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Abstract: The last years have witnessed an increasing attention to entropy based criteria in 
adaptive systems. Several principles were proposed based on the maximization or 
minimization of entropic cost functions. One way of entropy criteria in learning systems is 
to minimize the entropy of the error between two variables: typically one is the output of 
the learning system and the other is the target. In this paper, a classification of multilayer 
Back Propagation (BP) Neural Networks was proposed. The usual mean square 
error(MSE) minimization principle is substituted by the minimization of  cross-entropy 
(CE) of the differences between the multilayer perceptions output and the desired target. 
These two cost functions are studied, analysied and tested with three different activation 
functions namely, the trigonometric (Sin) function, the hyperbolic tangent function, and the 
sigmoid activation function. The analytical approach indicates that the results are 
encourage and promising and that the cross entropy cost function is a more appropriate 
error function than the usual mean square error. 
Keywords � Cross-entropy, Mean Square error, Activation Function, Learning 
Rate and Neural Network. 
1. INTRODUCTION 

Neural Networks have emerged as an important tool for classification. The 
recent vast research activities in neural classification have established that neural 
networks are a promising alternative to various conventional classification 
methods. The advantage of neural networks lies in the following theoretical 
aspects. First, neural networks are data driven self-adaptive methods in that they 
can adjust themselves to the data without any explicit specification of functional or 
distributional form for the underlying model. Second, they are universal functional 
approximators in that neural networks can approximate any function with arbitrary 
accuracy. Third, neural networks are nonlinear models, which makes them flexible 
in modeling real world complex relationships. Finally, neural networks are able to 
estimate the posterior probabilities, which provides the basis for establishing 
classification rule and performing statistical analysis[24]. 

 
For classification problems[20], supervised learning methods train a classifier 

on a set of labeled training examples which fall into several classes. The classifier 
can then be used to predict the class of a new instance. Each instance is represented 
by a set of features, which have to be carefully chosen[28, 29]. 
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The BP method is a technique used in training multilayer neural networks in a 
supervised manner. It also known as the error BP algorithm, that is based on the 
error-correction learning rule. It consists of two passes through the different layers 
of the network: a forward pass and a backward pass. In the forward pass, an 
activity pattern is applied to the input nodes of the network, and its effect 
propagates through the network layer by layer. Finally, a set of outputs is produced 
as an actual response of the network. During the forward pass the synaptic weights 
of the networks are all fixed. During the backward pass, the synaptic weights are 
all adjusted in accordance with an error-correction rule. The actual response of the 
network is subtracted from a desired response to produce an error signals, this error 
signal is then propagated backward through the network. The synaptic weights are 
adjusted to make the actual response of the network move closer to the desired 
response in a statistical sense. The weight adjustment is made according to the 
generalized delta rule to minimize the error[28].  

 
Gradient based methods are one of the most widely used error minimization 

methods used to train back propagation networks. The BP training algorithm is a 
supervised learning method for multilayered feed-forward neural networks [21]. It 
is essentially a gradient descent[22] local optimization technique which involves 
backward error correction of network weights. Despite the general success of back 
propagation method in the learning process, several major deficiencies are still 
needed to be solved. The convergence rate of back propagation is very low and 
hence it becomes unsuitable for large problems. Furthermore, the convergence 
behavior of the back propagation algorithm depends on the choice of initial values 
of connection weights and other parameters used in the algorithm such as the 
learning rate and the momentum term [21]. Improving the training efficiency of 
neural network based algorithms is an active area of research and numerous papers 
have been proposed in the literature. Early days of BP algorithms saw 
improvements on (i) selection of better activation function; (ii) selection of 
dynamic learning rate and momentum [23, 28]. Later, various optimization 
techniques were suggested. For improving the efficiency of error minimization 
process or in other words the training efficiency [21]. 

 
The behavior of an artificial neural network depends on both the weights and 

the activation function (energy function) that is specified for the units. Because the 
standard BP algorithm descends along the gradient of the error surface, the use of 
any activation function that has a large gradient than that of the sum of the squared 
error or any other cost function at higher energy values would make for faster 
training [19]. 

 
The idea behind Error Entropy Minimization (EEM) [9, 15, 17] is to replace the 

MSE, as the cost function of a learning system, with the entropy of error. The 
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minimization of the error entropy results in the minimization of the divergence 
between the joint probability density functions (pdfs) of input-target and input-
output signals. This suggests that the distribution of the output of the system is 
converging to the distribution of the targets. Let the error e(j) = T(j) – Y(j) 
represent the difference between the target T of the j output neuron and its output 
Y, at a given time t. The MSE of the variable e (j) can be replaced by its EEM 
counterpart. For EEM, we can use (1) cross entropy[1,4,13], (2) Shannon 
entropy[3, 10, 14], (3) relative entropy[5, 25, 26, 27], (4) Renyi’s entropy 
[6,8,11,12], (5) Differential entropy[7]  or any other suitable entropy technique. 

 
The organization of the paper presented in the following sections. In the next 

section, the idea of entropy is outlined. In section three, Least Mean Square Error 
Function is presented. In section four, Cross entropy Error Function is studied. 
Activation functions are presented in section five.  Simulated results are discussed 
in section six. And finally in section seven, the conclusions are outlined. 
 
2. ENTROPY 

As defined in information theory, entropy is a measure of the uncertainty of a 
particular outcome in a random process [2, 16]. The entropy of a random variable 
is a measure of the uncertainty of the random variable; it is a measure of the 
amount of information required on the average to describe the random variable. 
Entropy is a nonlinear function to represent information we can learn from 
unknown data. In the learning process, we learn some constraints on the probability 
distribution of the training data from their entropy [25]. 

The entropy  of a discrete random variable  is defined by 
 

    (1)                                              
 

where  is the probability mass function. The log is to the base 2. 
The entropy of  can also be interpreted as the expected value of 

 , where  is drawn according to probability mass function . 
thus 

 
       (2)                                         

                         (3)                                                        
 

The joint entropy  of a pair of discrete random variables  with a 
joint distribution  is defined as 

                                                      
(4) 

 
which can also be expressed as  
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( 5) 

 
For a continuous random variable X, the entropy H(x) [2] is defined by: 

                                  
(6) 

 
where  represents a probability density function of the variable . 
Similar to Eq.(6), uncertainty of two variables,  and , can be described by joint 
entropy: 

                                      
(7) 
 

Here,  represents the joint probability density function of variables  and 
. The joint and marginal entropies are related 

                                     
(8)  

 
If  and  are independent, , the uncertainty of  after obtaining  is 
the same as the original (marginal) uncertainty of . If the variables are perfectly 
correlated, then the knowledge of one variable gives complete information about 
the other variable, in that case  

    
 

where  represents the information transferred from  to . 
The uncertainty of  , given , denoted as , is equal to  

                                  
(9) 

3. LEAST MEAN SQUARE ERROR FUNCTION 
In statistics, the Mean Squared Error (MSE) of an estimator is one of many ways 

to quantify the amount by which an estimator differs from the true value of the 
quantity being estimated. MSE measures the average of the square of the “error.” 
The error is the amount by which the estimator differs from the quantity to be 
estimated. The difference occurs because of randomness or because the estimator 
doesn’t account for information that could produce a more accurate estimate. 

The Least Mean Square  cost function has been used more frequently 
than any alternative cost function in Neural Networks. It yields good performance 
with large data bases on real world.  error cost function is the most often used 
error function despite being criticized for its lack of convergence speed and a 
higher possibility of being trapped in a local minima in the network training 
process [14]. 
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For the general multi-class in Multilayer Neural Networks, let us consider the 
problem of assigning an input vector x  to one of M classes 

. Let  denote the corresponding class of x, 
 the outputs of the network, and  the 

target outputs for all output nodes. With the least mean sequence cost function, the 
network parameters are chosen to minimize the following: 

         (10) 
where  is the expectation operator. Denoting the joint probability of the input 
and the ith class by , we obtain  

         (11) 
Substituting  in eq (11) gives: 

(12) 
                                    

      
                                   

(13) 
But since,  is a function only of  and , we obtain  

  
                                  

    (14) 
                                

     (15) 
                        

(16) 
 Where  is a conditional variance of  is 

achieved by choosing network parameters to minimize the first term of eq.(16) 
which is simply the mean-squared error between the network output  and the 
conditional expectation of the target outputs. Thus, when network parameters are 
chosen to minimize a  cost function, outputs estimate the conditional 
expectation of the target outputs so as to minimize the mean squared error [14]. 
 
4. CROSS-ENTROPY ERROR FUNCTION 

In general, the cross entropy[1,13] is an iterative method, which involves the 
following two phases: First, generation of a sample of random data according to a 
specified random mechanism. Second, updating the parameters of the random 
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mechanism, on the basis of the data, in order to produce a “better” sample in the 
next iteration. 

The significance of the cross-entropy concept is that it defines a precise 
mathematical framework for deriving fast, and in some sense “optimal” updating rules. 

To investigate the cross entropy error function, we will discuss Network 
training using the maximum likelihood principle, and then derive Network training 
using the cross entropy cost function in the following two subsections:  

4.1 NETWORK TRAINING USING THE MAXIMUM LIKELIHOOD PRINCIPLE 
Let  denotes the input vector  and  denotes the corresponding 

target vector . The network has to estimate the joint probability 
, where 

    (17) 
 

If we assume that the patterns are drawn independently from the true distribution, we 
can define the likelihood function  with respect to a training data set  

                 
(18) 

 
In order to estimate the distribution , we use the maximum likelihood 
principle with respect to the weight vector . 

                   
(19) 

                                                              
            

      (20)            
 
Since  and it doesn’t depend on the weight vector . 

4.2 NETWORK TRAINING USING THE CROSS ENTROPY COST 
FUNCTION 

Equivalently to the maximum likelihood principle, we can define an error 
function by taking the negative logarithm of the likelihood function  

                               
(21) 
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For a two class problem that is represented by a single output unit. A target 
value of 1 corresponding to class  and a value of o to class , respectively. After 
training the network, the class-conditional probabilities are given by 

                            
(22) 

From equation  and  we get the model specific likelihood function 
                       (23) 

Taking the negative logarithm, we obtain: 
                      (24) 
The last equation corresponding to a Cross Entropy  function between the 

two distributions  and . The  is minimized if the distribution of 
the model output  and the distribution of the target values  are 
equal. Because the outputs  depend on the vector its distribution can be 
adapted to the distribution  of the target values [4]. 

For a multiclass case, the  is usually defined on the base of a 1-of-c coding 
scheme. Since the output values represent probabilities they must lie in the range 
between 0 and 1 their sum must be 1. Instead of using a 1-of-c coding scheme, a c-
1-of-2 scheme was proposed [4] and the mentioned  function for the multiclass 
case as the sum over all two class problems is as follows: 

      (25) 
where  and  denote the n-th target and output values for the z-th pattern 

class.   
5. ACTIVATION  FUNCTIONS 

The activation function, defines the output of a neuron in terms of thee induced 
local field. It is applied on the input summation for limiting the amplitude of the 
neuron’s output. The computation of the local gradient for each neuron of the 
multilayer perceptron requires knowledge of the derivative of the activation 
function associated with that neuron. For this derivative to exist, we require the 
activation function to be continuous. In basic terms, differentiability is the only 
requirement that an activation function has to satisfy. 
 
Why use activation functions 

Activation functions for the hidden units are needed to introduce nonlinearity 
into the network. Without nonlinearity, hidden units would not make nets more 
powerful than just plain perceptrons ( which do not have any hidden units, just 
input and output units). The reason is that a linear function of linear functions is 
again a linear function. However, it is the nonlinearity ( i.e., the capability to 
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represent nonlinear functions) that makes multilayer networks so powerful. Almost 
any nonlinear function does the job, except for polynomials. For BP learning, the 
activation function must be differentiable, and it helps if the function is bounded; 
the sigmoidal functions such as logistic and tanh and the Gaussian function are the 
most common choices. Functions such as tanh or arctan that produce both positive 
and negative values tend to yield faster training than functions that produce only 
positive values such as logistic[18], because of better numerical conditioning[30]. 

 
For hidden units, sigmoid activation functions are usually preferable to 

threshold activation functions. Networks with threshold units are difficult to train 
because the error function is stepwise constant, hence the gradient either does not 
exist or is zero, making it impossible to use BP or more efficient gradient-based 
training methods. Even for training methods that do not use gradients - such as 
simulated annealing and genetic algorithms – sigmoid units are easier to train than 
threshold units. With sigmoid units, a small change in the weights will usually 
produce a change in the outputs, which makes it possible to tell whether that 
change in the weights is good or bad. With threshold units, a small change in the 
weights will often produce no change in the outputs [30]. 

 
6. SIMULATED RESULTS 

Usually error back propagation for neural network learning is made using MSE 
as the cost function. In this article, we proposed the use of the minimization of the 
error entropy besides the MSE as a cost function for classification purposes. In 
terms of the entropy measure, the cross entropy approach have been tested with 
good results when compared to MSE. 

      
In this section, and on a simulated data sets, we discuss some the figures and 

tables showing the behavior resulting from the practical implementations as a 
comparison between the Mean Square error and their counterpart using the cross 
entropy errors. 
 
6.1 USING RANDOM INITIAL WEIGHTS: 

Cross Entropy and the trigonometric activation  function ( Sin ). Figure1-a, 
represents the  actual output when the target output = 1. The weights taken random 
between zero and one. In this case, the number of iterations = 33, and the value of 
the minimum error = 0.00653027040600151. we take the learning rate = 0.6 as a 
constant learning rate. The figure shows the behavior of the actual output for the 
last fourteen iterations that converges gradually towards the target output. While 
Figure 1-b shows the cross entropy error that is minimized gradually step by step 
after each iteration and finally tends to a value which is less than the stopping 
criterion.        
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Figure 1-a: Actual Output For the Final 14 Iterations Using  Trig  Activation Function and       
Cross Entropy. 

Figure 1-b: Cross Entropy Error For The Final Fourteen Iterations  Using Trig Activation Function. 
MSE with the trigonometric activation function. Figure 2-a represents the actual 

output when the target output = 1. The weights taken random between zero and one. 
In this case the number of iterations = 74, and the value of the minimum error = 
0.00999108352645411. We take the learning rate = 0.6 as a constant learning rate. 
For a certain input pattern, and according to the target output, we find that for the last 
fourteen iterations that the actual output grows gradually and finally tends towards 
the value of the target output. In Figure 2-b, the mean square error decreases 
gradually verifying the stopping criterion at the end of the last iteration. 
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Figure 2-a: Actual Output For The Final Fourteen Iterations Using MSE  And 
The Trig Activation Function. 

 Figure2-b : MSE For The Final Fourteen Iterations Using Trig  Activation Function. 
Figure 3 shows that the Cross Entropy error is less than the MSE in the last 

fourteen iterations. As a comparison between every iteration using the cross 
entropy error and its counterpart using the MSE, we find that the cross entropy 
error is more converged to the stopping criterion early than the MSE. On the other 
hand, the rate of convergence (which pertains to the “speed” at which a convergent 
sequence approaches its limit) in cross entropy is more than the rate of 
convergence using MSE. 
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Figure 3:  A Comparison Between CE Error And MSE For The Last 14 Iterations Using 
Trig Function. 

CE Error & MSE using the sigmoid function. In this case, the  initial weights 
and bias also taken random between zero and one. The number of iterations using 
cross entropy = 7398, but the number of iterations using Mean Square Error = 279. 
We take the learning rate a constant value and is equal to 0.6. in this case the 
number of iterations required to satisfy the stopping criterion condition using cross 
entropy is greater than the number of iterations using Mean Square Error. But in 
each iterations of the last fourteen, we find that the cross entropy error is less than 
that of the MSE using the sigmoid activation function as shown in Figure 4. 

 

 
 

Figure 4 CE Error and MSE For The Last 14 Iterations  Using The Sigmoid Function. 
 

CE error & MSE  using the (tanh –trig- sigmoid )activation  functions. Fig 5-a  
represents the  CE errors using the three functions. The weights taken random 
between zero and one. Using tanh function , the number of iterations = 677 , and 
the value of the minimum error = 0.00997437697541428.   We take the learning 
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rate = 0.6 as a constant learning rate. Comparing the cross entropy error using the 
three activation functions, we find that: 

1) The number of iterations using the sigmoid function is greater than the 
number of iteration using the tanh activation function. 

2) The number of iterations using the tanh activation function is greater than 
the number of iterations using the trig function. 

 
Accordingly, for the last fourteen iterations, we find that the trig function speeds 

the convergence than the tanh function which also speeds the convergence than the 
sigmoid function. 

 
Figure 5-b illustrates the convergence using MSE. The convergence is speed 

using the tanh function rather than using the trig function. Also the trig function is 
better in convergence than the sigmoid function. 

 
 
                      
 
 
 
 
 

Figure 5-a : The CE Error Using The Activation Functions ( Tanh-Trig – Sigmoid) Function. 
 

Figure 5-b  The MSE Using The Activation Functions (Tanh – Trig – Sigmoid). 
 In Table1: a comparison between the Cross Entropy and Mean Square outputs 

using three different activation functions for the last iteration. These functions are: 
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the trig function, the sigmoid function and the tanh function. These outputs 
resulting using random weights between zero and one. The learning rate applied 
here is a constant learning rate = 0.6. the stopping criteria = 0.01 in all cases. As a 
comparison between the CE error and MSE, we find that: 

1. In case of using cross entropy, the rate of convergence using trig function is 
greater than the rate of convergence using tanh function which is greater than 
the rate of convergence using the sigmoid function. 

2. In case of using mean square, the rate of convergence using trig function is 
greater than the rate of convergence using tanh function which is greater than 
the rate of convergence using sigmoid function. 

Table1: Comparing the Last Iteration For (Trig-Sigmooid-Tanh) Functions Using 
Random Initial Weights. 

Activation 
Function 

 Actual 
 Output 

(CE) 

 Degree 
of 

Conv. 
(CE) 

Error  
 
(CE) 

No. of 
Iteration 
(CE) 

Actual 
Output 
(MS) 

Degree 
of

Conv. 
(MS) 

Error  
 

(MS) 

No. of 
Iteration 
(MS) 

Trig 0.995 99.5%  0.0065 33 0.962 96.2% 0.0099 74 
Sigmoid 0.993 99.3%  0.0099 7398 0.874 87.4% 0.00996 279 

Tanh  0.9931  99.31% 0.00997 677 0.889 88.9% 0.00996 69 

Finally, although the weights and the bias are taken random, which affects the 
accuracy of the results to some extent, we find that the cross entropy error is more 
appropriate than using the mean square error.  

6.2 USING A FIXED INITIAL WEIGHTS 
Figure 6-a represents the CE error using the three (trig-tanh-sigmoid) activation 

functions. The figure indicates that the rate of convergence using the trig function is 
more than the rate of convergence using the tanh function. On the other hand, the rate 
of convergence using the tanh function is also greater than its counterpart in case of 
using the sigmoid function. We also notice that the number of iterations using the trig 
function is less than the number of iterations using the tanh function, which is less 
than the number of iterations using the sigmoid function.  
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In case of using the MSE as in Figure 6-b, we find that by using the trig 
activation function, the training process is more converged (fastest) than using the 
tanh function (fast) which is more converged than the sigmoid function (slow). 

Figure 6-a: Comparing the CE Errors For The Last Ten Its Using ( Trig – Logistic – Tanh ) 
Activation Function. 

Figure 6-b: Comparing the MSE for the Last Ten Its Using ( Trig – Logistic – Tanh ) 
Activation Function. 

Figure 7-a,b,c indicates that the actual output degree of convergence towards 
the target output using the cross entropy is greater than the degree of convergence 
using the MSE through the last ten iterations in case of using any of the three 
mentioned activation functions. This indicates that the cross entropy error is more 
accurate than the MSE. 
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Figure 7-a: Actual Output Convergence Towards The Target Output = 1 Using Trig Function. 

Figure 7-b:  Conv. Behavior For The Actual Output Towards The Target Output = 1 
using CE error & MSE ( sigmoid fn). 

Figure 7-c: Actual Output Conv. Behavior Towards The Target  Output = 1 ( CE Versus MSE )  
Using Tanh Function. 

In Table 2  a comparison between the Cross Entropy and Mean Square outputs 
using three different activation functions. These functions are: the trig function, the 
sigmoid function and the tanh function. These outputs resulting using constant 
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initial weights between zero and one. The learning rate applied here is a  constant 
learning rate which is equal to 0.6. the stopping criterion = 0.01 in all cases. 

Table 2: Comparing the Last Iteration For (Trig-Sigmooid-Tanh) Functions 
Using Constant Initial Weights.   
Activation 

Function 
Actual 
Output 
(CE) 

Degree 
of 

Conv. 
(CE) 

Error  
 

(CE) 

No. of 
Iteration 
(CE) 

Actual 
Output 
(MS) 

Degree 
of 

Conv. 
(MS) 

Error  
 

(MS) 

No. of 
Iteration 
(MS) 

Trig 0.993 99.3%  0.0098 67 0.798 79.8%  0.0089 9 
Sigmoid 0.993 99.3%  0.0099 7865 0.88 88%  0.0099 251 

Tanh 0.993 99.3% 0.00999 7331 0.806 80.6%  0.0097 16 

Table 2 also shows the following observations: 
• The number of iterations using the MSE is less than their CE counterpart. 
• The actual output degree of convergence to the target output using the CE is 

more than their MSE counterpart. This means that the stopping criterion 
using MSE must be smaller than stopping criterion using the CE to reach to a 
satisfactory results. 

In table 3  a comparison between the Cross Entropy using the logarithm to the 
base two and the Cross Entropy using the logarithm to the base e by applying three 
different activation functions. These functions are: the trig function, the sigmoid 
function and the tanh function. These outputs resulting from using constant initial 
weights between zero and one. The learning rate applied here is a constant earning 
rate = 0.6. The stopping criteria = 0.01 in all cases. Comparing the cross entropy to 
the base 2 and the cross entropy to the base e, we find that for the three activation 
functions, the number of iterations using the base e is less than the number of 
iterations using the base 2. 
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Table 3: Comparing the Last Iteration For (Trig-Sigmooid-Tanh) Function 
Using Cross Entropy (Base 2 – Base E) 
Activation 
Function 

Actual 
Output 
(base 2) 

Degree 
of                

Conv.  
(base2) 

Error 
( base2) 

No. of 
Iterations  
(base2) 

Actual 
Output   
(base e) 

Degree 
Of      

Conv. 
(base e) 

Error 
(base e) 

No. of 
Iterations     
(base e) 

Trig 0.993 99.3% 0.0098 67 0.99 99% 0.0097 54 
Sigmoid 0.993 99.3% 0.0099 7865 0.99 99% 0.0099 4314 

Tanh 0.993 99.3% 0.00999 7331 0.999 99.9% 0.0099 3500 

Table 4 illustrates the mean and standard deviation for the last ten iterations for 
the actual output using a fixed initial weight. Comparing the three activation 
functions, we find that the cross entropy less diverged ( more converged) than the 
mean square error because Mean-Cross > Mean-MSE and STD-cross < STD-MSE 
for all the three activation functions (Trig - Sigmoid – Tanh).  

Table 4 : The Mean And Standard Deviation For The Last Ten Iterations For 
The Actual  Output 

Actual Output Mean Standard 
Deviation 

CE-Trig 
MSE-Trig 

0.9923 
0.6909 

0.0006 
0.09457 

CE-Sigmoid 
MSE-Sigmoid 

0.993090437 
0.876215 

0.00000158 
0.00279 

CE-Tanch 
MSE-Tanh 

0.99309 
0.744 

0.000001407 
0.05000664 

Table 5 : shows that the mean and standard deviation for the error to the last ten 
iterations using fixed initial weights. Investigating this table, we find that: 

1. Using trig fn, mean of the error (CE) < mean of the error (MSE) . 
STD of the error(CE) < STD of the error (MSE). 
This means that cross entropy is more converged to the target output than  MSE.  

2. Using Sigmoid  fn, mean of the error (CE) < mean of the error (MSE) . 
STD of the error(CE) < STD of the error (MSE). 
This means that cross entropy is more converged to the target output than  MSE.  

3. Using tanh fn, mean of the error (CE) < mean of the error (MSE). 
STD of the error(CE) < STD of the error (MSE). 
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This means that cross entropy is more converged to the target output than the MSE. 
 

Table 5 : The Mean & STD For The Last 10 Iterations For The Error Using Fixed Initial 
Weights  (trig-tanh-sigmoid).    

Error Mean Standard 
Deviation 

CE-Trig fn 
MSE-Trig fn 

0.011120777 
0.021712104 

0.000880312 
0.012577033 

CE-Sigmoid fn 
MSE-Sigmoid fn 

0.010003371 
0.01068208 

0.0000023046 
0.000476141 

CE-Tanch fn 
MSE-Tanh fn 

0.010002612 
0.0.020016973 

0.00000204458 
0.009078251 

7-  DISCUSSION AND CONCLUSIONS   
We have presented, in this paper a new way of performing classification by 

using the cross entropy of the error between the actual outputs and the desired 
targets, as well as the most often used mean square error cost function. A 
comparative approach were investigated between these two errors using three 
different activation functions, the trigonometric, the hyperbolic tangent and the 
sigmoid activation functions. In fact, besides, the cross-entropy cost function has 
much less local minima compared to the mean squared error function, the approach 
employed here shows that cross entropy has significant, practical advantages over 
Mean Squared Error in the following points: 

1- The actual outputs using cross entropy error is more converged to the target 
output rather than using MSE. 

2- The number of iterations resulted in training the neural network using the 
trigonometric (Sin) function is less than the number of iterations using the 
hyperbolic tangent function. 

3- The number of iterations using the hyperbolic tangent function is less than 
the number of iterations using the sigmoid function. 

4- From (2) and (3), we conclude that the trigonometric function is the fastest 
activation function since  it speeds the convergence better than the other two 
functions. While the hyperbolic tangent function is fast, the sigmoid 
activation function less fast (slow).  

5- Using the trigonometric function, the mean of the cross entropy error is less 
than the mean square error. And the standard deviation of the cross entropy 
error is less than the standard deviation of the mean square error. 
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6- Using the hyperbolic tangent function, the mean of the cross entropy error is 
less than the mean square error. And the standard deviation of the cross 
entropy error is less than the standard deviation of the mean square error. 

7- Using the sigmoid activation function, the mean of the cross entropy error is 
less than the mean square error. And the standard deviation of the cross 
entropy error is less than the standard deviation of the mean square error. 

8- With the three functions, we find that using the mean square error, a poor  
convergence speed was obtained. While using the Cross entropy error we  
obtain  a more convergence speed. 

As a future work some other entropy techniques can be applied such as 
shannon’s entropy, relative entropy, reinyi’s entropy for classification purposes. 
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