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We calculate the energy eigenvalues of the channeled positrons through 

single wall carbon nanotubes (n,m). According to the continuum model 

approximation given by Lindhard for the case of an axial channeling in single 

crystals, the actual periodic potential of a row of atoms is replaced by a 

potential averaged over a direction parallel to the row, called continuum 

potential. The calculations was executed by using the atomic interaction  

potential as given by Moliere potential and Biersack's universal potential. The 

maximum number of bound states and the energy eigenvalues is calculated for 

positrons of 100 MeV energy incident in a direction parallel to the nanotube 

axis, by using WKB method. The calculations showed that the estimation of the 

maximum number of bound states of the channeled positron in armchair, chiral, 

and zigzag nanotubes is higher for the Moliere potential than for the Universal 

potential. The calculations showed that the effect of temperature by using Debye 

approximation of thermal vibration amplitude on the channeling potential is very 

small and gave the same eigenvalues and the same number of bound states as 

that for the static nanotubes. 
 

1. Introduction  

A great variety of physical processes can occur when an energetic beam of 

charged particles is incident upon a solid target. All of these processes have cross 

sections, which depend on the impact parameters involved in collisions with 

individual target atoms. If the target material is monocrystalline, the distribution 

of the impact parameters and the yield of physical processes was found to be 

very strongly dependent on the relative orientation of the beam direction and the 

target. This effect is called the "channeling" effect. Much of the basic theory of 

the channeling process can be found in the treatment published by Lndhard in 

1965 [1].  Channeling effect has found several important applications [2]. In our 

previous work, special consideration is devoted to the channeling of positively 

charged particles in disordered lattices of cubic crystals including the 

characteristics of channeling radiation that emits spontaneously due to transitions 

between eigenstates of the channeled positrons [3] in addition to calculations of 

the transmission and dechanneling coefficients in disordered lattices, [4-7]. 
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The channeling effect in single-wall carbon nanotubes SWCNT's has 

found many important advantages compared to single crystals [8, 9], for 

example: 

 SWCNT's have much wider channels than ordinary crystals, implying weaker 

dechanneling so that, longer channeling distances may be achieved. 

 The wider channeling angle in SWCNT's (up to (~ 0.1 rad) are accepted for 

ion channeling in SWCNT's  than in ordinary crystals, leads to the possibility 

of ion channeling at low energies (~ 1 KeV), which  recently found great 

interest in the field of molecular dynamic simulations. 

 The channeling potential wells of nanotubes are sufficiently deep and broad to 

allow an efficient capture of positive particle beam in channeling states. 

Moreover , for nanotube ropes, the low electron and atomic density inside the 

channel make their channeling more stable than in ordinary crystals.            
 

In addition to several possible uses of Ion channeling through carbon 

nanotube as a diagnostic tool analyzing the structure of nanotubes, there is a wide 

range of potential applications of the channeling through SWCNT's in other 

areas, for example [8,9]: 

 Creation and transportation of highly focused nano-beams. 

 Ion implantation in manufacturing nano-elecronics devices. 

 Extraction, steering and collimation of ion beams at high energy particle 

accelerators. 
            

A SWCNT's can be thought of as resulting from rolling a strip of graphene 

into a cylinder. Graphene is a single planar sheet of sp
2
- bonded carbon atoms 

forming a hexagonal lattice with the bond length of 0.141 nm between 

carbon atoms, giving the surface density of atoms 3/24 / (3 )at  . A roll-up vector, 

which generates the circumference of a SWCNT, can be defined in the graphene 

strip by 
1 2 ,h n m C a a  where a1 and a2 are the basis vectors (with the angle π/3 

between them and 
1 2 3 a a ), forming a rhomboidal unit cell of graphene 

[10]. The pair of integers (n,m) completely determines the atomic structure of 

any SWCNT and specifically, its diameter, 2 2( 3 / )d n nm m   , helicity 

or chiral angle arctan[ 3 / ( 2 )]m m n   , as well as its longitudinal periodicity. 

SWCNT's with o0( 0 )m    are called zigzag, those with o( 30 )m n   armchair, 

while all other with 0 m n   are called chiral nanotubes.    
 

The system under investigation is a channeling of relativistic positrons 

through an (n,m) single-wall carbon nanotube (SWCNT). The nanotube axis is in 

z-direction and the origin lies at the transverse entrance plane. The motion of 

positrons in this channeling regime is governed by a transverse potential and we 

can find the bound states and the maximum number of bound states for the given 

incident energy. The initial positron velocity taken to be parallel to z-axis. We 

assume that the nanotube is sufficiently short for the positron energy loss to be 

neglected. 
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In this work we consider the channeling of 100 MeV positrons  through 

single-wall carbon nanotubes (10,10) , (11,9) and (18,0).  

 

2. Channeling Potential in Carbon Nanotubes 

            According to the continuum model approximation given by Lindhard [1] 

for the case of an axial channeling in single crystals, the actual periodic potential 

of a row of atoms is replaced by a potential averaged over a direction parallel to 

the row, called continuum potential. The continuum potential of single atomic 

row can be written as:  
2 21

R

V r V r z dz
d





 ( ) ( )                                 (1) 

 

where V is the atomic interaction potential, r is the distance from the row, z is the 

coordinate along the row and dR is the average distance of neighboring atoms 

along the row. If a fast charged particle  enters a nanotube at small angle to the 

tube axis (i.e., in channeling regime), the motion of the particle is governed by a 

continuum potential as given by Eq. (1).  
       

      In this work, the calculations is executed by using the atomic interaction  

potential as given by Moliere potential [11] and Biersack's universal potential 

[12] respectively as: 
2 3

1 2

1

M i i

i

z z e
V

x
 



 (x) exp( x)                             (2) 

 

with        0.35,0.55,0.1 , 0.3 / ,1.2 / ,6 /
i i

a a a    where 

2 1/3

2 0
(9 /128 ) ,a z a is  the Thomas-Fermi screening radius; 

o

0
0 529Aa  .  is 

the Bohr radius, z1 and z2 are the charge numbers of projectile and target atoms, 

respectively, e is the elementary charge and x is the separation between them.  
 

2 4
1 2

1

U i i

i

z z e
V p q

x 

 (x) exp( x)                              (3) 

 

with    0.18175,0.50986,0.28022,0.02817 ,
i

p   

           3.1998 / ,0.94229 / ,0.40296 / ,0.20162 /
i

q a a a a  

      Using the above expressions given by Eq. (2) and Eq. (3) in Eq. (1), we can 

obtain the axial potential corresponding to Moliere and Biersack's universal 

potentials respectively as: 
2 3

1 2
0

1

2
M i i

iR

z z e
U r K r

d
 



 ( ) ( ) ,                             (4) 
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2 4

1 2
0

1

2
U i i

iR

z z e
U r p K q r

d 

 ( ) ( ) ,                              (5) 

 

where K0 is the modified Bessel function of  the second kind and order zero. 
       

      The channeling potential of a nanotube (ρ)U , where ρ is a vector normal to 

the tube axis, is the sum of the axial potentials given by Eq. (4) or Eq. (5) of the 

rows positioned at ri over the circumference of the nanotube (Fig. 1), i.e., 
 

1

N

i

i

U U


 (ρ) ( ρ r )                                                    (6) 

 

where 
2 2

(2 / )( )N q n nm m    is the number of atomic rows [8], with, 

gcd(2 ,2 )q m n n m    denotes the greatest common divisor of its 

arguments.  In the numerical calculation of Eq. (6), we note that, the N rows 

consists of two sequences of rows overlap with a doubled linear atomic density 

2/dR.         
 

 

 

 

 

 

 

 

 

 

 

Fig. (1): Cross section of the nanotube channel is a circle of radius r, the rows of the 

carbon atoms are positioned at ri over the circumference of the nanotube, ρ the 

distance from the nanotube center. 

 

  

      The effect of thermal vibrations on channeling potential in carbon nanotube 

can be estimated by modification in the axial potential. In this work an 

expression for the axial potential at large distance from the nanotube wall was 

used which based on the Moliere atomic interaction due to one raw modified by 

the effect of thermal vibration is given by [13]: 
 

 
2 2
1

2 3
21 2

0

1

2
iu

MT i i

iR

z z e
U r K r e

d

 


 
( / )

( ) ( ) ,            (7) 

 

where u1 is the thermal vibrational amplitude of the carbon atoms estimated from 

the Debye approximation [2], as shown in Fig. (2). 
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Fig.(2): 

Thermal vibration amplitude u1 for carbon atoms as a function of temperature 

using the Debye approximation [2]. 

 

 

3. Calculation of the Energy Eigenvalues 

      We find that an expression of the form 

1

1 1( )
cU a b e                                                          (8) 

is a reasonable approximation for the channeling potential calculated in Ref. [14]  

and in this work by using Moliere and Biersack's universal potentials using Eqs. 

(4), (5) and (6). The parameters a1, b1 and c1 are given in Table 1 for carbon 

nanotubes under consideration and ρ is measured from the center of the tube in a 

plane normal to the tube axis. 

       

We use the WKB method [15], to obtain the energy eigenvalues of the 

channeled positrons constrained to move between classical turning points ρ1 and 

ρ2 in a potential given by Eq. (8). The classical turning points are those points at 

which ( )U E   that is 

1

1 1

c
E a b e


   or   1 1 1 1(1/ ) ln[( ) / ]c E a b     

and      2 1 1 1(1/ ) ln[( ) / ]c E a b    

 

For a particle constrained to move between classical turning points ρ1 and 

ρ2 in a potential well the energy eigenvalues can be obtained from the  

condition [15]. 

2

1

1
( )  ,          0,1,2,.....  

2
pd n n




                (9) 



 M. K. Abu-Assy et. al. 

 

124 

where   1

1/2

0 1 12
cp m E a b e    

 
, is the classical linear momentum, m0  is the 

positron rest mass and γ is the relativistic correction. Then, from Eq. (9), we can 

get the energy eigenvalues and the maximum number of bound states 

respectively as:  
2

21
1

0

1 1
( )

2 2ln 2 2
n

c
E a n

m





  
    

  

                               (10) 

and  

 
1/2

max 0 max 1

1

2ln 2
2 ( ) 0.5n m E a

c




 
   
 

                (11) 

 

where Emax, is the potential at the turning points, that is 

1

max 1 1

c sE a b e    , s R a  , is the screening length with  / 2R d  being 

the nanotube radius. 

 

3. Computational Results and Discussion 

      Thermal vibrational amplitude u1 for carbon atoms as a function of 

temperature using the Debye approximation [2] is shown in Fig. (2). 
   

Channeling potential Uth(ρ) of positrons channeled in (11,9) single wall 

carbon nanotube at thermal vibration amplitude u1 = 0.0053 nm (i.,e., at  ~ 790 K)  

by using Debye approximation as a function of a distance ρ from the center of the 

tube in a plane normal to the tube axis is shown in Fig. (3). The curve represents 

the present work by using Moliere atomic potential with the effect of thermal 

vibration Eq. (7) and the channeling potential as given in Ref. [14]. The two 

models gave the same numerical result. 
 

 
 

Fig. (3): Channeling potential of positrons channeled in (11,9) single wall carbon 

nanotube as a function of a distance ρ from the center of the tube in a plane 

normal to the tube axis. The curve represents the present work by using 

Moliere atomic potential and the potential as given in Ref. [14]. The 

calculations is executed at thermal vibration amplitude 
1 0.0053nmu .   
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The numerical results showed that the effect of thermal vibrational 

amplitude on the channeling potential is very small and gave the same results as 

that for the channeling potential of static nanotube for all possible values of 

thermal vibrations.  

 

The calculations of the channeling potential U(ρ) as given by Eq. (6), in 

single wall carbon nanotube for positrons channeled in armchair, chiral, and 

zigzag nanotubes is illustrated by the solid curve for (10,10), (11,9) and (18,0) in 

Figs. (4, 5, and 6), respectively by using Moliere and Biersack's universal 

potentials. The bound states, as given by Eq. (10), corresponding to channeling 

of 100 MeV positrons incident in the direction parallel to the nanotube axis is 

also shown in each figure and is illustrated by the horizontal lines. 

 

 

Fig. (4): Channeling potential of positrons channeled in an (10,10) single wall carbon 

nanotube as a function of a distance ρ from the center of the tube in a plane 

normal to the tube axis, (a) Moliere atomic potential, (b) Universal atomic 

potential. Some eigenvalues of 100 MeV positrons incident in the direction 

parallel to the nanotube axis are shown by horizontal lines. 

 

 

Fig. (5): Channeling potential of positrons channeled in an (11,9) single wall carbon 

nanotube as a function of a distance ρ from the center of the tube in a plane 

normal to the tube axis, (a) Moliere atomic potential, (b) Universal atomic 

potential. Some eigenvalues of 100 MeV positrons incident in the direction 

parallel to the nanotube axis are shown by horizontal lines. 
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Fig. (6): Channeling potential of positrons channeled in an (18,0) single wall carbon 

nanotube as a function of a distance ρ from the center of the tube in a plane 

normal to the tube axis, (a) Moliere atomic potential, (b) Universal atomic 

potential. Some eigenvalues of 100 MeV positrons incident in the direction 

parallel to the nanotube axis are shown by horizontal lines. 

 

 

 

The maximum number of bound states nmax as calculated from Eq. (11)  are 

given in Table (1). The calculations show that the estimation of the maximum 

number of bound states of the channeled positron for both armchair and zigzag 

are found to be  nmax Ref.[14] > nmax (Moliere) > nmax (Universal), while for the 

case of chiral nanotube, nmax Ref. [14] = nmax (Moliere) and  nmax (Ref. [14] and 

Moliere) > nmax (Universal).      
 

Table (1): Values of the parameters a1, b1 and c1 in Eq. (7) needed to  fit the 

nanotube channeling potential calculated by using different potential 

models  for the given (n,m) nanotubes, nmax is the maximum number 

of bound states for channeled positron with incident energy 100 MeV 

incident in a direction parallel to the nanotube axis. 
  

(n,m) Radius 

(nm) 

Potential 

model 

a1 (eV) b1 (eV) c1 (nm
-1

 ) nmax 

 

(10,10) 0.673225 Ref..[14] 

Moliere 

Universal 

0.30951 

1.08992 

1.00302 

0.0267 

0.00149 

2.54126×10
-5 

11.70454 

16.85538 

23.01093 

20 

17 

12 

(11,9) 0.674347 Ref. [14] 

Moliere 

Universal 

0.29904 

0.29904 

0.52358 

0.0269 

0.0269 

0.00227 

11.66859 

11.66859 

15.08567 

20 

20 

13 

(18,0) 0.699636 Ref. [14] 

Moliere 

Universal 

0.29834 

0.63897 

0.75919 

0.01793 

0.00574 

1.54459×10
-4

 

11.84884 

13.75914 

18.8679 

19 

18 

12 
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Table (2): The minimum potential, Umin(ρ) (at the nanotube axis) and the 

maximum potential, Umax(ρ)  (at the screening length from the 

nanotube wall) calculated by using different potential models and by 

Eq. (8) respectively for the given (n,m) nanotubes. 
 

Potential 

model 

(10,10) (11,9) (18,0) 

Umin(ρ) 

eV 

Umax(ρ) 

eV 

Umin(ρ) 

eV 

Umax(ρ) 

eV 

Umin(ρ) 

eV 

Umax(ρ) 

eV 

Ref. [14] 

Eq. (8) 

0.17266 

0.33621 

55.5142 

52.5067 

0.17057 

0.32594 

55.5119 

52.3539 

0.129503 

0.31627 

55.4618 

52.9242 

Moliere 

Eq. (8) 

0.17266 

1.09141 

100.082 

82.8721 

0.17057 

0.32594 

55.5119 

52.3539 

0.129503 

0.64471 

70.4485 

61.6753 

Universal 

Eq. (8) 

0.22807 

1.00305 

88.5010 

76.0559 

0.22621 

0.52585 

43.8533 

40.8165 

0.187988 

0.759344 

58.9911 

52.1144 

 

The minimum potential Umin(ρ), (at the nanotube axis) and the maximum 

potential Umax(ρ) (at the screening length from the nanotube wall) is shown in 

Table (2), for different nanotubes by using the channeling potential used in Ref. 

[14], and that by using both Moliere and Biersack's universal potentials. The 

values obtained by using the expression given by Eq. (8) which fit the above 

models are also given. 

 

The obtained results of the energy eigenvalues of relativistic positron 

channeled through single-wall carbon nanotubes could be used in the calculations 

of the energy of the emitted channeling radiation. The emitted photon energy in 

the forward direction is given by 
22 ( )E   where 1n nE E E   is the 

energy difference between the successive initial and final states of the channeled 

positron.    
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