
 53                                                      ) Egypt. J. Solids, Vol. (32), No. (1), (2009  

 
Decimation Technique on Sierpinski Gasket in 

External Magnetic Field 
 

Khalid Bannora1, G. Ismail1 and M. Abu Zeid2 
 

1) Mathematics Department, Faculty of Science, Zagazig University, 
Zagazig, Egypt 

2) Basic Science Department, Higher Technological Institute, 10th of 
Ramadan City, Egypt 

 
 
 

The recursion relations of random frustrated Ising spin systems on the 
Sierpinski gasket placed into an external magnetic field are carried out.  Spin 
glass (SG) and model at zero and non-zero temperature are investigated.  
Numerical results show the effect of the external magnetic field on the flow of 
the probability distribution, the scaling properties of stiffness energy and the 
mean value of the exchange couplings. The free energy decreases exponentially 
with the external magnetic field. It increases algebraically as the concentration 
of negative bonds increases. 

J±

 

1. Introduction: 

Fractal geometry provides a general framework for the study of such 
irregular sets. Fractals have non-integer dimensionalities. Mandelbrot [1] coined 
the word, ''Fractal'' from the Latin word "fractus", (i.e., broken), to describe the 
objects that were too irregular to fit into a traditionally geometrical setting.  
Some examples: the middle third Cantor set, the von Koch curve, and the 
Sierpinski gasket [2].  These fractals are self-similar, i.e., on going from one 
length scale to the other they look the same.  This property allows for applying 
the decimation technique.  

 
To construct the Sierpinski gasket [3], we begin with an equilateral 

triangle. The midpoints of its edges are connected and create four equilateral 
triangles.  The central triangle is removed and the same procedure is continued 
for each of the new triangles down to the microscopic lattice constant. It is 
better to think of this procedure as repeatedly replacing an equilateral triangle 
by three triangles of half the height. So, in the mth step of the construction the 
length scale is 2-m and the area within the gasket is proportional to 2-m(2-D) [3], 
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where 2ln3ln=D is the fractal dimensionality of the gasket [4], which is of the 
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D
 (see Hausdorff dimension [2]). If no triangles were removed 

the area would be invariant scale and 2=D . We notice that the number of 
triangles in the gasket grows as 2mD [3].  On going from one length scale to the 
other, the gasket appears the same, i.e., it is self-similar [5]. 

 
 
Because of the big number of spins (e.g., for ten steps spins) 

located on sites of the Sierpinski gasket, it is so difficult to get the partition 
function,  where the sum is extended over all possible states of 

the system. Therefore, the decimation technique (renormalization-group 
analysis) enables us to compute the partition function easily.  A uniform system 
of spins on the Sierpinski gasket has been studied by Gefen et al. [4].  Cieplak 
et al. [6] have also applied the method of Gefen et al. on random spin systems 
in the absence of magnetic field.  For any particular length scale the 
Hamiltonian for the gasket is equivalent to that for a triangle with renormalized 
exchange couplings [7]. Hikihara, et al. have calculated the ground-state two-
spin correlation of spin-
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1  quantum Heisenberg chains with random exchange 

couplings using the real-space renormalization-group scheme [8]. Frontera et al. 
[9] have found that the distribution of random fields is continuous.  

   
The aim of this paper is to investigate the influence of the external 

magnetic field on the distribution of the exchange couplings and the scaling 
stiffness energy for both the Gaussian and J±  models at zero and non-zero 
temperatures.  Also the free energy per spin at zero temperature is studied 
versus both of the concentration of negative bonds (x) and the external magnetic 
field (B).  

 
In the present work, we consider the disordered Ising spin glass (SG) and 

 model on a Sierpinski gasket placed in an external magnetic field. Their 
properties are numerically investigated by an exact decimation technique. 

J±
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2. The model: 

A triangular fragment of the Sierpinski gasket (Fig. (1)) spans two lattice 
spacings and consists of three corner and three midpoint spins. Consider a 
system of NS Ising spins Si = + 1 located on sites of the Sierpinski gasket placed 
into an external magnetic field B [9]. The Hamiltonian of our systems is given 
by: 
 

                        ∑∑
=

−−=
sN

i
iji

ij
ij SBSSJH

1
                                     (1) 

 
where the nearest-neighbours couplings, 's are independent random numbers 

and B is the external uniform field. For SG, 's are generated from the 

Gaussian probability distribution with zero mean and unit dispersion.  But for 
the  model, 's are generated from binary distribution. 
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Fig. (1): Fragment of the Sierpinski gasket. 
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3. The decimation technique. 

For fixed  and  there are eight possible energy states, 31, SS 5S
( 8,...,2,1= )λλE  of the unit, e.g., for 1642 === SSS  and get: 1=λ  we set 
   

4626245564533423116121 JJJS)JJ(S)JJ(S)JJ{(E ++++++++−=  
                     )}3( 531 ++++ SSSB                                                            (2) 
                                                                                                    

With each step of the decimation, the midpoint spins can be eliminated 

and the effective interactions 's between the corner spins are found, so that: '
ijJ
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At T=0, equation (3) is simplified as follows [6]: 
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     (4) 

   
In each decimation step, nine exchange interactions for every unit,  

 are replaced by three effective 

exchange interactions, , and a constant term C [7]. The constant 
term is of interest only when calculating the thermodynamic quantities [10]. The 
external magnetic field B breaks the system's global symmetry. So, the solution 
of equation (3) gives two groups of equations in the same four unknowns, 

. We may combine these two groups for these unknowns 
by adding both sides of the equations and dividing by 2. This gives us the 
recursion relations 
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And s'α  and s'γ  are defined as follows: 
 

(10)

111111
111111
111111
111111
111111
111111
111111
111111
111111
111111
111111
111111
111111
111111
111111
111111

.

.

.

56

45

34

23

16

12

16

2

1

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−−++−
−++−++
+−−−−+
−−−−++
++−++−
+−+−++
−+−−−+
++−−++
−−+−+−
−+−+++
+−++−+
−−++++
+++−+−
+−−+++
−+++−+
++++++

=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

J
J
J
J
J
J

α

α
α

 
and 

                                                              (11) 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

+−−
−+−
−−+
+++

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

46

26

24

4

3

2

1

111
111
111
111

J
J
J

γ
γ
γ
γ

 
The procedure is iterated recursively to yield renormalized values of the 

exchange couplings at each length scale. At each stage the triangles were 
combined into units and the decimation was performed by the same recursion 
relations (considering as original exchange couplings for the next stage of 
decimation). The renormalized couplings were then combined into new units 
and so on [6]. The consecutive decimation stages are labelled by the index m. 

sJ '
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For m=0 the description refers to the microscopic level. The corresponding 
length scale coincides with the lattice constant. For a general value of m, N = 3m 
of the original triangles are combined into one effective triangle. The 
corresponding length scale is then equal to  [6].  The relation between 
the number of triangles combined in this way and the length scale of the 
description is given by 

am2=l

( )DalN =  where D is the fractal dimensionality of the 

gasket [6].  We consider a system with  triangles. Such a system 
consists of 

103=N

( ) 885751
2
3

=+= NNs  spins and is characterized by  exchange 

couplings. 

113

 

4. Results and discussion 

We calculated the flow of the probability distribution, scaling stiffness 

energy and the average of exchange couplings ( ,sEΔ ) J  and
212J at each 

stage of decimation for several values of the external magnetic field B.  These 
quantities were calculated for both SG and J±  models at zero and non-zero 
temperature. 

 
4.1. SG Case: 
 

Figure (2) shows several initial stages of the flow of the probability 
distribution for x = 0 the Gaussian case at 0=T and B in the range 0 ≤ B ≤ 2.  
The width of the probability distribution of the renormalized exchange 
couplings decreases algebraically when the applied external magnetic field is 
increased with the size of the system.  At B = 1, all the couplings vanish after 
three iterations but at B = 2, they vanish after two.  We found for T = 1 that the 
decrease in the width of the distribution is more than that for T = 0 and the 
probability distribution shrinks to the paramagnetic fixed probability 
distribution (FPD) (J )δ  in case T = 1 more than in case T = 0. We notice that 
both of the external magnetic field and the temperature cause the width of the 
probability distribution of the renormalized exchange couplings to decrease 
when they increase.  Fig. (3) shows the flow of the probability distribution in 
the Gaussian case at  and for  which is the spin glass case.  The 
width of the probability distribution of the renormalized exchange couplings 
decreases with the size of the system when B is increased.  At B = 2, all the 
couplings vanish after two iterations. The probability distribution shrinks more 
and more to the paramagnetic (FPD) 

0=T 5.0=x

)(Jδ , when B increases in the interval 0 ≤ 
B ≤ 2.  The width of the probability distribution is less for T = 1 than for T = 0.  

 58
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For all x, the probability distribution at a given length scale can be represented 
schematically by [6]:  

 
                          ( ) ( ) ( ) ( )JwhJhJP −+= 1δ                                        (12) 

 
Where 0 ≤ h ≤ 1 and  represents the uniform portion. ( )Jw
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Fig. (2): Flow of the single-J probability distribution for 0=x  in the Gaussian model 

for several values of the external applied magnetic field (B) at T = 0.   
 
 
Figure (4) demonstrates the scaling properties of stiffness energy ( sEΔ ) 

at T = 0. At B = 0, Δ scales with the size of the system algebraically and at  
B = 0.5, they scale algebraically until the fourth iteration and become constant 
for the remaining iterations. For B = 1 and 2, ∆E, stays constant after the second 
iteration for all values of x. We observe that with increasing the magnetic field, 
the scaling stiffness energy remains constant with the size of the system and for 

sE
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all values of x. For T = 1, we found that  delays to remain constant than for 
T = 1.  Exponents r and  p are defined as follows [6]: 

sEΔ

 
                                                                                           (13) pNJ >≈<
 
                                     rNJ ≈>< 212 ,                                               (14) 
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Fig. (3): Flow of the single-J probability distribution for 5.0=x  in the Gaussian  

model for several values of the external applied magnetic field (B) at T = 0. 
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Fig. (4):  versus  in the Gaussian model for several values of 

concentration, x and for several values of external magnetic field (B) at  
T = 0. The corresponding slope is denoted by s. 

sEΔln Nln

 
A corresponding power law behavior holds [6] and { }rps ,max= .  

Exponents r and s versus x are shown in Figure 5.  It is seen that, as B increases 
the curves of both r and s are shifted vertically downward which means that 
they decrease with increase of B.  These exponents are negative for all values of 
x and close to  for and  and then they rapidly decrease. In 
the vicinity of  they level off at 

04.0− 0=x 0=B
13.0=x 5.0−≈= rs  and stay constant for all 

remaining values of x.  The scaling properties of J  and 
212J at 0=T  are 

shown in figure 6.  It is seen that, for  and 0=x 0=B  the two quantities scale 
identically, i.e., 05.0−== pr  and the system is a disordered ferromagnet.  As 

long as x > 0, a decay to zero for J   is much faster than 212J  does and the 
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system is a spin glass. It is clear that at 0=T , 212J decays in an algebraic 

fashion, while power law fits to J . Across 1≥B , J  and 
212J approach 

zero very fast.  At 1=T , the values of Both J  and 
212J  are less 

dependence on x than  case. 0=T
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Fig. (5): Exponent r, defined in equation (14) and exponent s, for sEΔ  as a function of 

concentration of negative bonds x in the Gaussian model for several values of B. 
 

JActually, much better description of   is given by the following law [6].  
 

                               
( )

04.0N
eJ

N αη−

≈                                                  (15) 

 
Both the evidence for this law and the influence of B and the plot of 

( )( )04.0lnln NJ−  as a function of  are presented in Fig. (7), at T = 0.   The 
slope 

Nln
α  depends on x, in a way, weakly and is greater at T = 1 than at T = 0.   

The intersection with the vertical axis at N = 1 yields ηα ln−  which allows for 
determination of η. By increasing B the system becomes more ordering.  We 
note that the slope converges as the external magnetic field increases. Fig. (8) 
shows the dependence of η on x. We observe that: η  exponentially decays as x 
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increases for B = 0 and 0.5.  But for B = 1 and 2, it decays algebraically.  We 
see that when  then η diverges as [6]: 0→x

 
                                                                                          (16) μη −≈ x

The quantity η will be called as the ferromagnetic coherence length since it 
characterizes the spatial extent of the incipient ferromagnetic order. 
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Fig. (6):  and >< J 212 >< J  on the log-log plane for the Gaussian model at 0=x      

and  for several values of B at T = 0. 01.0=x
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Fig. (7): Evidence for the validity of equation (15) for the Gaussian model at 

and for several values B at T = 0 07.0 and03.0,01.0=x
 
 
4.2. J±  Case: 
 

The flow in the  system at  and at J± 03.0=x 0=T  for several values 
of an external magnetic field is shown in Fig. (9). At 0=T , only discrete 
values of J are allowed. At , the bins corresponding to 0=B 1±=J  become 
depleted and give rise to the  effective couplings. At B = 0.5, the 
distribution at the value of depletes and many values of the effective 
couplings rise between 0 and 1. At B = 1, also discrete values rise but of value 
less than 1 and all the couplings vanish at the third step of decimation. Finally, 
when B = 2, all the couplings are equal to zero with first iteration. When T = 1 
the values of  deplete and dense values appear greater than those at T = 0. 

1,0=J
1=J

sJ '
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Fig. (8): Dependence of the ferromagnetic coherence length η on x in the Gaussian        

model for several values B. The insert shows the log-log plot to prove the 
validity of Eqn. (16). 
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Fig. (9): Flow of the probability distribution for 03.0=x  for several values of B in the 

model at T = 0.  J±
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Figure (10) demonstrates the scaling properties of sEΔ  at 0=T .  It is seen 

that for all x > 0 at ,  depends on N exponentially and the system is 
then paramagnetic. The slope decreases with increasing of B in the two 
concentrations, x = 0.1 and 0.5. For non-zero temperature (T = 1) and when B is 
increased  is less in its dependence on x.  Fig. (11) shows the behavior of 

0=T sEΔ

sEΔ

J  and 
212J . We note that J   decays faster than 

212J  which indicates 

that the system is dominated by frustration.  When the external field increases 

the frustration decreases.  Both of J  and 
212J  decrease with increasing B. 

The slope at T = 1 is greater than at T = 0.   
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Fig. (10): Plot of versus N for several values of B in the sEΔln J± model and for     

several concentrations of the negative bonds at T = 0. 
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Fig. (11): Plots of  and >< Jln 212ln >< J versus N for several values of B in   
the model at T = 0. J±

 
                                                                                                     

5. The free energy 

Numerically the free energy per pin is exactly calculated for Ns = 88575  
using [11,12]: 

                             { BJZ
N

TKF ij
s

B ,ln−= }                                                (17) 

Figure (12) shows that the free energy per spin increases with the concentration 
(x). It is clear that the free energy per spin grows in an algebraic fashion. At 
several values of the external magnetic field in the range 0 ≤ B ≤ 3 the curves of 
free energy per spin have a vertical shift downward as B increases in this range. 
Fig. (13) shows that the free energy per spin decreases with the external 
magnetic field. We notice the vertical shift when the concentration (x) increases. 
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Fig. (12): Free energy per spin F versus concentration of negative bonds x at 

and for several values of B in the Gaussian model. 0=T
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Fig. (13): Free energy per spin F versus external magnetic field B at T = 0 for several     
values of x in the Gaussian model. 
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6. Conclusion: 

Our problem was treated numerically and formulated by a FORTRAN 
program and the obtained data was plotted. In Gaussian case (SG), we found 
that the width of the flow of the probability distribution for x = 0.1 and 0.5, 
decays with increasing the magnetic field until all the couplings vanish.  We 
notice that the greater the temperature the less the width of the distribution of 
the exchange couplings.  For  model, the magnetic field makes the values of 

 deplete and discrete values give rise between
J±

J± 1  and  0 == JJ .  The 
scaling stiffness energy decays algebraically with the size of the system and 
when the magnetic field increases it becomes constant for all values of x.  We 

found that when B increases both 
212 and JJ approach to zero very fast. 

Exponents r and s decrease with increasing B.  The flow in the J±  case at 
 and at T = 0 and 1,  depends on N exponentially and when B is 

increased its slope decreases to become near to zero at B = 2 (i.e., 

03.0=x sEΔ

sEΔ  is 

constant). We notice that 
212 and JJ decrease with increasing B.  The free 

energy increases with increasing x but it decreases with increasing B. 
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