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In this work, the determined refractive indices of Carbon Dioxide gas in 
terms of both CO2- temperature and CO2-pressure were used to determine the 
transport phenomena of this gas with the atmosphere. The transport phenomena 
was indicated with the transport coefficient which means the viscosity 
coefficient η, the diffusion Coefficient D, and thermal conductivity χ of CO2. The 
values of these coefficients were determined and its behavior depending on both 
pressure and temperature of the investigated gas, CO2. The rate of change of 
these coefficients with respect to CO2-pressure at constant temperature of CO2, 
(dD/dp)T,λ, (dη/dp)T,λ, and (dχ/dp)T,λ were determined. In addition, the rate of 
change of the same coefficients with respect to CO2-temperature at constant 
CO2-pressure (dD/dT)p,λ, (dη/dT)p,λ, and (dχ/dT)p,λ were also determined. All of 
these parameters were investigated at selected laser wavelengths, 476, 488, 
502, and 514.5 nm. The graphs shown were at λ=488 nm as an example. 
 

1. Introduction: 

Several reports have addressed the issue of weather and mortality; 
extreme temperatures have been associated with increased daily mortality in 
numerous regions of the world [1,2]. Mortality has also been observed to 
increase during periods of three or more days of unusual temperatures during 
summer or winter, showing that temperature variability is an important 
determinant of human health effects [1,3]. It has been suggested that weather 
and temperature may modify the effects of air pollution on health both at high 
temperatures [4]. The Intergovernmental Panel on Climate Change (IPCC) [5] 
has projected that atmospheric concentrations of carbon dioxide could double in 
the next 50-100 years. A doubling of atmospheric concentrations of CO2 could 
result in an increase in average global surface air temperatures of 1-3°C because 



R. Ghazy, et al. 

 

296

of the greenhouse effect. In addition, because approximately 65% of 
atmospheric CO2 comes from combustion of fossil fuels, increasing 
concentrations of CO2 could also be accompanied by increasing concentrations 
of other air pollutants, particularly in large urban areas. An increase in surface 
air temperatures could accompany a greater frequency and duration of heat 
waves. The frequency of extremely hot days [5] in temperate climates 
approximately doubles for every 2-3°C increase in temperature during the 
average summer. Because heat waves often occur in large metropolitan areas 
during warm summer months, these large cities could experience an increase in 
the incidence of heat-related morbidity and mortality [6].  

 
The phenomena of diffusion, viscosity, and thermal conductivity are all 

physically similar in that they involve the transport of some physical property 
through the gas or liquid. Ordinary diffusion is the transfer of mass from one 
region to another because of a gradient in the concentration; viscosity is the 
transport of momentum through the gas because of a gradient in the velocity; 
and thermal conductivity is the transport of thermal energy resulting from the 
existence of thermal gradients in the gas. These properties are appropriately 
termed “transport phenomena.” We present here a description of these 
phenomena in terms of an ultra-simplified kinetic theory. Although very crude 
arguments are used throughout, it is nevertheless possible to obtain expressions, 
which describe the primary dependence of the transport coefficients upon the 
temperature and pressure and also upon the mass and size of the molecules in 
the gas [7]. 

 
Theory 

In any real gas the molecules moves in all directions and their velocities 
are distributed over a very wide range. When two molecules come close to one 
another they undergo very complex interactions, since real molecules attract one 
another at large distances and repel one another when the intermolecular 
separation is quite small. In spite of the complicated behavior of the molecules, 
surprisingly good descriptions of the transport properties may be obtained if we 
consider the following very unrealistic model for a gas containing N molecules 
per unit volume [7,8]:  

 
(i) The molecules are rigid, non-attracting spheres with diameter σ. 
(ii) All the molecules travel with the same speed; a reasonable choice for the 

molecular speed seems to be the arithmetic mean speed, Ω=(8kT/mπ)1/2, 
which may be calculated from the velocity distribution function. 

(iii) All the molecules travel in a direction parallel to one of the coordinate axes, 
that is, one-sixth of them are traveling in the (+x) direction one-sixth in the 
(-x)-direction, one-sixth in the (+y)-direction and so forth. 
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Let us begin by examining the dependence of the rate of collisions, Γ, 

upon the size, number density, and average speed of the molecules. Consider a 
single molecule, which is moving in the (+z) –direction, and let us inquire as to 
the frequency with which it collides with the other molecules in the gas. 
Certainly it will undergo no collisions with the other molecules moving in the 
(+z)-direction, since they are all moving with the same speed, Ω. With respect 
to those molecules moving in the (-z)-direction, however, it has a relative 
velocity of 2 Ω. This means that during a time interval Δt the molecules whose 
centers lie within a cylinder of cross-section πσ2 and length 2ΩΔt will undergo 
collisions with the molecule on which our attention has been focused (assuming 
that the latter is not deflected by the collisions).  

 
Since there are N molecules per unit volume and since one-sixth of them 

are moving in the (-z)-direction there will be ( Ω2

3
1 σπN ) collisions per unit time 

with this molecule. Similarly, the molecules moving in the (+z)-direction has a 
velocity of ( 2  Ω) relative to those molecules moving in the (+x)- direction; 

hence there are ( Ω2
6
2 σπN ) collisions per unit time with these molecules. The 

same result is obtained for molecules moving in the (-x), (-y) and (+y)-
directions, so that altogether there are [7]:  

 
                             Γ=ξ`Nπσ2Ω= ξprσ2(8π/mkT)1/2                                  (1) 

 
Collisions suffered by one molecule per unit time, where                    The 

second expression given in Eqn.1 for Γ was obtained by using pr= N kT (ideal 
gas law) and                     (If one were to assume that the molecular motion 
takes place in all directions and that the velocity distribution is Maxwellian, the 
same result is obtained, except that is, ξ`=1.414, as compared with the 
approximate 1.276). 
 

Since the gas we are considering is composed of impenetrable elastic 
spheres, a collision between two molecules is well defined. This makes it 
possible to introduce a quantity known as the mean free path, which is the 
average distance traversed by a molecule between two collisions. Thus a 
molecule moving with speed Ω, during a long time interval Δt (that is, a time 
interval long compared with the average time interval between collisions), will 
travel a distance ΩΔt; if the molecule suffers Γ collisions per unit time, during 
the long time interval Δt, the molecule will collide ΓΔt times. Hence, the 
average distance traversed by the molecule between two collisions, that is, the 
mean free path, is [9]: 

./8 πmkT=Ω

.2
3
2

3
1
+=′ξ
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Γ
Ω

=
ΓΔ
ΩΔ

=
t
tL                                                          (2) 

 
Substitution of Eqn.1 into Eqn.2 gives [9]: 
 

L=(1/ξ`N πσ2)=(kT/ξ`pr πσ2)                                    (3) 
 

The second form arising from the application of the ideal gas law. It 
should be noted that at constant density the mean free path is temperature 
independent; and at constant pressure it is directly proportional to the 
temperature[10]. 

 
The quantity πσ2, which appears in the denominator of the expression for 

the mean free path L, is the collision cross-section for the rigid spherical 
molecule. This quantity, which appears in all the expressions for the transport 
coefficient, is the cross- section of the imaginary sphere surrounding a molecule 
into which the center of another molecule cannot penetrate. 

 
In this simple kinetic theory the transport coefficients can be expressed in 

terms of the quantity L. Consequently viscosity, diffusion, and thermal 
conductivity are sometimes referred to as mean free path phenomena.      
However, in the more rigorous approach for real gases it is found that the mean 
free path L does not appear naturally in the derivation of the transport 
properties. 
 

The amount of a quantity passing in a unit time through a surface is 
called the flux (flow) of this quantity. The flux is a scalar algebraic quantity. 
The sign of the flux is determined by the choice of a positive direction. The 
positive direction is usually chosen arbitrary [10]. 

 
The coefficient of ordinary diffusion is the flux of mass of species i due 

to a unit gradient in the mass density of i; the coefficient of viscosity is the flux 
of the y-component of the momentum resulting from a unit gradient in the y-
component of the velocity; and the coefficient of thermal conductivity is the 
energy flux due to a unit temperature gradient. In all three cases the fluxes are in 
the same direction as the gradients, and this direction defines the coordinate z. 
The flux of mass of species i is denoted by jiz. The flux in the (z)-direction of 
the y-component of the momentum is Pyz = Pzy, where p is the pressure tensor. 
The flux of energy is denoted by qz. Because of their physical similarity these 
three phenomena may be described by a common mathematical formalism. We 
therefore use the symbol Ψp to represent the z-component of any one of the 
three fluxes; the fluxes of mass of species i, the flux of the momentum in the 
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(y)-direction, and the flux of energy. The symbol P represents correspondingly 
the mass density of species i, the momentum density, or the energy density. Let 
us consider the net flux in the (+z)-direction of the property associated with P 
(that is, the mass density of molecules of species i, the momentum density in the 
y-direction, or the energy density) through the plane O. Molecules approaching 
O from below have suffered their last collision at a distance L below plane O. 
That is, they have come from plane A and have the values of the properties PA 
characteristic of that location. Similarly, molecules arriving at plane O from 
above have come from plane B, and possess the values of properties PB, 
characteristic of that plane. If the property P has the value Po at plane O, as 
shown in Fig.(1), then one may write [7]: 

 
)dz/dP(LPP         );dz/dP(LPP oBoA +=−=           (4) 

 
To the approximation that the gradient in the property P is constant over 

distances of the order of magnitude of a mean free path. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. (1) : Molecular property gradient 

In the case of diffusion, P = Ni the concentration of species i. The value 
of Ni is different at each of the planes A, O, B, and a transfer of mass results. To 
consider viscosity, we imagine that the molecules at the plane A are moving in 
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the (-y)-direction, that those at plane O are stationary, and that those at plane B 
are moving in the (+y)-direction.  

 
Hence there is established a gradient in the y-component of the 

momentum, P = Nmvy. In the discussion of thermal conductivity, the planes A, 
O, and B are taken to be at different temperatures, and the property P is taken to 
be the energy density NcvT (where cv is the specific heat per molecule). 

 

The amount of the property P which crosses plane O per unit area per unit 
time (that is, the flux of P) from below is (1/6) ΩPA   the factor 1/6 accounting  
for  the fact  that only one-sixth  of  the   molecules at plane A move in the (+z)-
direction. Similarly the downward flux of P is (1/6)ΩPB. Hence the net flux, ΨP, 
of the property P in the (+z)-direction across plane O is [7, 11] 

      ( ) ⎟
⎠
⎞⎜

⎝
⎛ξ−=Ω=−Ω=Ψ

πσ
π−

dz
dP

Nm
mkT

dz
dP

3
1

BA6
1

P 2L)PP(              (5)   

 

In which the factor ξ is (2/3) when ξ`is taken to be           Specifically; 

dz
dN

3
1

izN
i

i
Lj Ω−==Ψ                                   (6) 

dz
dv

3
1

yzNm
y

y
LNmp Ω−==Ψ υ                         (7) 

dz
dT

v3
1

zTNc LNcq Ω−==Ψ
ν

                             (8) 
 

These are the fluxes of mass of species i, momentum, and energy, respectively.  
Where;  
               Ω: is the arithmetic mean speed; 
               L: is the mean free path; 
               N: is the number of molecule per unit volume; and 
               Cv: is the specific heat per molecule. 
 

The transport coefficients are defined in terms of the fluxes as follow [7,10,11];   

dz
dN

izN
i

i
Dj −==Ψ                                              (9) 

dz
dV

yzNmv
y

y
P η−==Ψ                                   (10) 

dz
dT

zTNc q χ−==Ψ
υ

                                         (11) 

where; 
         D: is the coefficient of diffusion; 
          η: is the coefficient of viscosity; and  
          χ: is the coefficient of thermal conductivity.  
 

.2



301                                                       Egypt. J. Solids, Vol. (31), No. (1), (2008)  

 

When these three equations are compared with the three preceding equations, 
we find that [7,12,13]: 
 

υρ
χ

ρπσ
πξ c

mmkTLD ==Ω= 1
23

1                (12) 

D2
mkTLNm3

1 ρ=
πσ
πξ=Ω=η                    (13) 

m
c

m
c

2
mkTLvNc3

1 ηυ=υ
πσ
πξ=Ω=χ          (14) 

 

In which ρ=Nm=pm/kT is the density of the gas. The application of the rigorous 
kinetic theory to the rigid-sphere model gives exactly the above form for the 
transport coefficients. The rigorous theory for rigid-sphere molecules, however, 
predicts that the values of ξ are different for the various fluxes as follow [7]; 
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         (15) 

 
Inserting these values into Eqns.12, 13, and 14 we may rewrite the expressions 
for the transport coefficients in practical units [7]: 

 

2

3 /
3

106280.2
σrP

MTD
−

×=   cm2/sec (16)  

2
MT5

106693.2
σ

−
×=η                      gm/  cm sec         (17) 

η=×=χ
σ

−

M
R

4
15M/T4

2109891.1     cal/cm deg sec   (18) 

where; 
            M: molecular weight; 
            T: temperature in K; 
            Pr: pressure in atmospheres; and  
            σ : molecular diameter in Ao. 
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2. Experiment: 

The transport parameters (the diffusion coefficient D, the viscosity 
coefficient η and the thermal conductivity coefficient χ) are studied as a 
function of gas pressure p and gas temperature T by the experimental technique 
described in details in literature [14]. 
 

3. Results and Discussion: 

3.1:. Pressure Dependence 

3.1.2. Diffusion Coefficient DT,λ(P) 

Figure (2) shows the dependence of the diffusion Coefficient D of CO2 
gas on its pressure pr at constant temperature T and the incidence laser light 
wavelength λ.  

 
From that figure, the diffusion coefficient D of CO2 gas was inversely 

proportional to its pressure pr. This result also predicted by the inverse relation 
between the diffusion coefficient D and the pressure pr which we have 
mentioned Eqn.16. 

 
At constant temperature T, by increasing the pressure pr, the mean free 

path L of the gas decreases according to equation(2). Also, the diffusion 
coefficient D was directly proportional to the mean free path L, so that, the 
diffusion coefficient of carbon dioxide gas decreases by increasing the pressure 
pr at constant temperature T.  

 
Rate of change of diffusion coefficient D of CO2-gas was estimated to be 

(dD/dpr)T,λ within CO2-pressure ranging from 60-90 cm.Hg and CO2-
temperature was fixed at T = 308, 313, 318, 323, 328, 333, 338, 343, 348, 353, 
and 358K. The incident laser wavelength λ was selected to be λ=476, 488, 502, 
and 514.5 nm. The values of (dD/dpr)T,λ were given in Table (1). 
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Fig. (2): Pressure dependence of CO2- diffusion coefficient at constant CO2-

temperature and laser wavelength, λ=488 nm. 
 
Table (1): Rate of change of CO2-diffusion coefficient with respect to CO2-

pressure(60-90 cm.Hg) at constant CO2-temperature and laser 
wavelength(λ=488 nm). 

 

Temperature 
T, K 

(dD/dpr)T,476  
x-10-3 

(dD/dpr)T,488 
x-10-3 

(dD/dpr)T,502 
x-10-3 

(dD/dpr)T,514.5 
x-10-3 

308 1.42 1.43 1.42 1.42 
313 1.45 1.46 1.44 1.45 
318 1.47 1.48 1.48 1.47 
323 1.49 1.51 1.50 1.50 

328 1.51 1.54 1.52 1.53 
333 1.53 1.58 1.55 1.56 
338 1.55 1.60 1.58 1.59 
343 1.58 1.63 1.62 1.63 
348 1.63 1.64 1.65 1.66 
353 1.65 1.66 1.68 1.69 
358 1.68 1.70 1.71 1.71 
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3.2. Viscosity Coefficient ηT, λ(pr): 

Figure (3) shows the dependence of the viscosity coefficient η of carbon 
dioxide gas on its pressure pr at constant temperature T. From that figure one 
could deduce that, the viscosity coefficient η of CO2-gas has a steady decrease 
with CO2-pressure for T=308, 313, 318K while for temperature T>318 K was a 
wavy variation. The rate of change (dη/dpr)T,λ was given in Table (2). Although 
Eqn.17 shows that the coefficient of viscosity η does not depend on the pressure 
pr while the temperature T of the gas is constant. Among the quantities in that 
equation, only the number of molecules in a unit volume N and the mean free 
path L depend on the pressure pr. But the number of molecules in a unit volume 
N was directly proportional to the pressure pr and the mean free path L is 
inversely proportional to the pressure pr of the gas. This leads, practically, to the 
important conclusion that the viscosity coefficient η of gases depends slightly 
on the pressure pr of the gas. 
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Fig. (3): Pressure dependence of CO2- viscosity coefficient at constant CO2-temperature 

and laser wavelength, λ=488 nm. 
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Table (2): Rate of change of CO2-viscosity coefficient with respect to CO2-
pressure(60-90 cm.Hg) at constant CO2-temperature and laser 
wavelength. 

Temperature
K 

(dη/dpr)T,476  
x-10-8 

(dη/dpr)T,488 
x-10-7 

(dη/dpr)T,502 
x-10-8 

(dη/dpr)T,514.5 
x-10-9 

308 2.89 1.31 2.16 3.67 
313 4.46 1.28 2.37 4.87 
318 6.09 1.24 3.35 6.45 
323 9.15 1.05 4.63 7.84 
328 12.23 0.98 4.44 7.98 
333 8.34 1.15 5.24 8.88 
338 3.72 1.39 13.19 22.35 
343 4.13 1.25 12.62 21.38 
348 4.53 1.34 11.05 18.71 
353 3.97 0.48 5.53 9.37 
358 1.64 0.18 3.67 6.22 

 
3.3. Thermal Conductivity χT,λ(Pr) 

Figure (4) shows the dependence of the thermal conductivity coefficient χ 
of CO2-gas on the pressure pr at constant temperature T. From those figure, the 
thermal conductivity coefficient χ of CO2 -gas depends slowly on the pressure pr 
while the temperature T of the gas was constant. The rate of change of CO2-
thermal conductivity with respect to CO2-pressure (dχ/dPr)T,λ was given in Table 
(3). From Eqn.18 it could be predicted how the coefficient of thermal 
conductivity χ should not depend on the pressure pr at constant gas temperature 
T in case of the molecular diameter σ was constant.  
 

Like the viscosity coefficient, among the quantities in Eqn.18, only the 
number of molecules in a unit volume N and the mean free path L depend on 
the pressure pr. But the first of these quantities was directly proportional and the 
second was inversely proportional to the pressure pr of the gas. As a practical 
conclusion the coefficient of thermal conductivity χ of gases has a weak 
dependence on the pressure pr of the gas at constant temperature T.  
This holds only as long as L remains small in comparison with the size of the 
gap through which the gas was flowing (in comparison with the diameter of the 
gas sample cell). Regarding less of this condition, the thermal conductivity 
coefficient being to depend more and more on the pressure, diminishing when 
the latter drops. 
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Fig. (4): Pressure dependence of CO2-thermal conductivity coefficient at constant CO2-

temperature and laser wavelength, λ=488 nm. 
 
Table (3): Rate of change of CO2-thermal conductivity with respect to CO2-

pressure(60-90 cm.Hg) at constant CO2-temperature and laser 
wavelength. 

 

Temperature 
K 

(dχ/dpr)T,476 
x-10-8 

(dχ/dpr)T,488 
x-10-8 

(dχ/dpr)T,502
x-10-8 

(dχ/dpr)T,514.5 
x-10-8 

308 0.489 0.992 0.367 1.01 
313 0.876 1.25 0.268 1.03 
318 1.03 1.48 0.167 1.05 
323 1.55 1.62 0.785 0.970 
328 2.07 1.05 0.430 0.0611 
333 1.41 1.37 0.888 0.475 
338 6.30 2.12 3.234 0.844 
343 0.70 1.12 2.14 1.95 
348 0.046 1.17 1.87 1.06 
353 1.39 4.78 0.937 1.31 
358 0.278 0.227 0.622 0.751 
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4. Temperature Dependence 

4.1. Diffusion Coefficient Dp,λ(T) 

The dependence of the diffusion coefficient D of CO2-gas on its 
temperature T at constant CO2-pressure pr and wavelength λ was shown in 
Fig.(5). The temperature of CO2-gas with the sample’s cell was changing 
between 308 and 358K where its pressure was fixed at pr=60, 65, 70, 76, 80, 85, 
90 cm.Hg. The laser wavelength was selected to be with the same mentioned 
values. 

 
It was noted from those figure that, the diffusion coefficient D of CO2-gas 

was directly proportional to the temperature T at constant pressure pr and 
wavelength λ. Also, it was predicted from Eqn.16 which showed a direct 
relation between diffusion coefficient D and temperature T. 

 
It could be conclude that at constant pressure pr, the mean free path L of 

the gas increases by increasing its temperature T, from the same equation, and 
the diffusion coefficient D was directly proportional to the mean free path L, so 
that, the diffusion coefficient D of carbon dioxide gas increases by increasing 
the temperature T at constant pressure pr.  
Table (4) gave the estimated values of (dD/dT)p,λ on which were obtained with 
the aid of Fig.(5). 
 

4.2. Viscosity Coefficient ηp,λ(T) 

The dependence of the viscosity coefficient η of CO2-gas on the 
temperature T at constant pressure pr was shown graphically in Fig.(6). From 
which the viscosity coefficient η of CO2 increases by increasing its temperature 
T. The obtained experimental results were in a good agreement with the Eqn.17 
from which the viscosity coefficient η was obtained. 

 
Equation 17 included the mean velocity of the thermal movements of the 

molecules Ω, which depends on the temperature T, proportional to its square 
root. Hence, the viscosity coefficient should also grow with increasing 
temperature T in proportional to (T)1/2 which was acceptable theoretically. Also, 
by increasing the temperature T the mean free path L increases, this also leads 
the viscosity coefficient η of the carbon dioxide gas increases by increasing its 
temperature T.  

 
The rate of change of viscosity coefficient η of the carbon dioxide gas, 

(dη/dT)p,λ, was evaluated from Fig.(5) with the values given in Table (5) for 
selected laser wavelength. 
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Fig. (5): Temperature dependence of CO2- diffusion coefficient at constant CO2-

pressure and laser wavelength, λ=488 nm. 
 
 
Table (4): Rate of change of CO2-diffusion coefficient with respect to CO2-

temperature(308- 358 K) at constant CO2-pressure and laser 
wavelength. 

 

Pressure, 
cm.Hg 

(dD/dT)p,476
x-10-3 

(dD/dT)p,488
x-10-3 

(dD/dT)p,502  
x-10-3 

(dD/dT)p,514.5
x-10-3 

60 1.65 1.59 1.71 1.85 

65 1.54 1.47 1.58 1.68 

70 1.42 1.36 1.48 1.56 

76 1.33 1.26 1.37 1.44 

80 1.27 1.20 1.29 1.38 

85 1.19 1.16 1.20 1.31 

90 1.11 1.08 1.12 1.22 
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Fig. (6): Temperature dependence of CO2- viscosity coefficient at constant CO2-
pressure and laser wavelength, λ=488 nm. 

 
 
Table (5): Rate of change of CO2-viscosity coefficient with respect to CO2-

temperature (308- 358 K) at constant CO2-pressure and laser 
wavelength. 

 

Pressure, 
cm.Hg 

(dη/dT)p,476  
x10-7 

(dη/dT)p,488  
x10-7 

(dη/dT)p,502  
x10-7 

(dη/dT)p,514.5
x10-7  

60 5.21 4.53 5.46 6.76 

65 5.38 4.47 5.47 6.39 

70 5.34 4.54 5.67 6.45 

76 5.61 4.62 5.66 6.49 

80 5.69 4.61 5.52 6.70 

85 5.61 4.96 5.30 6.74 

90 5.60 4.85 5.11 6.53 
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4.3. Thermal Conductivity χp,λ(T) 

The thermal conductivity coefficient χ of carbon dioxide CO2-gas as a 
function of the temperature T at constant pressure pr and constant wavelength λ 
was shown in Fig. (7). From that figure, its noted that the thermal conductivity 
coefficient χ of carbon dioxide gas increases by increasing CO2 temperature T 
while the pressure pr of the gas was constant in agreement with the Eqn.18 of 
the thermal conductivity coefficient χ. 

 
Since Eqn.18 includes the mean velocity of the thermal movements of the 

molecules Ω, which depends on the temperature T, and proportional to its 
square root. Therefore, the thermal conductivity coefficient χ should also 
increase with increasing temperature T. 

 
In addition, by increasing the temperature T the mean free path L will 

increase, which leads to the thermal conductivity coefficient χ of gases increases 
by increasing its temperature T. This rate of increment (dχ/dT)p,λ was calculated 
from Fig.(7) with the values given in Table (6). 
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Fig. (7): Temperature dependence of CO2- thermal conductivity coefficient at constant 

CO2-pressure and laser wavelength, λ=488 nm. 
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5. Conclusion: 

Table 7 shows some of the evaluated values of the refractive index and 
the transport coefficients for carbon dioxide (CO2) gas compared with literature 
values [15, 16]. 

 
From this table, one can note that the refractive index measurement was 

in a good agreement with literature value. The value of the transport coefficients 
gives an indication of the inadequacy of the rigid sphere model. This result 
gives only the approximate pressure and temperature dependence for real CO2 
gas, since the true temperature dependence must includes the effect of the 
interaction, which takes place between real molecules.   
 

Table (6): Rate of change of CO2-thermal conductivity coefficient with respect 
to CO2-temperature(308- 358 K) at constant CO2-pressure and laser 
wavelength. 

 

Pressure, 
cm.Hg 

(dχ/dT)p,476  
x10-8 

(dχ/dT)p,488  
x10-8 

(dχ/dT)p,502  
x10-8 

(dχ/dT)p,514.5  
x10-7 

60 8.82 7.67 9.24 1.14 
65 9.10 7.57 9.26 1.08 
70 9.04 7.68 9.60 1.09 
76 9.50 7.83 9.58 1.10 
80 9.64 7.81 9.35 1.13 
85 9.50 8.39 8.97 1.14 
90 9.49 8.21 8.65 1.11 

 
Table (7): Comparison between the measured and literature values of refractive 

index and transport coefficients of Carbon Dioxide gas. 
 

Parameter Measured value Literature value[21] 

Refractive index 
1.000406 

T= 308 K,  pr=1 atm 
λ= 488 nm 

1.000449 to 1.000450 
T=273 K, pr =1 atm 

white light 
Diffusion coefficient 

cm2/sec 
0.275 

T=308 K,  pr =1 atm 
0.202 

T=307.3 K, pr =1 atm 
Viscosity coefficient 

gm/cm.sec 
33.9 x 10-5 

T=308 K,   pr =1 atm 
15.6 x 10-5 

T=308 K,   pr=1 atm 
Thermal conductivity 

Cal/deg.cm.sec 
67.6 x 10-6 

T=308 K,  pr=1 atm 
41.74 x 10-6 

T=310.8 K,  pr=1 atm 
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