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The behavior of enhanced Raman scattering for Raman active 

molecules on metallic surfaces have been investigated in view of a 

developed identities for the enhancement factors G
Rs

, the spectral 

variable X, and the dissipation parameter of a monomer   for Raman 

bands. A good agreement of our results with published data indicating 

that our suggested identities are fruitful.  

 

Introduction 

Surface enhanced Raman scattering (SERS) is one of the most intriguing 

optical effects [1,2]. However the most effective SERS systems are collections 

of interacting particles [2]. A fractal cluster is a system of interacting material 

particles called monomers. Fractals are particles in colloidal solutions, rough 

surfaces, disordered layers on surfaces [3]. The fractal excitation coherence 

length (L) within which the excitation of monomers are strongly correlated is 

limited by Ro  >> L >> Rc, where Ro<, is a characteristic separation between 

nearest monomers, and Rc is the total radius of the cluster [3,4]. 

 

The aim of the present article is to develop identities to obtain the 

parameters G
Rs

, X and   for Raman bands of Raman active molecules on 

metallic surfaces. 

 

Theory: We now deal to derive an identity for the enhancement factor G
Rs

 for a 

certain Raman signal of a semicontinuous metal film. Since the Raman active 

molecules are assumed to be uniformly distributed over the film. In this case 

G
Rs

 is equal to the ratio of the integrated band intensity of the considered signal 

IR to that in the absence of metal grains IR° [1,5]. 
 

          o 
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Since the major contribution to the enhancement is understood to 

originate from the large local fields that arise from optical excitation of surface 

plasmons [1,2]. The resulted local conductivity of the film takes either the 

metallic values  m on the metal grains or the dielectric values  d outside the 

metal grains inwhich  m >>  d. In this case [5]:  m = i  m  /4 ,  d= i  d    

/4 , and  : is the frequency of the incident wave. 

 

A respective dependence of IR, IR

°
 on  m and  d [5] has the consequence that 

 
  
   

     depends on the optical quantity 
 

 
  

     

        m =  m1 + i  m2 

 

 m: The dielectric const, of the metal film. 

 

Since G
Rs

 depends on the local fields which in turn depend on the external 

field (or the excitation frequency vex) [5, 6]. Inaddition the molecular transition 

frequency   mn between two adjacent vibrational states (within the molecule in 

its electronic ground state) of respective quantum numbers m,n [7, 8, 9] is 

defined as: 
 

   mn = vex – vst  

 

vst: The frequency of the Stokes mode (which is a Raman mode with a scattered 

frequency < vex) Furthermore the surface palsmon modes -in which the 

enhancement process must be affected - are very sensitive to any variations on 

the surface boundary metal/ dielectric whereby a limited infinitesimal density of 

these modes occurs around a unit frequency term Iv [10].  

The above demonstrations have the consequence that G
Rs

 depends on the 

parameter Pv 

P  =
     

  
  

Consequently G
Rs

 could be expressed as: G
RS

 = 
   
   

     

                             (1)  

 

Before dealing with an identity for the parameter X we must first of all 

define it, through the relation [2,3] 
 

                                     (2)  
 

  : Is the polarizability of a monomer on the investigated metal film. As shown 

below in Figs. (1,2) a continuous increase of G
Rs

 with increasing  

corresponding to continuous decrease of the dissipation factor   as well as a 
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decrease of the damping process of the surface plasma waves [15,16]. Hence 

the spectral variable X could be then postulated in a way taken into account the 

mechanism of the propagation of the surface plasma waves. 

 

In this case, the surface waves propagated along the boundary 

metal/dielectric are localized waves transport no energy away from the 

boundary [15,17]. In addition the surface fields decay exponentially normal to 

the surface inside and outside the plasma [18,19]. Notice that the parameters X 

and   are multiplied by Ro
3
 to give dimensionless quantities [2] - From the 

above demonstrations   
 |X| could be represented as: 

  
 |X| =Aexp   

      

 
 - I = 1 eV                   (3) 

 

A: Is a damping parameter 

 

A =   
     

B: Is an energetic parameter its behavior is shown in Fig. (4) as a function of . 

A maximum value of B(3.195 eV) is observed near the region of interband 

transitions for silver ( 350 nm). A continuous decrease of B with increasing 

 whereas a negative values of B at   600 nm may be due to abound energy 

states near the region of the surface plasmon resonance condition which is 

accepted [3,16,17]. 

 

In order to obtain experimental values of   
 |X|, a two identities of both  

  
 |X|, and    

    have been derived from eq. 2 [2,3], whereas  o is given by 

[2]: 
 

 o =   
  ( m- d)/ ( m+2 d)   (4)  

 

Rm: Is the radius of the monomer.  

Assuming Ro  Rm, one then obtains: 

 

  
 

|X|   
        

        
                                           (5) 

 

  
 

   = 
        

                
                                            (6) 
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Consequently:  

   
              

    
 
   

   

           

         
                             (7) 

 

A calculated values of G
Rs

,   and X could be obtained by considering the 

Raman band vmn = 1400 cm
-1

 for adsorbed citrate on colloidal silver - for the 

boundary Ag/water  d=1.77 [13] whilst the values of  m1,  m2 were obtained 

from [14] - Hence using eq. 1 one obtains different values of G
Rs 

for different 

excitation wavelengths. 

 

Fig. (1) illustrates the relation between log G
RS

 and  us ng our 

calculated values of G
RS

 and other values of published data [13,20] The 

calculated as well as the experimental values of   
    could be obtained from 

the corresponding values of G
RS

 using the relation [2]:    
 

  = l/(G
Rs

)
1/3

. Fig. (2). 
 

 
Fig.(1) : The variation of log G

Rs
 against the investigated wavelength λ 
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Fig.(2) : The variation of R

3
0  δ against   λ 

 

shows the variation of   
   against λ Fig. (3) reveals the spectral variable 

  
 |x| against λ  using the calculated values obtained from eqs (3,5), the 

experimental values by [13,20] with the help of eq. [7]. It is observed from Figs. 

(1-3) that the behavior for our calculated values of G
Rs

,   
   and   

 |x| are in 

accordance with published data [2,13,20], indicating that our suggested 

identities 1, 3 are useful and physically meaningful. It is observed from Fig. (3) 

that, the condition   
 |x|~1 corresponds to λ ~ 6250 A

o
 which nearly equals the 

resonance wavelength of the surface plasmons λ  s (6300 A
0
) for the boundary 

Ag/ water in accordance with the observations of [3]. 

 
Fig.(3) : The variation of R

3
0  |χ| against   λ 
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Fig.(4) : The variation of the energetic parameter B against   λ 

 

Conclusion: 

A developed identities for the three parameters G
Rs

, X and   have been 

obtained. At long wavelengths an increase of G
Rs

 is accompanied with a 

propagation of surface plasma waves as well as with a decrease of  . The 

condition   
 |x|~1 corresponds to surface plasmon resonance 

condition. 
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