
Egypt. J. Solids, Vol. (32), No. (2), (2009) 

 

111

 

Glassy Behaviour of Random 
Field on Bethe Lattice in an External  

Magnetic Field 
 

 
Khalid Bannora1, Galal Ismail1 and Wafaa Hassan2 

 
١ Mathematics  Department t, Faculty of Science, Zagazig   University, 

Zagazig, Egypt 
2 Mathematical  and Physics  Department, Faculty of Engineering, Port Said, 

Branch of Suez Canal , University, Port Said, Egypt. 
                                                                                                           

The thermodynamics of random field Ising model (RFIM) on Bethe lattice is 
studied by using the replica trick (Bethe lattice is placed in an external 
magnetic field (B)). A Gaussian distribution for random field with variance 

2
RF

2
i Hh =  is considered. The free-energy (F), magnetization (M), order 

parameter (q), susceptibility ( χ ) and internal energy (U) are calculated. The 
phase diagram is investigated at different values of co-ordination number 

6,5,4,3=z and ∞→z . The phase diagram shows several interesting 
behaviours and present tricritical point at critical 
temperature kJTc /= , 0=RFH  for finite co-ordination number (z).  The 
critical temperature ( cT ) and the corresponding value of RFH  are found.  
Finally, we compare our results with the recent results obtained before for spins 
glasses. 

 
1. Introduction: 

The magnetic random systems with a frustration in the exchange 
interactions between the spins exhibit a spin-glass phase at low temperature [1, 
2].  The Sherrington-Kirkpatrick (SK) model with infinite-ranged interactions 
was suggested as a mean field model of spin-glasses [3].  Parisi found a stable 
solution using the replica-symmetry-breaking scheme [4]. 

 
The random field Ising model (RFIM) is one of the simplest models of 

disordered interacting systems. This RFIM describes the behavior of diluted 
antiferromagnets in strong magnetic fields [5]. In recent years, there have been 
many theoretical [6] and experimental indications [7].  The essential difficulties 
in breakdown the behaviour of the RFIM may be related to the existence of 
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many metastable states and associated glassy phase, similar as that found in spin 
glass materials [8]. 

 
Standard approaches, such as the Bragg-Williams mean field theory 

(MFT), when used to examine the RFIM predicted only the existence of the 
ferromagnetic (FM) and the paramagnetic (PM) phases, but failed to identify a 
spin-glass (SG) phase [9]. Very recently, by including fluctuations beyond MFT 
using a 1/N -approach, Mezard and Young [6] were successful in predicting the 
SG phase, based on an appropriate replica-symmetry-breaking scheme. 

 
 The simplest effect of turning on a weak random field is the resulting 
depression of the critical temperature for uniform ordering, while for 
sufficiently strong randomness the ordered phase completely disappears. The 
more sophisticated theoretical schemes have to be used in order to identify the 
corresponding instability of the high-temperature paramagnetic phase. Such a 
theory was formulated by Mezard and Young [6], who utilized the self-
consistent screening (SCS) approach of Bray [10], and identified the glassy 
phase by carrying out a replica-symmetry-breaking stability analysis. Similar 
result were obtained by numerically solving the mean-field equations for a fixed 
realization of disorder by Lancaster et al. [11], confirming the existence of the 
glassy phase.  Mezard and Monasson [12] and de Dominicis et al.[13] presented 
arguments that the glass phase should persist even at weak disorder, everywhere 
and precede the uniform ordering. Pastor and Dobrosavljevic [14] presented the 
simplest possible approach that is capable of providing a description of glassy 
phase. The recent theoretical efforts use the sophisticated numerical approaches 
to study the behavior of the order parameter under magnetic field and the 
temperature for the RFIM [15, 16, 17]. The phase diagram has been investigated 
by Monte-Carlo simulation [18, 19]. The one-dimensional disordered Ising 
systems are considered to be one of the most important physical problems [20].  
 

The statistical properties of peculiar responses is studied in glassy 
systems at mesoscopic scales based on a class of mean-field spin-glass models 
which exhibit one step replica-symmetry-breaking [21]. For the RFI model, 
Belanger and Nattermann discussed experiments and surveyed the theory only 
the nearest–neighbor interactions in the absence of an external magnetic field 
(B) [22, 23]. Belanger pointed that the experiments give a clear evidence for a 
finite temperature transition in three dimensions and discussed the observed 
critical behavior noting the difficulties arising from irreversible effects below 
the critical point.  In spin glass models, replica symmetry breaking implies the 
existence of many pure states of equilibrium.  Their hierarchical organization is 
described by the order parameter (q) [24].  In the SK model, q has a continuous 
form and it is a marginally stable saddle point of the replica free energy surface 
in the limit 0n → [25], where n is the number of replicas. 
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A Bethe lattice is introduced by Hans Bethe in 1935.  It is a connected 

cycle-free graph, where each node is connected to z neighbors, where z = 2, 
3,…, and is called the coordination number. It can be seen as a tree-like 
structure emanating from a central node. The central node may be called the" 
root or origin" of the lattice as shown in Fig. (1). The name "Bethe lattice" 
originates from the fact that Bethes approximation for the Ising model is exact 
on this lattice [26, 27]. A finite portion of the Bethe lattice is called Cayley tree. 

 
 
 

  
 

 
Fig.1: A Bethe lattice with coordination number z = 3. 

 
 

There are two special properties that make the Bethe lattice particularly 
suited for theoretical investigations. One is its self-similar structure which may 
lead to recursive solutions and it plays an important role in statistical and 
condensed-matter physics.  Because of some problems involving disorder 
and/or interactions can be solved exactly when defined on a Bethe lattice, e.g., 
Ising models [26-28]. In a recent publication, Bruinsma [29] has obtained a 
recursion relation for the random-field distribution functions in RFIM on a 
Bethe lattice. He has concentrated on the T=0 properties that follow from this 
recursion relation. Hartztein and Entin-Wohlman [30] explored the finite-
temperature phase diagram by analyzing the limit of the distribution averages. 
They obtained first-and second-order transition lines and a tricritical point for 
RFIM on a Bethe lattice. Castelliani and et al. [31] derived the zero-temperature 
phase diagram of spin glass models with a generic fraction of ferromagnetic 
interactions on the Bethe lattice. They used the cavity method at the level of 
one-step replica-symmetry-breaking (1RSB) and found three phases namely,  a 
replica-symmetric (RS) ferromagnetic one, a magnetized spin glass one (mixed 
phase) and a unmagnetized spin glass one[31]. Liers et al. [32] studied the Ising 
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spin glass on random graphs with fixed connectivity z  with mean µ  and unit 
variance. They exactly computed ground states by using a sophisticated branch-
and-cut method for z=4, 6. It is located the spin-glass/ferromagnet phase 
transition at µ = 0.77 + 0.02 (z = 4) and µ = 0.56 + 0.02 (z =6). Finally, Broges 
and Silva [33] studied the RFIM within differential operator method and 
obtained the phase diagrams for coordination numbers z = 4, 6 and showed 
several interesting behaviors, presenting tricritical points (only for z = 6). 
   

In this work, we present the thermodynamic properties for the RFIM on 
Bethe lattice by using the replica trick for different coordination numbers (z).  
Gaussian distribution of the local random field is considered. The phase 
diagram, the critical temperature and the thermodynamic magnetic parameters 
(magnetization, order parameter and susceptibility) are investigated. The mean 
field theory (MFT) enables us to identify the ferromagnetic (FM), paramagnetic 
(PM) and spin-glass (SG) phases and allow studying its properties for high 
disorder. We also study the effect of the static external magnetic field (B) on the 
same thermodynamic parameters for the RFIM.  The paper is organized as 
follows.  In Sec. 2, we describe the details of the model and apply the replica 
trick to obtain the free-energy (F). We calculate in section 3 the magnetization 
(M) and order parameter (q) by self-consistently.  We deduced the equation of 
the critical temperature at which the phase transitions occur. In section 4, we 
analyze our results for RFIM on Bethe lattice in the presence of an external 
magnetic field. Finally, we discuss and compare our results with other 
numerical simulations obtained before.  

 
2. The model: 

 

We Consider a Bethe lattice of N Ising spins  1iS = ±  which are 
coupled by finite constant interactions. The Hamiltonian of the random field 
Ising model (RFIM) is given by 

 

                                    ∑∑∑
==

−−−=
N

i
i

N

i
i

ij
jiij SBSHSSJ

11

Η               (1) 

 
where  z

JJ ij =  are uniform ferromagnetic interactions between nearest-

neighbor sites, rescaled with the coordination number (z)and B is the external 
magnetic field applied on our system.  The random field variables { }iH  are 

Gaussian distributed, with zero mean and variance 2 2
i RFav

H H⎡ ⎤ =⎣ ⎦  and we take 

RFH as initial constant values 
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         Thermodynamic properties of the model can be calculated from the 
ensemble averaged free energy per spin 

                                ( ) ( )β
β

β Z
N

F
N

lnlim1
∞→

−=                             (2) 

With the partition function  
                                  ( )( )

{ }
exp

i

i
S

Z Sβ= −∑ H ,                              (3)   

where 
{ }iS
∑ means the sum over all states of configurations, β = 1/kT, where k is 

the Boltzmann constant and T is the absolute temperature. We calculate the 
average quenched free energy. It is very difficult to compute [ ]ln

av
Z directly. 

In order to overcomes this difficulty, we use the replica trick [1] since the 
summation over the disorder systems  

 

        
0
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n

n
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                                                (4) 

where nZ is the partition function of the thα  replica, 1,....,nα = , where n is 

the number of replicas. We calculate nZ by replicating the system n times. 
Thus we introduce n identical replicas of the original system. The resulting 
partition function takes the form 
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whereα , β =1,…, n, where the trace extends over all states of a single 
replicated spin { }α

iS .   By expanding first term of equation (5) in powers of the 
interaction J/z, hence, one can obtain the partition function as follows: 
 

{ } ( ) ⎥
⎦

⎤
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++= ∑∑ ∑∑∑

ij i
i

ij
jjiiRFjiS

n SBSSSSH
z
JSS

z
JTrZ

i
α α

α

αβ

βαβααα βββ
α

,

2
2

22

2
1exp         (6)  

 

By using the following inequalities (the replicas mean field theory [1]) 
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 We can formally average over disorder and the free-energy, in 
thermodynamic limit may be expressed as: 
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where ( )αβ  refers to combinations of α  and β  with α≠β . Note that the 

exchange terms in the exponent are in the form 
2

i
i

Oλ⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ , where iO  is local 

intensive operator, which leads to physical thermodynamic consequence only if 
1Nλ −∝ . By using the Hubbard Stratononvitch identity on the squared terms 

which is given by:  
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and using the single-spin property,    
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       It is assumed that the limit 0n → and the thermodynamic limit 
N →∞ can be interchanged. We can drop terms which vanish in the 
thermodynamic limit. For N →∞ , the integral in Eq. (8) can be done by the 
Steepest descents method (The integral being dominated by the region of 
maximum integrand). Since the replicas are indistinguishable.                    
            

Then we can obtain the final form of free–energy as follows: 
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3. The thermodynamic parameters 
 

The magnetization (M), order parameter (q), susceptibility ( χ ) and internal 
energy (U) are calculated as functions of temperature (T) and random field 
( RFH ). 
 

By differentiating equation (10) with respect to B we find that the 
magnetization: 
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It is a self-consistent equation which can be solved with the saddle-point 
conditions. The mean-square of frozen moment (q) per site is given by    
               

( ) ( ) ( ) dxxMq
z
JHJMBxTq RF

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= ∫

2
1

2
22

22
2

tanh
2

exp
2
1 ββββ
π

     (12) 

 

In the ∞→z limit and for B=0, one can obtain the straightforward 
generalization equation of the well–known Bragg–Williams's condition to 
include the effect of random fields. This is sufficient to determine the 
ferromagnetic (FM) phase boundary which is determined by setting m=0.   
We can find zero-temperature magnetization (the ground-state 
magnetization ( )0=TM ): 
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The critical temperature where the magnetization vanishes is easily 
computed by differentiating the right hand side of equation (11) with respect to 
M by putting both M and B is zeros. The FM phase boundary is obtained by 
locating at a given value of 

RFH  where the magnetization m vanishes. The 
temperature phase diagram is given by 
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         From this equation, we can plot the phase diagram. By differentiating the 
right hand side of Eq. (14) with respect to temperature at  0== CTT . The zero 
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solution occurs when
π
2

≥
J

H RF which means that the system becomes SG for 

all T.  The identification of the SG phase is more difficult. Similarly as for spin 
glass models in a uniform external field, in our case the Edward-Anderson order 
parameter (q) in non zero for any temperature and thus cannot be used to 
determine the phase boundary. In our case, the random magnetic field plays a 
role of a source conjugate to the order parameter, locally breaking the up-down 
symmetry. The situation is similar as in spin-glass models in a uniform external 
field [24], where the replica symmetric order parameter q remains nonzero for 
any temperature and thus cannot be used to identify glassy freezing. We follow 
Mezard and Young [6] and look for instability to replica symmetry breaking 
(RSB) within the paramagnetic phase.  To this, we can set m=0, and note that 
remaining equation for q is in fact identical to that describing the Sherrington-
Kirkpatrick model in presence of magnetic fields. This model is also described 
with the first two terms of the Hamiltonian of Eq. (1), but this time with J. 

sJ ij
, are being Gaussian random variables with zero mean and variance  

                          zNJJ ij /22 =  
     

By differentiating equation (11) with respect to the external magnetic 
field (B) and taking the limit ∞→B , the susceptibility ( χ ) is given by 

  

          1( )
(1 )
qT

kT J q
χ −

=
− −

                                          (15) 

 
We apply Adaptive Simpson quadrate method to compute the integral 

in Eq.(14) within MATLAB package. We are able to obtain numerical results 
for the internal energy (U) by differentiating Eq.(14) with respect toβ  with 
applying central difference method.  
 
 
4. Results and discussion                         

The thermodynamic parameters obtained above are calculated where 
the Gaussian distribution of the local random field is considered.  In the absence 
of external magnetic field (B), we found that the free-energy (F) is constant at 
low temperature and then linearly increases with increasing temperature, 
whatever the random field and the coordination number (z)  are, as shown in 
Fig.2. This result agrees with that obtained by [34] 
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Fig.2: The free energy (F) versus kT/J at different strengths of random field 

(HRF/J) and at z = 4.  

It is clear that Eqs.(11) and (12) are self-consistently. For this reason, 
we solved it numerically by using Newton Raphson method (NRM).  The value 
of M and q are obtained as a functions of temperature (T) and random field 
( RFH ) at different values of z and B.  

When M and q are a functions of random field ( JH RF / ). We noted 
that M and 2/1q  curves are almost coinciding for weak random field but on 
increasing RFH . The difference between them increases until the critical 
temperature ( CT ) at which the system become SG (i.e. 0=M , 0≠q ) 
whatever coordination number (z) as in Fig.( 3).  We also found that the curve 
of both M and 2/1q separated.  We noticed that 2/1q curve is constant at T = 0. 
On increasing the temperature the curve of 2/1q  decreases until the critical 
temperature and then increases on increasing RFH to converges to one. But 
at 1/ =JkT , the system become SG for all values of RFH .  In the presence of 
B, the effect of the weak external magnetic field is observed as shown in Fig.3  
(b). The system has a slow phase transition from FM to SG. But at 1/ =JB , 
we note that M and 2/1q curves are constant at low RFH and decreasing on 
increasing RFH . The difference between the M and 2/1q  curves are decreasing 
until the system becomes pure ferromagnet at 1/ =JB as shown in Fig.3(d). 
The behavior of M and 2/1q curves is the same wherever value of z is. 
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Furthermore, the magnetization is increasing on increasing the coordination 
number (z). 

 
Fig. (3): The magnetization (M) and the order parameter ( 2/1q ) versus 

J
H RF   

at different values of 
J

kT  in the presence of magnetic field (
J
B ) at z = 6:   

(a) B/J = 0.0, (b) B/J = 0.001, (c) B/J = 0.01 and (d) B/J = 0.0. 
 
 
But when M and q are as a function of JkT / . We noted that M and 

2/1q  curves are almost constant at low temperature. In the absence of B, M and 
2/1q  decreases on increasing temperature until the critical temperature ( CT ) at 

which the system become SG (i.e. 0=M , 0≠q ) whatever coordination 
number (z) as in Fig.4(a). In presence of B, we find that M and q1/2 linearly 
increase with increasing the external magnetic field (B). Also, we find that M = 
q1/2 as 1/ =JB . This result agrees with those obtained by [35, 36]. Because 
they found that a finite external field removes sharp phase transitions by 
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allowing M and q1/2 to be nonzero at all temperatures.  On increasing RFH , the 
curve of M and q1/2 are separated. This separation decreases with increasing B. 
The M and q1/2 curves are almost coinciding until the system becomes pure 
ferromagnet at B/J =1 as shown in Fig. (4b). The separation between M- and 

2/1q - curves is increasing at JH RF π/2≥ with as shown in Fig. (4c,d). The 
behavior of M and q1/2 curves is the same wherever value of z is. Furthermore, 
the magnetization is increasing on increasing the coordination number (z).  
 

The ground-state of magnetization on a Bethe lattice decreases and 
tends to zero as increasing the random field ( RFH ) as shown in Fig, (5). The 
maximum value of M (T = 0) is equal to one at HRF = 0.11. We found that there 
are groups of lines ( ( )ln ). Each group contains a number of lines these lines 
increase on increasing the coordination number (z) as shown in Fig. (5). These 
groups are growing at 0.1 of the random field (HRF). The number of lines and 
the interval of the coordination number (z) are given in Table (1).                                                                                        
 

Table (1): 

Number of lines ( )ln  Interval of coordination number (z) 

1 92 ≤≤ z  
2 1110 ≤≤ z  
2 1312 ≤≤ z  
3 1614 ≤≤ z  
6 2217 ≤≤ z  
12 3523 ≤≤ z  
64 9936 ≤≤ z  
∞  100≥z  

 

The critical temperature at which occurs phase transition from FM to SG is 
decreasing as random field increases. By differentiating the r. h. s of Eq. (18) 
with respect to T at T = TC = 0, we find that the zero solution of equation occurs 
as a unique solution when π/2/ ≥JHRF . The identification of the SG phase 
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Fig. (4):  The magnetization (M) and the order parameter (q1/2) versus kT/J  at different 

values of B/J in the presence of HRF/J = 0.2, 0.5, 0.8 and 1. 

 
is more difficult. Similarly as for spin glass models in a uniform external field, 
in our case the Edward-Anderson order parameter (q) in non zero for any 
temperature and thus cannot be used to determine the phase boundary in our 
case, the random magnetic field plays a role of a sourse conjugate to the order 
parameter, locally breaking the up-down symmetry the situation is similar as in 
spin-glass models in a uniform external field [24], where the replica symmetric 
order parameter q remains non zero for any temperature and thus cannot be used 
to identify glassy freezing. We follow Mezard and Young [6] and look for 
instability to replica symmetry breaking (RSB) with in the paramagnetic phase. 
To this, we can set M = 0, and note that remaining equation for q is in fact 
identical to that describing the Sherrington-Kirkpatrick model in presence of 
magnetic fields. This model is also described with the first two terms of the 
Hamiltonian of Eq. (1), but this time with sJ ij

, being Gaussian random 
variables with zero mean and variance zNJJ ij /22 = . 
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From the phase diagram in Fig. (7), we obtained that: (i) the glass phase 
transition do not exist for ∞=z . This result is the same that obtained by [28], 
(ii) the CT  decreases as RFH  increases in the boundary of phase transition from 

FM to PM, (iii) our RF system behaves as PM as π/2/ ≥JHRF , whatever the 
T  is, (iv) we note that there is a phase transition from FM to SG when 

0=B as shown in Fig. (6) and (v) The critical temperature ( CT ) increases on 
increasing the coordination number (z) 

But when the coordination number is finite, we note that ferromagnetic 
(FM), paramagnetic (PM) and spin-glass (SG) phase are found as shown in 
Fig.7. at z=3, 4, 5, 6. The critical temperature decreases as RFH  increases in the 
boundary of phase transition from FM to SG. The Phase diagram shows several 
interesting behaviours and present tricritical point at critical temperature 

kJTC /=  and 0=RFH . 
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Fig.(5): Ground-state magnetization (M(T =0)) versus HRF/J with GD for the RFIM at 

different coordination  number z.  

 

In the absence of external magnetic field, we find that the susceptibility 
( χ ) has a sharp cusp at z = 6 as shown in Fig.8 (a). This cusp decreases with 
increasing temperatures and vanishes at the critical temperature kJTC /= . The 
susceptibility tends to zero at high temperature and random field. In the 
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presence of external magnetic field, χ  shows a rounded peak. This peak 
decreases and moves at a high temperature as shown in Fig.8 (b,c,d). The 
rounded peak moves to left on increasing B. The maximum of the peak lowers 
with increasing B. This result agrees with that obtained by Bannora et al. [36] as 
well as agrees with that obtained by Ismail [37]. He found that real and 
imaginary parts of the dynamic susceptibility display maxima at CTT = . These 
maxima can be described by an Arrhenius law. The susceptibility shows the 
similar behaviour the coordination number (z) is. 
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Fig.(6): Magnetic phase diagram for RFIM at ∞=z and B=0. 

 

We note that the internal energy (U) is almost constant at low temperature. 
With the further increase of temperature, U increases as T increases as shown in 
Fig.9. In the absence of B, U decreases on increasing RFH  and has a singular 
point at  cT  as shown in Fig.(9). This singularity decreases on increasing the 
coordination number (z). Then it linearly decreases as T increases at 

π/2/ ≥JHRF  whatever z is. This result agrees with that obtained by [36]. 
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Fig.(7): Magnetic phase diagram for RFIM with different coordination number 

(z) at B = 0:  (a) z = 3, (b) z = 4, (b) z = 5 and (d) z = 6. 
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Fig.(8): The susceptibility ( χ ) versus JH RF /  at different values of JkT / in 

the presence of B/J = 0, 0.1, 0.25, 1 and z = 6. 
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Fig.(9): The internal energy (U (T)) versus kT/J at different strengths of HRF/J 

in the absence of B/J with GD for the RFIM at z = 6. 
 

5. Conclusions 

           In summary, we can conclude that in the present Bethe-lattice Ising 
model with random field, the critical temperature is kJTC /= at a critical 

strength π/2/ =JH c
RF  of the random field.  The critical temperature is 

decreasing on increasing RFH .  The Phase diagram shows several interesting 
behaviours and present tricritical point at critical temperature 

kJTc /= , 0=RFH  and finite number of z. When the coordination number is 
finite, we note that ferromagnetic (FM), paramagnetic (PM) and spin-glass (SG) 
phase are found and the glass phase transition does not exist for ∞=z . 
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