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In the presence of the intense laser field, the high-order harmonic 
generation spectrum in the one-dimensional crystals has been presented for the 
laser wavelength λ= 780 nm. The calculated emission strength for three types of 
crystals (insulator, metal, and semiconductor) are compared. The 
semiconductor medium and/or metallic crystal are found to be more efficient 
than insulator. 
 

1. Introduction: 

High-order harmonic generation is a promising technique for obtaining 
new sources of coherent radiation because not only does it provide a probe for 
investigating the interaction mechanism of the solid system with an intense laser 
field, but it also has the potential to become the future coherent XUV source. 

 
Sacks and Szoke [1] have studied electron scattering from a piecewise-

constant potential in an intense electromagnetic field, and they reported the 
generation of harmonics and evaluated the rates of high harmonic production 
for an arbitrary order of perturbation theory. Also, the multi-harmonic 
generation and multi-photon electron emission at a metal surface have been 
studied by Mishra and Gresten [2,3] on the basis of free electron theory of 
Sommerfeld.  

 
Theoretical study of the high harmonic generation in crystalline solid by 

non-perturbative method based on the numerical computation of solutions of the 
Schrodinger equation is given by Plaja et al. [4]. Also, the mechanisms to 
enhance harmonic generation without excessive excitation of electrons to the 
conduction band are given. Huller et al. [5] investigated high-order harmonic 
generation from a thin solid layer illuminated by a subpicosecond laser pulse. 
Recently,  Faisal el al. [6,7] have shown by non-perturbative (Floquet-Bloch) 
simulations that it is possibly in principle, to generate very high harmonics via 
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the mechanism of interband resonance, using only moderately intense laser 
fields that interact with transmission Bloch electrons in a thin crystal.  
 

In this work, the high-order harmonic generation spectrum for three 
types of crystals (insulator, metal, and semiconductor) will be calculated.  
 

2. Theory: 

2.1. Modified Band Structure: 

Quantum mechanically and in the presence of intense monochromatic 
laser field, a one-dimensional solid treated as a periodic array of single quantum 
wells (Kronig-Penney model [8] with the Hamiltonian (in atomic units 
e=m=ћ=1)    
 

H (t) =  H0 +1/c(A(t). p) + (1/2c2 )A2(t) .                (1) 
 
with H0 is the unperturbed Hamiltonian given by  
 

H0= p2/2 + V(x),                                                     (2) 
 
where v(x) is the electrostatic potential and will be expressed by the well-known 
Kronig-Penney periodic delta potential 

v(x)=β ∑
∞=

=

−
j

j

jax
0

)(δ                                              (3) 

of strength β= P/2a  with lattice constant a. The laser field is assumed to be 
linearly polarized along the crystal axis in the x-direction and is given by the 
vector potential 
 

A(t) = A0cos(ω t +δ),                                                (4) 
 
where $A0 is related to the peak strength of the field $E0 by E0= ωA0/c ; ωis the 
frequency of the monochromatic light and δ is an arbitrary phase. This model 
has been first studied approximately by Tsoar and Gersten [9] who obtained the 
dispersion relation of the system in terms of a double-infinite matrix and 
discussed the modification of the band structure with approximate calculations. 
It was shown [10] how to obtain an exact analytic solution of the dispersion 
relation in terms of a single-infinite matrix. The problem can be solved to obtain 
the wave function ),( txkνΨ as follows: 
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where     
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and 

                   (7) 
 
E(k) is the eigenvalues of the problem,  b = Nδ /2ω  =A0/4c2and the constant 

,2
00

0 ωω
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E
c

A
== is the classical radius of vibration of the electron in the field, 

the so called "quiver radius". The generalized Bessel function J (a-b) is used as 
in the following  

                 Jp(a-b) = )()( bjJ m
m

mP α∑
∇∞

−∞=
+                                  (8) 

 
In the presence of the field E0 ≠ 0, the quasienergy E(k) fulfills the exact 
dispersion relation, ,)cosdet[(cos
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The eigenvalues E(k) of equation (9) appear in the parameters kN   in equation 
(6) as a function of  k.  
 
2.2. High-order harmonic generation: 

The harmonic generation is the rate of generating photons at a 
frequency equal to a harmonic of incident laser which is related to the 
expectation value of the probability current density integrated over the 
elementary cell, and for the 1-D crystal it can be written down as[11,12]  
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in which Nc the effective length of the crystal, cN  is the number of unit cell in 
the crystal, α=1/137  is the fine structure constant, T is the time duration of the 
field pulse and the probability current density is written as 
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The summation extends over quasimomenta of the occupied bands, and 

over such quasimomenta of the partially occupied band that are smaller than the 
Fermi momentum kF. By substituting ),( txkνΨ  as in [5] and using in the dipole 
approximation as in [4] and Fourier analyze the probability current density 
integrated over an elementary cell to get 
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with the Fourier components 
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and Nνk is the normalization constant 
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where 
=1ε  +1     for j ≤ 0   and =1ε  -1     for j >0  

and 
2ε =+1     for j’ ≤ 0   and 2ε =+1    for j’ >0  

 
in the limit of large T0, the rate of emission of high harmonic radiation dW/dΩ, 
at the frequency Ω takes the form, 
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or integrating over the frequency interval dΩ,  
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DνN

,(q) is the current distribution function,  
 

DνN
,(q)= )(,

, kN
Nν

ωε                                               (19) 
 
with q =ka  is the dimensionless quasi-momentum. The squared Fourier 
components )(, FN

kS of the current contain the essential information of the 
dynamics and the rest of the factors in (17) are mere constants. 
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3. Results and Discussions: 

In our analysis, we assume the lattice constant a=8.5a.u. and the mean 
strength of the potential P = 7. These parameters have been chosen such that for 
a one-and-half filled crystal, i.e. for the fully filled first band and the half-filled 
second band, the Fermi energy is equal to 5.53eV and the work function W = 
5.1 eV, these are relevant parameters for a gold crystal[13] which was used in 
the experiment of Farkas et al [14].  

 
The laser field is characterized by its frequency ωand its amplitude E0 

which determines the intensity π8/2
0cEI = (c is speed of light). In this 

investigation we assume the laser photons to have the wavelength  
λ= 780nm(ω = 0.0584 a.u.). 
 

The high harmonic generation spectrum, )(, FN kS , has been  calculated 
for three types of crystals. These types of crystals are (a) insulator when only 
the first band is occupied and there is a wide gap between the valence band and 
the conduction band, (b) metal when the second band is half-filled by electrons, 
and (c) semiconductor when the second band is completely filled and there is a 
narrow gap between the valence and the conduction bands. The results obtained 
at different intensities of the laser field in the range between 
I=3.51x1010W/cm2and I=1.755x1012W/cm2 are presented in Figs. (1) for an 
insulator, fig(2) for a metal and fig (3)for a semiconductor From the inversion 
symmetry of the periodic structure, only odd harmonics N, are considered here.  
 

At relatively low intensity I = 3.51x1010W/cm2 (10-6a.u..), the strength 
of the emitted power spectrum drops linearly (in the logarithmic scale) with the 
order N, which is consistent with the expectation based on perturbation theory, 
i.e., with the power low 
 

N
satFn IISkS )/()( 0, = .                                        (20) 

 
where S0 is a constant and satI  is called the saturation intensity for high 
harmonic generation. 
  
From eq (20) we have  
     

()( NLogkLogS FN ≈  satII / ) +log 0S                (21) 
 
from the slope of the lines, it is can be seen that log (I/Isat) =- 2. Thus, the 
saturation intensity (Isat)in a solid, irrespective of the field-free conduction 
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properties, is of the order 10-4 a.u. (3.51x1012 W/cm2), i.e., much lower than for 
the most noble gas targets, for which, such intensities are still perturbative in 
nature. 

 

 
 

Fig. (1): high harmonic generation power spectrum for a 1-D crystal at a laser field 
wavelength λ = 780 nm and with different intensities. Results are shown for 
Fermi momentum corresponding to an insulator. 

 

  

  

  

  

  

  

  

  

Fig. (2): high harmonic generation power spectrum for a 1-D crystal at a laser field 
wavelength λ = 780 nm and with different intensities. Results are shown for 
Fermi momentum corresponding to a metal. 
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Fig. (3): high harmonic generation power spectrum for a 1-D crystal at a laser field 

wavelength λ = 780 nm and with different intensities. Results are shown for 
Fermi momentum corresponding to a semiconductor. 

 
 

The non-perturbative effects are already seen(in reference[12]using a 
more generalized model) for different larger intensities I = 1.755 x1011,  
3.51x1011, and1.053x 1012W/cm2, where the third harmonic is comparable with 
the first one, and for a very large intensity I = 1.755 x 1012 W/cm2 (5x 10-5 a.u.) 
the third harmonic is stronger than the first one. At this high intensity 5x 10-5 
a.u., it is also seen that for semiconductors the ninth harmonic is comparable 
with the seventh one and the 17th harmonic is stronger than the 15th one, 
whereas for metals or insulators the fifth harmonic is comparable with the third. 
It is seen that increasing the intensity significantly increases the emission 
strength for all harmonics and for types of crystals, insulators (1), metals (2), 
and semiconductors (3).It is noticed that as the intensity of the laser field is 
lower than the 1010 the used model gives different results from that in 
reference[12].At a higher intensity the decrease of the emission strength with 
increasing order N' of the harmonics is significantly slower than at lower 
intensities. The higher intensity results also show a non-perturbative behaviors 
in that two neighboring harmonics sometimes appear with comparable strength, 
an effect which does not occur at the lower intensities. Finally, it can be seen 
that for the lower order harmonics a semiconductor and/or a metallic crystal is 
somewhat more efficient than the insulator.  
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4. Conclusion: 

In conclusion, the power spectrum of high-order harmonic generation is 
calculated for three types of crystals (insulator, metal, and semiconductor). It is 
shown that insulators, metals and semiconductors are much efficient than 
atomic gas in generating high harmonics at moderate intensities. For 
wavelength λ= 780 nm at intensity I = 1.755 x 1012 W/cm2, a semiconductor 
and/or metallic crystal is comparatively more efficient in generating higher 
harmonics than insulators.   
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