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Genetic Programming (GP) is used to construct a model that describes 
the dependency of the refractive index of a γ - irradiated optical GRIN fiber on 
both the wavelength and the dose of the γ – radiation. The GP based discovered 
function shows good agreement with the previously published experimental data 
carried at a certain wavelength for different γ radiation doses.  
 

1. Introduction: 

Most systems in the real world are essentially nonlinear and time-dependent 
[1]. Genetic Programming (GP), nowadays, proves a powerful technique for 
easy handling mathematical models, as there is no special knowledge necessary 
to search a solution, moreover it can cope with the changes of various 
conditions. GP is usually used to automatically build a model, e.g. a physical 
system, from its input and output data without any knowledge about the system 
itself. 

 
In a previous work, one of the authors [2] handled the same problem 

with Neural Networks (NN). The NN is a method for global modeling, but, 
unfortunately, it cannot give simple and elegant model representation. Moreover, 
NN is less powerful in revealing the system dynamic laws and is difficult to be 
integrated with the pre-discovered knowledge on nonlinear systems [3].  

 
On the other hand, GP modeling became one of the researcher's 

interests in modeling of high energy physics [4], and in Automated Re-Invention 
of Six Patented Optical Lens Systems [5].  On the top of this, GP have succeeded 
in the field of automatically defining functions [6]. Also, Oakley [7] used GP to 
evolve equation fitting of the chaotic time series produced by Mackey-Glass 
equations, and Iba et al [8] used GP for system identifications.  
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The effect of Gamma radiation has been previously studied [9], on the 
optical parameters of the GRIN optical fiber, with different doses in the range 
0.1 – 1.0 MGy. In that work, a modified Two-Pole Sellmeier Dispersion 
relation is adopted, fitted to the experimental data of the refractive index, and 
used to deduce a dose-dependent formula.  

 
Using the capability of the GP, refractive index can be modeled as a 

function of both the wavelength and the radiation dose. For this purpose, GP is 
fed with wavelengths and radiation doses while the output is the refractive 
index.  

 
The following sections provide a brief introduction to Two-Pole 

Sellmeier Dispersion formula, description of the selected GP structure, and 
finally results are discussed. 
 

2. Two-Pole SELLMEIER Dispersion Formula:  

An accurate dispersion formula (find the refractive index n) that can be 
applied over a wide range of wavelengths is Two-Pole Sellmeier Dispersion 
formula in the form [10] 

 
n2 (λ) = A + B λ2/ (λ2 -C) + D λ2/ (λ2 -E)                                      (1) 

 
λ is the wavelength measured in micrometers and A, B, C, D, and E are 

called the dispersion parameters of the fiber materials with E = 100 µm2. Values 
of those parameters [9], at different radiation doses, are given in Table 1, at 
25оC. 

 
Present proposal is to use GP for finding a function that represents the 

refractive index n2 (λ, γ) depending on wavelengths and radiation dose. It is 
expected that this function will prove better matching with experimental data. 

 
Table 1: Sellmeier Dispersion Parameters at Different Doses (MGy) [9] 
 
Dose  A B C D 
0.0 1.329670 0.829166 0.0110495 0.985996 
0.1 1.330103 0.829484 0.0110555 0.986084 
0.3026 1.330046 0.830828 0.0110611 0.986430 
0.462 1.331487 0.830612 0.0110605 0.986410 
0.805 1.332633 0.833233 0.0110883 0.987561 
1.0 1.336000 0.836167 0.0111100 0.987881 
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3. Modeling by GP: 

3.1. Model Building  

Building a prediction model using GP has many advantages: to handle 
mathematical model is easy, special knowledge is unnecessary to search a 
solution, and it can cope with the change of various conditions. 

 
GP handles tree-structured chromosome that represents the 

mathematical model of the system. As shown in Fig. (1), nodes involved in the 
tree-structured chromosome belong to two categories: one involves input data 
(leaves A and B), the other involves operators {+, *} (inner nodes of the tree). 

     
Fig. (1): Tree representation of the equation square root *(A, + (A, B)) i.e. (A*(A+B) 

 
3.2. Procedure 

GP [6, 11, 12] evolves a population of computer programs, which are 
possible solution to a given optimization problem, using the Darwinian 
principle of survival of the fittest. It uses biologically inspired operations like 
reproduction, crossover and mutation. Each program or individual on the 
population is generally represented as a tree composed of functions (operators) 
and data terminals (leaves) appropriate to the problem domain. The input set of 
functions and terminals have to satisfy the closure and sufficiency prosperities. 
The sufficiency closure property requires that the set of functions in and the set 
of terminals be able to express a solution of problem.  The function set may 
include standard arithmetic operators, logical operators, mathematical functions 
and specific functions. The terminal set usually consists of feature variables and 
constants. Each individual in the population is assigned a fitness value, which 
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quantifies how well it performs in the problem environment. The fitness value is 
computed by a problem dependent fitness function. 
 A typical implementation of GP involves the following steps: 
Step: 1 GP begins with a randomly generated population of solutions. 
Step: 2 A fitness value is assigned to each solution of the populations.  
Step: 3 A genetic operator is selected probabilistically as follows: 

 
Case i) If it is the reproduction operator; then an individual is selected (we use 

fitness proportion-based selection) from the current population and it is 
copied into the new population. Reproduction replicates the principle 
of natural selection and survival of the fittest. 

Case ii) If it is the crossover operator; two individuals are selected. We use 
tournament selection where number of individuals is taken randomly 
from the current population, and out of these, the best two individuals 
(in terms of fitness values) are chosen for the crossover operation. 
Then, we randomly select a sub-tree from each of the selected 
individuals and interchange these two sub-trees. These two offspring 
are included in the new population. Crossover plays an essential role in 
the evolutionary process. 

Case iii) If the selected operator is mutation; then a solution is (randomly) 
selected. Now, a sub-tree of the selected individual is randomly 
selected and replaced by a new randomly generated sub-tree. This 
mutated solution is allowed to survive in the new population. Mutation 
maintains diversity. 

Step: 4 Continue step: 3, when the new population renders solutions, this 
completes one generation. 

Step: 5 If GP will not converge; steps: 2 – 4 are repeated till a desired solution 
(may be 100% correct solution) is achieved. Otherwise, the GP 
operation is terminated after a predefined number of generations. 

 
4. Proposed GP 

The authors approach is to be adopted the experimental data [9] (the 
wavelengths λ and radiation dose values γ) to produce the refractive index for 
each case. Those are used as input variables to find the suitable function that 
can describe the experimental data relations. 

 
The fitness function is calculated as a negative value of the total 

absolute performance error of the discovered function on the experimental data 
set, i.e. a lower error must correspond to a higher fitness. The total performance 
error can be defined over all the experimental data (j=1 …, n) set as: 

                                   E = Σj │Xj –Yj│2                                                       (2) 
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Where n is the data size, Xj represents the experimental data and Yj represents 
the calculated data. The running process stops when the error is reduced to an 
acceptable level E = 0.00001. 
 

5. Results 

Our representing GP was run for 500 generations with a maximum 
population size of 1000. The operators (and selection probability) were: 
crossover probability as 0.9 and mutation probability as 0.01. The function set 
was {+,-, *, \, log, log2, cos, sin}, and the terminal set was {random constancy 
from 0 to 10, λ, γ}. The "full'' initialization method was used with an initial 
maximum depth of 27, and tournament selection with size 6.   

 

 
                            Fig. (2): Experimental and Trained Refractive Index  

 
The input data for training are the wavelengths λ = 300 – 700 nm with 

50 nm step, and radiation dose values γ = 0.0, 0.1, 0.3026 and 0.462 MGy.  
Each refractive index n corresponds to a certain wavelengths λ at different 
radiation doses γ are shown in Fig. (2). The discovered function (see Appendix) 
has been trained to associate the input patterns to the target output patterns for 
the above wavelengths.  
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After running the GP, the discovered function has been used to predict 

refractive index, corresponding to dose value γ= 0.802 and 1.0 MGy with the 
same λ= 300-700 nm. The experimental and predicts refractive indexes are 
illustrated in Fig. (3). 

 

 
Fig. (3): Experimental and Predicted Refractive Index 

 
6. Conclusions: 

Genetic programming has been used to model the Sellmeier Dispersion 
formula to depend on the wavelength and the radiation dose values. The 
discovered function shows an excellent agreement with the published 
experimental data [9]. Moreover, it is capable of predicting experimental data 
for Dispersion formula that are not used in the training session. Finally, this 
leads to conclude that GP can be applied effectively in the field of optics. 
 

Appendix : 

 The best atomic expression for representing the input data is: 
ƒ (λ, γ) = 
*(+(log(sin(log((/(log2(+(/(/(log(log(λ)),10),log(0.72349)),λ)),log2(/(log2(λ),(/(
log2(+(/(/(log(log((log2(λ),10))),10),log(0.72349)),λ)),log2(/(log2(λ),10))),10))
)),10)))),(cos(cos(sin(/(log2(+(/(/(log(log(λ)),10),log(sin(log((/(log2(+(/(/(log(lo
g(λ)),10),log(0.72349)),λ)),log2(/(log2(λ),(/(log2(+(/(/(log(log((log2(λ),10))),1
0),log(0.72349)),λ)),log2(/(log2(λ),10))),10)))),10))))),λ)),10)))),log(*(log2(0.8
5892),sin(0.72349))))),/( γ,*(*(*( λ,1.342)(10, γ))) 
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Where λ and γ are the wavelengths and the radiation dose values, respectively, 
the operator (O) is defined as O (A, B) ≡ A O B; for the used operators {+,-, *,\, 
log, log2, cos, sin} 
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