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The magnetization, magnetic susceptibility, internal energy and 
magnetic specific heat are calculated by using Monte Carlo simulation.  It was 
applied for spin glasses (SG), J± model, ferromagnetic (FM), and anti-
ferromagnetic (AFM) systems on Siérpinski gasket of less than or equal to 366 
Ising spins in the presence of an external magnetic field. The magnetization 
decreases with increasing both of the temperature and concentration of 
negative bonds.  While on the opposite side, it increases with increasing the 
external magnetic field. Peaks were found in the plots of magnetic susceptibility 
and specific heat versus temperature or magnetic field. The internal energy 
increases with increasing the temperature and decreases with increasing the 
magnetic field. Our theoretical results are in good agreement with published 
experimental ones. 
 

1. Introduction 

Most physical systems are not isolated so they exchange energy with 
their environment. Since such systems are usually small in comparison to their 
environment, we assume that any change in the energy of the smaller system 
does not have a significant effect on the temperature of the larger system. Hence 
the larger system acts as a heat reservoir or heat bath at a fixed absolute 
temperatureT  [1]. Just as there are many different types of reservoirs in the real 
world, there are many kinds of computer programs which can be used to 
simulate a reservoir. All that is required is a program which will start with any 
state designation and generate a succession of new designations in such a way 
that after many cycles the probability of any designation appearing is given by 
the Boltzmann distribution. 
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Monte Carlo MC Simulation is an integral part of contemporary basic 
and applied sciences and is approaching a role equal in importance to the 
traditional experimental and theoretical approaches. The specific significance of 
the computer simulation is yielding exact information on model systems which 
are precisely characterized. In contrast, the information provided by analytic 
theory is exact only in rather rare cases, while in most other cases uncontrolled 
approximations are required. (MC) simulations are widely used in statistical 
physics [2]. 

 
Magnetization and susceptibility are calculated for FM system 

consisting of 366 spins situated at sites on the Siérpinski gasket by Cieplak et al. 
[3]. M.C. Salas-Solis et al. [4] calculated the magnetization per site for J±  
Ising square lattice with size 1212×  for different anisotropies. Both the 
internal energy and the specific heat were calculated by Q. Zhang et al. [5]. 
Both magnetization and specific heat were calculated in presence of the 
magnetic field by W.C. Barber and D.P. Belanger [6]. 

 
In the present paper, MC on a Siérpinski gasket of 366 spins is used 

here instead to study the Glauber dynamics (1963) [7] for a cluster of 6 spins as 
in Fig.1 (top). This cluster is studied by Cieplak and Łusakowski [8] and 
Bannora et al. [9]. With the periodic boundary conditions the coordination 
number of each site is 4, which allows studying effects of frustration. This 
specific Siérpinski gasket is in fact topologically equivalent to a ring of 366 
spins coupled by nearest neighbor interactions. This gasket, however, is finitely 
ramified (Gefen et al 1980) [10] and its properties, in many respects, are 
reminiscent of those found in 1-dimensional systems. 

    
The main aim for this work is to study the variety of behaviors 

exhibited by different distributions of the exchange interactions (SG, J± , FM 
and AFM) and also the influence of both the externally applied magnetic field 
( B ) and concentration of negative bonds (x) on the magnetic and 
magnetothermal properties e.g. the mean value of the absolute magnetization 
( M ), magnetic susceptibility per spin ( χ ), the specific heat (C) and the 

internal energy ( E ) for these ordered (FM and AFM) and disordered (SG 
and J± ) systems.   

   
In order to explore the properties of the Ising model, we need to specify 

the physical properties of interest and develop a program to compute them.  The 
layout of this paper is as follows: In section 2, we present some properties of the 
gasket, the model and our magnetic systems. We introduce MC simulation to 
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study the dynamic parameters ( M , χ , C and E ) in section 3. The results 

and discussions are presented in section 4. Finally, we summarize our 
conclusions in section 5. 

 

2. The Model 

The Siérpinski gasket is a fractal graph which can be built with the 
following procedure: we begin with an equilateral triangle. The midpoints of its 
edges are connected, creating four triangles. The central triangle is removed (see 
Fig.1 bottom). The same procedure is continued for each of the new triangles 
down to the microscopic lattice constant.  In the fractalness stage n, the gasket 
has ( )13

2
3

+n  sites, 13 +n  edges and its side contains n2  edges [11,12]. In our 

case, we take a system constructed by a 5-fold division of the starting triangle of 
3 spins [3]. This system consists of 366 spins and 729 exchange interactions. 
Periodic boundary conditions were imposed, i.e. the corner spins have been 
made to interact with each other. We place the system of spins into an external 
magnetic field (B).  The Hamiltonian of our systems is: 
 

∑−∑−=
=

sN

i
iji

ij
ij SBSSJE

1
                                      (1) 

 
where the first summation in (1) is over all nearest-neighbor spins and the 
second summation is over all spins in the lattice. The exchange constant ijJ  is a 
measure of the strength of the interaction between nearest-neighbor spins. In 
this work, we consider the following cases for the exchange interaction [13]: 
    (a)  Spin glass (SG), where ijJ 's are random numbers, out of which a 

fraction (x) is negative and a fraction (1-x) is positive and are generated 
from the Gaussian probability distribution with zero mean and unit 
dispersion. 

    (b) J± model, binary distribution (BD), where 1±=ijJ , we take 1−=ijJ  

with probability (x) and 1+=ijJ   with probability (1-x). 

    (c)   Ferromagnetic (FM), 1+=ijJ . 

    (d)   Anti-ferromagnetic (AFM), 1−=ijJ . 
 

To evaluate the Hamiltonian (1), for the Siérpinski gasket, we label 
each spin with its site and each bond with its position.  We calculate the 
Hamiltonian (1) term by term until all gasket sites are swept.  This is a hard 
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procedure to exceed this size ( 366=sN  spins) especially, there is no 
recurrence relation to evaluate (1) by iteration.  We can take a less size such as 

42and15,6 === sss NNN  spins.  
 

3. Metropolis Monte Carlo Simulations: 

The Metropolis Monte Carlo algorithm is a well-known general method 
for computing the canonical equilibrium statistical expectation values by means 
of a weighted random sampling of the possible microstates [14]. The algorithm 
generates a Markov chain of configurations, nSSS ,...,, 10 , ( 0S  is the initial 

configuration, iS  is the configuration generated from 1−iS  when we flip the thi  

spin, and so on) such that the configuration 1+iS  depends only on the 
immediately preceding configuration iS  and not on the previous history of the 
system [2]. The probability to get to 1+iS  from iS  is given by a transition 

probability, ( )ii SSW 1+ . The transition probability is chosen such that the 

distribution of the states nSSS ,...,, 10  is the Boltzmann distribution, 
 

( ) ( ){ }TkSESP B−expα                                       (2) 
 

where Bk  is the Boltzmann constant. 
                                                            

Suppose that we flip a single spin from iS  to iS− .  Hence the change 
in energy is, 

 
( ) ( )oldnew SESEE −=Δ                                          (3) 

    
Because we always want to be at or near the ground state of the system 

[2], we should accept such a move if EΔ  is less than or equal to zero. If EΔ  is 
positive, we compute the transition probability TkE BeW Δ−=  and use the 
extraction of a uniformly distributed random number, [ ]1,0∈r .  We accept or 
reject the new configuration [14], according to the following rules: 

 
     (i) If  r  ≤W   , accept the new configuration, 
     (ii) If  r  >W   , retain the previous configuration. 
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We constructed a single-spin flipping transition probability. Once all 
spins have been given a chance to reverse their directions one sweep has been 
made. One sweep is also called one Monte Carlo step per spin (MCSS). By 
means of this technique, one can generate a sequence of configurations.  After 
an opportune thermalization transient, it is possible to get the canonical 
equilibrium properties of the system. The Monte Carlo technique used is the 
single-spin flipping procedure, where in each run we discard a sufficient 
number of MCSS to equilibrate the system before averaging physical quantities 
over a number of MCSS.  Data are generated with 10000 Monte Carlo steps per 
site after discarding the first 9000 steps. The basic thermodynamic quantities of 
interest are the mean absolute magnetization ( M ), the magnetic 

susceptibility per spin ( χ ), the mean internal energy E  and the specific heat 

C.  In particular, M , χ  and C are computed according to the following 

relations: 
 

                    ∑=
=

sN

i
iS

N
M

1

1
,                                                        (4)       

                    ( )221 MM
TkB

−=χ ,                                            (5) 

 

                    ( )22
2

1 EE
Tk

C
B

−= .                                             (6) 

  
The mean of the internal energy E  is computed using equation (1).                                                                                  
               

4. Results and discussions: 

The dynamics of SG, J± , FM and AFM systems on a Siérpinski 
gasket of 6, 15 and 366 Ising spins are investigated.  Figure 1 shows a unit of 
the gasket (consists of 6 spins) and our model (consists of 366 spins).  The 
reason for which we select the 366 lattice is that the critical temperature 
converges to a value by the lattice size up to 366.  Of course larger lattice would 
be better but since there is no recurrence relation for evaluating the 
Hamiltonian, we could not proceed largely (note that the number of spins is 

( ) 109513
2
3 6 =+  according to ( )13

2
3

+= n
sN , n = 1, 2, 3, …).  So we 

discuss here the results of the particular gasket of 366 spins. 
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Fig. (1): A unit of the Sierpinski gasket (up) and a gasket consisting of 366 spins (down). 
 
 

Figures 2(a), 2(b) and 2(c) show the dependence of the magnetization 
M  on the temperature (T), the external magnetic field (B) and the 

concentration of the negative bonds (x), respectively. 
In Fig. 2(a), M  curves are concave from the right which means that 

M  decays exponentially with increasing T.  The curves of M  are shifted up 

vertically when increasing B. M  is saturated as 6.1≤TkB  for FM and as 

6.2≤TkB  for J±  but for SG and AFM it decreases explicitly.  We observe that 
M  does not go to zero suddenly so, there is a second order phase transition. 

Fig. 2(b), shows that in SG and J± , M  increases logarithmically 

with B.  For FM case, 1=M  in 100 ≤≤ B  when 2and1=T  but for 3=T , 

M  increases logarithmically on the interval 0 < 2≤B  to saturate whatever  

B > 2. At 4=T , M  has a rapid growth in order to reach saturation as 

6.5≥B .  The external magnetic field (B) makes the system to be more ordered.  
For AFM case M  increases with B. 

The mean value of the absolute magnetization ( M ) of SG and J± , 

systems decreases with increasing the concentration of the negative bonds (x) as 
shown in Fig. 2(c). This decay of M  versus x is resulted by the frustration due to 

the high negativity. In the case of FM and AFM systems the concentration of the 
negative bonds (x) has two fixed values which are x = 0 and 1, respectively so M  

does not vary with x. The results are in full agreement with those of [15-21]. 
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Fig. (2): [(a), (b) and (c)]: The average of absolute magnetization ( M ) for SG, J± , 

FM and AFM versus temperature (T), the external magnetic field (B) and the 
concentration of negative bonds (x), respectively. 

 
     

The dependence of the magnetic susceptibility ( χ ) on the temperature 
and the external magnetic field are shown in Figures 3(a) and 3(b) respectively.  
The susceptibility curves in Fig. 3(a) have peaks for all the systems under study.  
For SG, J± , and FM there is a sharp peak at B = 0, but for AFM the χ -curve 
is concave and no peak. When B > 0 there are rounded peaks for all cases.  The 
systems undergo a second order phase transition and the critical temperatures 
are located at the maxima of the magnetic susceptibility.   
 

Fig. 3(b) shows many peaks for χ  as a function of B in J± and AFM 
cases. While for SG there are peaks at low B except at T = 0.  In FM 
case, χ decreases rapidly to zero. 
 

Figures 4(a) and 4(b) show the dependence of the specific heat (C) on 
the temperature and the external magnetic field, respectively.  In Fig. 4(a) the 
rounded peaks appear to explain the ability of the system to absorb heat.  We 
notice that the critical temperatures are close to each others in SG system but 
they are shifted.  In Fig. 4(b) the specific heat (C) has peaks for SG and J±  at 
low B and decrease after that. In FM and AFM cases C has many peaks. 
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Fig. (3): [(a) and (b)]: The magnetic susceptibility per spin ( χ ) for SG, J± , FM and 
AFM versus temperature (T) and the external magnetic field (B), 
respectively. 
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Fig. (4): [(a) and (b)]: The specific heat C for SG, J± , FM and AFM versus 
temperature (T ) and the external magnetic field (B), respectively. 
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The dependence of the internal energy on the temperature and the 
external magnetic field are shown in Figures 5(a) and 5(b), respectively.  The 
internal energy in Fig. 5(a) increases with increasing temperature for all cases.  
For FM and J± , ( )TE  is constant at low temperature then it increases 
after 5.2=T .  We see that the energy curves are continuous.  This means that 
the system undergoes a second order phase transition. 

Fig. 5(b) shows that E  decreases algebraically with increasing the 
external magnetic field B for SG, J±  and AFM but linearly for FM.  This 
means that, the discipline of the spins, in the lattice due to B, causes a decrease 
of internal energy E .     
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Fig. (5): [(a) and (b)]: The internal energy E  for SG, J± , FM and AFM versus 

temperature (T ) and the external magnetic field (B), respectively. 
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5. Conclusion: 

     In this paper, we applied Monte Carlo (MC) simulation to calculate 
four dynamic parameters. Namely, the mean value of the absolute 
magnetization ( M ), magnetic susceptibility per spin, ( χ ) the specific heat 

(C) and the internal energy ( E ). For two disordered; the spin glass (SG) and 
( J± ) model and two ordered; ferromagnetic (FM) and anti-ferromagnetic 
(AFM) Ising spin systems.  These computations are on a Sierpinski gasket 
placed in an external magnetic field (B).  The curves show that M  does not 

go to zero suddenly and E  is continuous so our model undergoes a second 
order phase transition.  The critical temperatures are located at maxima from the 
curves of both χ  and C.  Now we can conclude that: 

 
(I) The temperature (T) and the negativity concentration (x) lead to the increase 

in the randomness and the frustration. Therefore: 
 (a) M  decreases with T or x,   

 (b) E  increases with T,  
 (c) χ  and C increase with T until a certain temperature at which the 

system  undergoes a second order phase transition. 
 
(II) The spins are aligned with the field B, thereby: 

 (a) M  increases,  

 (b) E  decreases 
 (c) χ  and C have many peaks at low T because of the long relaxation. 
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