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In this work a theoretical model treating the optical bistability in a two 

state dissipative atomic medium inside a Fabry-Perot cavity is presented. The 
model is based on a semiclassical point of view to explain the field-matter 
interaction. The atoms of the medium are described by the "quantum 
polarization equation of motion" while the field is described by the "classical 
Maxwell's field equations". Applying the boundary conditions to the fields 
inside the Fabry-Perot cavity, the occurrence of optical bistability is deduced 
between the incident field intensity and both the intracavity and transmitted 
field intensities. Also the effect of building standing and nonstanding waves 
inside the cavity on bistability is discussed.     
                
1. Introduction: 

An optical system which exhibits two steady transmission states for the 
same input intensity is said to be optically bistable [1]. Nonlinearity and 
feedback are the main features required for making a bistable device. The 
optical bistability (OB) can be extrinsic if an external feedback is present, as in 
experiments with cavities, or intrinsic when it occurs at the atomic scale [2]. 
Bistable devices are important in the digital circuits and in communications, 
signal processing and computing. They are used as switches, logic gates and 
memory elements (flip-flops) [3]. There is an increasing interest in new bistable 
systems with possible applications in optical network technology [4]. Bistable 
systems such as electro-optical, acoustic-optical, magneto-optical hybrid 
bistable systems and electromagnetically induced systems have been 
investigated in many works [1]. 

  
Many researches dealing with nonlinear optics studied the occurrence 

of (OB) through different view points. The semiclassical mean field of the (OB) 
has been developed [5-7]. The quantum statistical mean field theory, the 
numerical analysis in Fabry-Perot cavity, and the dynamics of a bistable system 

 



M. M. El-Nicklawy et al. 264

have been studied in [8-10], [11,12], and [5,6,13] respectively. The (OB) was 
handled through a pure interferometric, and semiclassical view points [14-16]. 
A nonlinear classical differential equation of motion and Maxwell's field 
equations were considered to illustrate the field-matter interaction [16]. The 
effect of the spectral profile of the incident field and its halfwidth on bistability 
was studied [15, 16]. 

 

In the present work the (OB) is treated semiclassically through the 
quantum polarization equation of motion [17] and Maxwell's field equations. In 
the quantum polarization equation of motion the number of dipoles induced in 
the medium by the action of a given deriving field is considered to be the 
population difference between the two states of the medium as a quantum 
mechanical correction to the classical polarization equation of motion. For a 
dissipative medium inside a Fabty-Perot cavity the nonlinearity results in the 
absorption coefficient of the medium while the feed-back results from the 
boundary conditions of the cavity. We will see that the field dependence of the 
atomic population difference plays the most important role in the appearance of 
nonlinearity in the absorption coefficient.   
 
2. Theory. 

2.1. The quantum polarization equation of motion. 

The quantum polarization equation of motion describing an electron 
oscillator with damping in a two state atomic system exerted by an external 
electric field is given by [17]: 
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where: 
 p    is the polarization density as a function of space z and time t, 
β   is a damping factor, 

aω  is the atomic resonance frequency, 
e and m are the charge and mass of the electron respectively and    
E   is the deriving field. 
 

The response of the atomic polarization density p  in Eqn. (1) is 

proportional to the population difference density 21 NNN −=Δ  between the 
populations (atoms per unit volume) in the lower and upper levels of the atomic 
transition. The number  is not actually constant but depends on the field 
intensity and on the period of interaction between the deriving field, and the 
atoms of the medium. 

NΔ
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If an external monochromatic field of the form  
exerts a two state medium, in which the upper state is initially empty, the atomic 
population  of the upper state will be given by [18]: 
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 where: 
N    is the total atomic population, equal to 21 NN +  for the two state system, 

21A   is the spontaneous emission rate of an atom, 

21R   is the stimulated emission rate of an atom which depends on the field 
intensity, 

σ     is the atomic absorption cross-section, 
Φ   is the photon flux (photons/ ) associated with the light field of 

complex amplitude 
sec.2cm

)(zε  and 
μ   is the projection of the dipole moment in the direction of  . ),( tzE
From equation (2) the atomic population difference 21 NNN −=Δ  is given 
by: 

21 NNN −=Δ  
       22NN −=

      [ ]tRAeRA
RA

N )2(
2121

21212
2 2121

+−+
+

=                     (4) 

 

For the field )( 0)(),( zktieztzE −−= ωε , taking NΔ  from Eqn. (4) for a steady 

state, i.e. 
2121

21

2RA
NAN
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=Δ , and substituting in Eqn. (1), we have:   
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The steady state solution of Eqn. (5) is given by: 
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The induced polarization and the deriving field are out of phase by a value θ , 
given by : 
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2.2. The field equations inside a Fabry-Perot cavity. 

Setting now the medium inside a Fabry-Perot cavity, assuming that the 
complex amplitude of the field )(zε  varies slowly compared with the carrier 

wave , this justifies  inequalities such as [18]: 
)( 0zktie −− ω

 
)(/)( zkdzzd εε <<     and     dzzdkdzzd /)(/)( 22 εε <<  

 
Considering these inequalities in the Maxwell's wave equation, the forward and 
the backward field equations inside the cavity can be given by:  
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Subjected to the following boundary conditions 

EF(0,t)= T EIn(0,t)+ R EB(0,t)                                  (12)          B

ET (L,t) =  T EF (L,t)                                                  (13) 
 EB (L,t) =  B R EF (L,t)                                                  (14)                     

 
where:  

)( 0)(),( zkti
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))(( 0)(),( zLkti
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and L is the thickness of the medium or the separation between the two parallel 
mirrors of the cavity. The subscripts F and B refer to the forward and backward 
fields inside the cavity, respectively. The manipulation of Eqs. (10, 15 and 17) 
gives the following differential equation:   
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Similarly from Eqs.(11), (16) and (18), we get: 
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Eqn.(7) can be rewritten for the forward and backward polarization amplitudes 
through Eqn.(3) as: 
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To solve the forward field Eqn. (19) through Eqn. (21), we first neglect the 
nonlinear dependence of )(zFρ  on the field. Thus we get, 
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The solution of this equation is given by: 
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Substituting for 2)(zFε  from Eqn. (25) into Eqn. (19) after substituting for 

)(zFρ , we have, 
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where 
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0
sin

∈
Γ

=
θωα  is the linear absorption coefficient of the medium. 

The solution of Eqn. (26) is given by: 
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Therefore, the forward field , given by Eqn. (15), can be written as: ),( tzEF
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Here Fα  represents the absorption coefficient of the medium as a 
nonlinear function of the field. It varies with the distance that the field travels 
through the medium. This variation comes from the location variation of the 
field. On the other hand  represents the propagation constant of the forward 
field. It varies also nonlinearly with the field. In the present work we will take 
only into consideration the nonlinearity coming from the absorption coefficient 

FK

Fα  and ignore the nonlinearity in . FK
  
Since a sufficient number of reflected beams inside the cavity is required 

to obtain a feedback sufficient for creating bistability, the absorption coefficient 
should be sufficiently low. For instance let us consider a medium of absorption 
coefficient α  and thickness L, placed inside a Fabry-Perot cavity its both 
mirrors are having a reflection coefficient R. Then, the number of effective 
reflected beams will be [ ]Lα−−Re1/1 . If R = 0.99 then, Lα  should be equal to 
0.095 to create ten reflected beams. Under this consideration, referring to  
Eqn. (28) and taking 0α z being very small, the approximation 
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Using the Taylor series expansion 
2
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 For z = 0, we have: 
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This form corresponds to the known formula representing the absorption 
coefficient of a nonlinear medium inside a cavity [14]. 
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where  is the intracavity intensity and  is the saturation intensity of the 
atomic medium inside the cavity. 
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Since we are interested only in studying the dependence of the absorption 
coefficient on the field intensity, it is desirable to take the average value of  
Eqn. (33) over the cavity length. 
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In the same manner to the previous steps, Eqn. (20) can be solved to obtain the 
backward field function in the form: 

)).((2
).(

)(),( zLKti
zL

BB
B

B

eeLtzE −−−
−

−
= ω

α

ε                 (39)  
where           

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

+

−
=

−

2

21

2

21

)(

)(21

)(2

ln
)(

1
0

L
A

L
A

e

zL
B

B
zL

B

εη

εη

α

α

               (40)                                                

BB kkK += 0                                                        (41) 
and 
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Applying now the boundary conditions (12-14) on the forward and backward 
fields (30) and (39) respectively, we get the following expression for the 
transmitted field from the cavity : ),( tLET
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For high value of R, we can assume that ααα == BF  and KKK BF ==  
[16]. Therefore, the intensity of the field transmitted from the cavity is given by: 
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This is the "Airy formula", where  
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and 2),0( tEI InIn =  is the intensity of the field incident on the cavity. The 

resultant field amplitude inside the cavity due to the forward field 

 and the backward field   is given by: 
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where φ  is the phase gained by reflection of the backward wave with respect to 
the forward wave. Thus, the intracavity intensity is given by:  
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Eqn. (49) shows that the intracavity intensity is a sum of the intensities of 

the forward and backward fields plus a third term arising from the interference 
between the forward and backward fields. The presence of the third term 
induces a standing wave inside the cavity. 

 
The standing wave can be eliminated when the phase φ   gained by 

reflection of the backward wave with respect to the forward wave takes 
values 2/)12( π−m , where m is an integer number. In this case we get a 
nonstanding wave inside the cavity with intensity given by the sum of the first 
two terms of Eqn. (49).  

 
The intensity inside the cavity shows fluctuations due to )(2cos zLK − . 

Since the maximum intensity is the dominant factor affecting the bistability 
phenomena we will take =1. )(2cos zLK −
Therefore, Eqn. (49) can be rewritten as: 
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Since the present work deals with the study of the bistability phenomena arisen 
in the output intensity, the average intensity inside the cavity  has to be 

considered. This gives at resonance, i.e. 
avgCI

πδ n2=  with n an integer number, the 
following expression: 
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2.3. Computation. 

From Eqns. (38, 44 and 51), assuming a value for L0α  and given values 
for , corresponding values for are calculated from Eqn. (51). SC II / SIn II /
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Substituting in Eqn. (44), after dividing its both sides by , for the values of 
 and the corresponding values of ,  can be calculated. The 

calculations are carried out for R=0.99 and 

SI
SC II / SIn II / ST II /

L0α = 0.1, 0.2, 0.3, 0.4, and 0.5. 
 takes values from 0 to 50 in steps of 0.05 leading to variation in the 

nonlinear absorption coefficient 
SC II /

α  from 0α  to 0.02 0α . Figures (1 to 6) show 
the behavior of the relative intensities of  against , and  
against   for , respectively. 

SIn II / SC II / SIn II /

ST II / ππ=φ and 2/,0
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Fig. (3): The dependence of  on  calculated in case of nonstanding sIn II / sc II /  

wave for  and different values of 99.0=R Loα  and 2/πϕ = . 
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Fig.(6): The dependence of  on  calculated in the case of standing   sIin II / sT II /      

               wave  for  and  different values of 99.0=R Loα , )( πϕ = . 
 
 
2.4. Discussion: 

Equation (38) shows that the absorption coefficient of the medium is a 
nonlinear function of the intracavity intensity. This justifies the first factor 
required for initiating bistability. This nonlinearity comes from the dependence 
of the absorption coefficient, in our case, on the population difference which 
varies nonlinearly with the deriving field. The boundary conditions (12-14) 
provide the feedback, i.e. the second factor for initiating bistability. 

 
In both cases, standing wave and nonstanding wave, the bistability 

phenomena appear in both behaviors of  against  and  against , as 
shown in Figs.(1 to 6). The phase 

InI CI InI TI
φ  gained by reflection of the backward field 

with respect to the forward field inside the cavity plays an important role in 
defining the deriving intensity  required to initiate bistability. The input 
intensity required to initiate bistability, for a given value of 

InI
L0α , has a 

minimum value when πφ m2= . There is an interconnection between R , φ ,  InI
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and Lα  leading, under certain conditions, to the occurrence of bistability. So 
for instance small values of  leads to a small  value which in turn leads to 
a weak dependence of 

InI CI
α  on . On the other hand an increase of  over a 

certain value leads to an increase of  such that the nonlinear absorption 

coefficient 

CI InI

CI
α  tends to be weak dependent on  and thus to interrupt the 

bistability. The increase in the absorptivity 
CI

Lα  implies an increase in the input 
intensity to initiate bistability. Therefore, in treatment of Fabry-Perot bistability, 
it is convenient to work in the limit of small optical absorptivity Lα  and small 
mirror transmission T.  
 

4. Conclusion: 

In both cases of building standing and nonstanding waves inside the 
cavity, the bistability phenomena appear between the incident and transmitted 
intensities. The phase gained by reflection plays an important role in defining 
the deriving field intensity required to initiate bistability. Increasing both the 
absorptivity of the medium and transmission of the cavity mirrors implies an 
increase in the input intensity to initiate bistability.   
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