. The increase in electronic polarizability with doping of V_2O_5 (in the mol %) indicates that the electron cloud is more easily deforming with concentration of V_2O_5 . The B_2O_3 is a strong acidic oxide with low optical basicity whereas V_2O_5 is an oxide with significant optical basicity. The increase in the optical basicity of the glasses with increase in V_2O_5 concentration indicates the acid- base properties of V_2O_5 have significant effect. Low optical basicity means a reduced ability of oxide ions to transfer electrons to the surrounding cautions. On the other hand Zinc Sodium Borate glasses doped with V_2O_5 possess high optical basicity which means high donor ability of oxide ions [29]. The optical band gap energy of the glasses is decreasing with the doping of vanadium ions whereas the Urbach energy values are increasing.

Fig.(6): Relation between $ln(\alpha)$ and photon energy ($\hbar\omega$) for xV_2O_5 (100-x)[B₂O₅-ZnO-Na₂O], x= 0, 0.5, 1, 2 and 3 mol %

Table (5): Optical energy gap $E_{g.}$ and Urabch energy ΔE as a doping of V_2O_5 content

Sample name	E _{g.} eV	$\Delta E = eV$
V ₀	3.32	1.76
V _{0.5}	3.22	1.84
V ₁	3.18	1.94
V_2	3.12	1.86
V ₃	3.05	1.7

Conclusion:

Glassy system of composition xV_2O_5 -(100-x)[0.5B₂O₃-0.2ZnO- 0.3Na₂O], where x = 0, 0.5, 1, 2 and 3 mol% were prepared by melt quenching method. . No well defined trend was observed for both density and molar volume V_M , however ρ and V_M show the same trend. The obtained spectra were analyzed and assigned. E.P.R. spectra were obtained and analyzed. The dependence of g_{\parallel} and g_{\perp} were discussed. The optical energy gap values $E_{.g.}$ have been calculated and were found to decreases with doping of V_2O_5 . Also Urbach energy gap ΔE values have been estimated and were found to increases with doping of V_2O_5 .

References:

- 1. K. Terashima, T. Hashimoto, T. Uchino, T. Yoko, J. Ceram. Soc. Jpn, 104, 1008 (1996).
- 2. Xinyu Zhao, Xiaolie Wang, Hai Lin, Zhiqiang Wang, *Physica B* 390, 29 (2007).
- 3. M. Amano, K. SuzukI, H. Sakatha, J. Mater. Sci., 32, 4325 (1997).
- 4. D. Kumar, D. Chakravorty, J. Phys., D 15, 305 (1982).
- 5. S. Hufner, Optical Spectra Transparent Rare Earth Compounds, Plenum Press, New York, 196
- 6. V. Dimitriev, J. Non-Cryst. Solids, 122, 133 (1990).
- 7. A. Ghosh, B.K. Chaudhuri, J. Non-Cryst. Solids, 83, 151 (1986).
- **8.** E. Lines, A.M. Glass, Principles and Applications of Ferroelectrics and Related Materials, Clarendon Press, Oxford, (1979).
- **9.** K. Terashima, T. Hashimoto, T. Uchino, T. Yoko, *J. Ceram. Soc. Jpn*, 104, 1008 (1996).
- 10. G. Hochstrai, Phys. Chem. Glasses, 7, 178 (1966).
- 11. H. Toyuki, S. Akagi, Phys. Chem. Glasses, 15, 1 (1974).
- 12. R. Punia, R.S. Kundu, J. Hoda, S. Dhankhar, Sajjan Dahiya, N. Kishore, *J. of Applied Physics*, **110**, 033527 (2011).
- 13. K.Rao, Structural chemistry of glasses, Elsevier, North Holland, (2002).
- 14. K. El-Egili, A. Oraby, J. Phys. Condens. Matter, 8, 8959 (1996).
- 15. Y. Saddeek, Abd-El-Latif, Physica, B 348, 475 (2004).
- O. Cozar, I. Ardelean , I. Bratu, S. Simon, C. Craciun, L. David, C.Cefan, J. of Molecular Structure, 563, 421 (2001).
- 17. Y. T. Quan, C. E. Adams, J. Phys., Chem., 70, 331 (1966).
- 18. D. Prakash, V. P. Seth, I. Chand., J. Non Cryst. Solds., 204, 46 (1996).
- 19. H.G. Hecht, T.S. Johnston, J. Chem. Phys., 46, 23 (1967).
- 20. A. Paul, F.A.ssabghy, J. Mater. Sci., 10, 613 (1970).
- S. Khasa, R. Murali Krishna. J. J. Andre, V.P. Seth, S.K. Gupta, *Mater. Pres. Bull*, 1089 (1999).
- 22. G. Hochstrasser, Phys. Chem. Glasses, 7, 178 (1966).
- 23. D. Kivelson , S. Lee, J. Chem. Phys., 41, 1896 (1964).
- 24. R.Muncaster, S.Parke, J. Non. Cryst., Solids, 24, 399 (1977).
- **25.** E.A. Davis, N.F. Mott, Conduction in non-Crystalline systems conductivity, optical absorption and photoconductivity in Amorphous semiconductors. *Philos. Mag.* **22**, 903 (1970)
- 26. J. Taucs, Mater. Pres. Bull., 5, 721 (1970).

- 27. M. Farouk, S.Fyek, M.Ibrahim, M. EL Okr, *Annals of Nuclear Energy*, 56, 39 (2013).
- 28. F. Urbach, Phys. Rev. 92, 1324 (1953).
- **29.** E. Lines, A.M. Glass, Principles and Applications of Ferroelectrics and Related Materials, Clarendon Press, Oxford, (1979).