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Planar channeling radiation characteristics like, transition energies and 
transition probabilities were investigated against the planar channeling potential 
with higher anharmonic terms. The calculations have been performed, by using 
first-order perturbation theory, to fcc single crystals the lattices and disordered 
lattices by dumb-bell configuration (DBC) or by body-centered interstitial 
(BCI) , and has been executed for relativistic positrons at energies (10 - 500) 
MeV   channeled in copper single crystal in the planar direction (100). It has 
been found that, by using higher anharmonic terms in the channeling potential, 
a new transition line at ∆ n = ± 5. has been detected.  In addition, the 
calculations showed that, the effect of higher anharmonic terms on channeling 
radiation characteristics is very significant for transitions at higher bound states, 
and the significance decreases for transitions at lower bound states.         
 

1. Introduction: 

In the case of planar channeling of relativistic positively charged 
particles through crystals, the charged particles are influenced by a transverse 
planar potential field of the crystal. Due to this field, the charged particles 
execute a periodic motion in a definite eigenstates, and radiation results from 
spontaneous transitions between these states. This radiation was predicted by 
Kumakhov [1,2] and is called now channeling radiation. He also developed the 
theory of this phenomena [1-5]. The maximum number of bound states of the 
transverse motion and the eigenfunctions of the channeling particle is 
determined from the planar channeling potential field in the crystal. A suitable 
expression , based on Lindhard’s model, for the net  planar channeling potential  
V(x)  has been used [6], and to be more controllable, this expression has been 
expanded in a series form around x = 0, where x is measured from the midpoint 
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between the two planes, and the series expansion includes  x2, x4, x6, x8,…… 
terms.  

 
In previous calculations, the eigenvalues of the bound states and the 

eigenfunctions of the channeled particles have been obtained in harmonic 
approximation of the planar potential (up to x2 term in the series expansion) and 
in anharmonic approximation (up to x4 term) by using the first-order 
perturbation theory [7,8]. It has been found that, in the harmonic approximation, 
the allowed transitions occur at ∆n = ±1, while in the case of anharmonic up to  
x4 term, the allowed transitions occur at  ∆n = ±1, ±3.   As an extension to that 
previous work, this work was devoted to  calculations extended to  include 
higher anharmonics up to  x6  term.  Now, in the present calculations for 
anharmonics up to  x6  term we obtained ,  in addition to the transitions  ∆n = 
±1, ±3, a new transition lines at  ∆n = ±5.  

 
As one of the most important applications of channeling phenomena is 

the crystal defect studies, so this work was concerned  to investigate the 
radiation characteristics in disordered lattices. The calculations have been 
executed  by using a planar potential function including harmonic and higher 
anharmonic terms, as a more accurate expression of channeling potential, for 
relativistic channeled positrons (10-500) MeV in copper single crystal in the 
planar direction (100) in normal lattice and disordered lattice by dumb-bell 
configuration (DBC) or by body centered interstitial (BCI). The  channeling 
potential in fcc single crystals disordered by DBC or by  BCI  has been 
calculated, in previous work [9].       
 
2.  Radiation Characteristics from channeled positrons 

The channeled particle is assumed to travel in the x-z plane with only 
the z component of velocity relativistic where we choose a coordinate frame in 
which the x axis is normal to the crystalline planes between which the particle is 
channeling. The Shrödinger wave equation governing the transverse motion of  
a  particle with rest mass   m0  is     
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where E is the energy of the transverse motion, γ = (1-β2 )-1/2  where  β = v/c and 
v is the particle velocity and  c is the velocity of light.   
We consider the net planar channeling potential [6] 
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     This can be expanded around  x = 0, where x is measured from the midpoint 
between the two planes and l = dp/2. We get  
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In the above equations dp is the interplanar distance, a is the Thomas-

Fermi screening radius, C is the Lindhard constant given by 3  , z1 and z2 are 
the charge numbers of the channeled particle and the crystal atoms respectively, 
and  N  is the atomic bulk density,  N = nc/(lattice constant)3 ,  where  nc  the 
number of atoms per unit cell.   

 
By using the series expansion of the potential function V(x) as given by 

Eq.(3), we can solve Eq.(1) to get the eigenvalues and eigenstates of the 
channeled particle. Therefrom, the frequency of the emitted radiation can be 
determined and also the probability of transition from state i to state j  is 
determined from the matrix element of the x- position operator xij (the dipole 
matrix element). Accordingly, the energy of the emitted radiation due to 
transitions between different states may be calculated. 
 

Solution of Eq.(1) in harmonic oscillator approximation gives the 
eigenstates and the eigenvalues respectively as [8]: 
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particle motion and Hn(αx) is the Hermite polynomials of the nth degree. 
 

The frequency of the emitted radiation is significantly increases due to 
Doppler effect [4,7] and is given (in the laboratory frame) as a function of  θ , 
the angle of emission with respect to the incident beam direction,  by :  
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The non-zero matrix elements in the harmonic oscillator approximation 

are  xn,n±1  where 
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where n = 0,1,2,…,nmax . Here nmax  is the largest value of n for which the energy 
eigenvalue (in harmonic oscillator approximation) is less than the interplanar 
barrier potential. Then nmax can be calculated using the equation  
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where  xmax= dp/2 – a  
 

From Eqs.(5) and (6), the emitted photon energy in the laboratory frame 
is given by: 
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From the above formal treatment we can calculate the transition 
probability from state i to state j  per unit time for spontaneous emission from 
the equation [8] 
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where  h/)( jiij EE −=ω  , is the emitted photon frequency in the laboratory 

frame in the forward direction (θ = 0) and jxi  is the dipole matrix element.  

  

3. The effect of anharmonic potential  

From the fitted planar potential given by Eq. (3), we can investigate the 
effect of anharmonic terms on the planar potential. It can be seen that, the effect 
of x4 term exceeds the harmonic approximation by ≈ 18 %  for  Cu (100) at  x = 
xmax  (xmax = dp/2 – a) , and if, in addition , we include also x6  term , this  
exceeds the harmonic potential by ≈ 27.4 %. While at  x = xmax/2 , the total 
effect of x4 and x6  terms exceeds the harmonic potential by  ≈ 1.7 % . Thus we 
expect the higher-lying quantum states to show significant effects due to the 
potential anharmonicity while the effect on the lower quantum states can be 
neglected. Now we will investigate the  anharmonic effects by using first–order 

perturbation theory with an applied perturbation )
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respectively. In the following discussion, the fitted channeling potential as 
given by Eq. (3), up to  x4 term will be denoted by anharmonic(a) potential, and 
up to x6  term by anharmonic(b) potential.    

 
By applying the perturbation 4

24
1 xk , the first-order wave functions and 

energy eigenvalues (laboratory frame) are 
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and  
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where | j〉 labels the eigenfunctions of the harmonic oscillator (given by Eq. (4)) 
and  1002 4/3 kmk ωγ=ε h .  
 

To the first order in ε, it can be shown from Eq. (11) that, the non-zero 
dipole matrix elements are xn,n±1 , xn,n±3 . Where  
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From Eq. (12), the emitted photon energies, in the laboratory frame, are 
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The maximum number of bound states can be calculated from the 

equation  
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     Now by applying the perturbation )
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functions and energy eigenvalues (laboratory frame) are given by 
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To the first order in ε and ε1, it can be shown from Eq. (18) that, the 

non-zero dipole matrix elements are xn,n±1 and  xn,n±3 , xn,n±5 and Where 
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     From Eq. (19), the emitted photon energies, in the laboratory frame, are 
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The maximum number of bound states can be calculated from the 

equation 
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The maximum number of bound states calculated by using harmonic, 

anharmonic(a) and anharmonic(b) potentials for positron channeled in the (100) 
planar direction in copper was given in Table (1)  at different values of positron 
energy. And to illustrate the effect of lattice disorder, the maximum number of 
bound states was given in Table (2)  at different values for positron energy by 
using anharmonic(b) potential for normal lattice, disordered lattice by DBC or 
BCI .  
 
 
Table (1): Maximum number of bound states, nmax, for channeled positrons in 

Cu single crystal in the planar direction (100) at different values 
for positron energy for normal lattice by using harmonic, 
anharmonic(a) and anharmonic(b) potential.   

 

Positron energy (MeV) 10 15 20 25 50 100 200 500
nmax for harmonic    3 4 5 5 7 10 15 23 
nmax for anharmonic(a) 4 5 6 6 9 13 18 29 
nmax for anharmonic(b) 4 5 6 7 10 13 19 30 
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Table (2): Maximum number of bound states, nmax, for channeled positrons in 
Cu single crystal in the planar direction (100) at different values 
for positron energy by using anharmonic(b) potential for normal 
lattice, disordered lattice by DBC or BCI .   

 

Positron energy (MeV) 10 15 20 25 50 100 200 500
nmax  for normal lattice 4 5 6 7 10 13 19 30 
nmax  for BCI lattice  5 6 7 8 11 15 21 34 
nmax  for DBC lattice  6 7 9 10 13 19 27 42 

 
To illustrate the anharmonic effects on the channeling radiation 

characteristics, the emitted photon energies due to different allowed transitions 
were plotted for harmonic, anharmonic(a) and anharmonic(b) potentials 
respectively. For positrons with  E = 50 MeV  channeled in copper in the planar 
direction (100) are presented the emitted photon energy in the forward direction 
due to the allowed transitions n,n-1 in Fig.(1) and for transions n,n-3 in Fig.(2)  
respectively. Its evident from Fig.(1) and Fig.(2) that the higher quantum states 
(i.e., states at n = nmax) is highly affected, while the effect at the lower states due 
to the potential anharmonicity is very small.  
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Fig. (1): The emitted photon energy due to the allowed transitions  n,n-1  for 

positrons with  E = 50 MeV  channeled in copper in the planar direction 
(100) by using planar potential in harmonic approximation, 
anharmonic(a) and anharmonic(b) respectively. 
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Now we find that by using the anharmonic(b) potential we obtained a 

new allowed transitions  n,n-5  given from  Eq. (22) with emitted radiation 
frequencies given from Eq.(25). So, in the following, we will use the 
anharmonic(b) potential  in  the emitted radiation calculations in order to cover 
all possible allowed transitions.   

 
The total emitted photon energy due to the new transitions n,n-5 

between higher quantum states are presented in Fig.(3) as a function of positron 
energy up to 50 MeV. The transition probability per unit time for spontaneous 
emission as a function of the emitted photon energy (in the forward direction) 
due to transitions n,n-5 are presented in Fig.(4) for positrons with E = 50 MeV 
channeled in copper in the planar direction (100). It is found that, the highest 
transition probability occurs at higher bound states i.e., 10→5 transition line. 
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Fig. (2): The emitted photon energy due to the allowed transitions  n,n-3 for 
positrons with E = 50 MeV channeled in copper in the planar direction 
(100) by using planar potential in anharmonic(a) and anharmonic(b) 
approximations respectively. 



Egypt. J. Sol., Vol. (27), No. (1), (2004) 19

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15 20 25 30 35 40 45 50

50

100

150

200

250

300

350

Em
itt

ed
 p

ho
to

n 
en

er
gy

 (k
eV

)

Positron energy (MeV)

  5, 0
  6, 1
  7, 2
  8, 3
  9, 4
  10, 5

 
Fig. (3): The emitted photon energy in the forward direction  due to n,n-5 transitions 

between higher quantum states of transverse motion in the planar direction 
(100) in copper as a function of positron energy up to 50 MeV. 

   

 
Fig. (4): The emitted photon energy in the forward direction  due to n,n-7 transitions 

between higher quantum states of transverse motion in the planar direction 
(100) in copper as a function of positron energy up to 50 MeV.   



M.K. Abu-Assy, et  al. 20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Radiation characteristics in the disordered lattices: 

It may occur to some atoms of the material to be forced to move from 
its original lattice sites into one of the natural interstices of the lattice and leave 
behind a vacancy. This results in a reduction in the local atomic separation in a 
zone around the interstitial atom and the lattice become disordered. The three 
most probable types according to the order of their configuration stability are 
[11]: 

 
(1) Dumb-bell configuration (DBC). If the extra atom is accommodated by 

sharing a site with another atom, the axis of the pair lying along a 〈100〉 
direction.  

(2) Body-centered interstitial (BCI). Here, the extra atom occupies the largest 
space in the fcc unit cell.  

(3) Crowdion. In this case, a long-range relaxation occurs along a  〈100〉 close 
backed  row. Neighboring rows are little affected.  

 
Channeling potential (axial and planar) for the first two kinds ,  which 

are more stable configurations than the last one, has been calculated in previous 
work for α-particles channeled through Cu single crystal [9]. In this work, we 
will consider planar channeling radiation from Cu single crystal disordered by 
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Fig. (5): Transition probability per unit time for spontaneous emission as a function of the 
emitted photon energy due to transitions  n,n-5 and  n, n-7 (normalized to the total 
transition probabilities for transitions ∆n =5 and ∆n = 7 respectively) for positrons 
with E = 50 MeV channeled in copper in the planar direction (100). 
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DBC or  BCI. The normal lattice of copper single crystal is fcc structure. In the 
planar direction (100), the interplanar distance, dp = ½ × (lattice constant),  and 
the number of atoms per unit cell, nc = 4. For the disordered lattice by DBC we 
find that nc is twice that of the normal lattice. Therefore, in the planar direction 
(100), the planar atomic density (N.dp) is twice that of the normal lattice. For 
the disordered lattice by BCI we find that nc = 5. Therefore, in the planar 
direction (100), the planar atomic density is (5/4) that of the normal lattice. The 
total planar channeling potential in normal lattice and disordered lattices by 
DBC or BCI respectively are shown in Fig.(5) for positrons channeled in copper 
single crystal in the planar direction (100).  
 

Calculated results of radiation characteristics in disordered lattices by 
DBC or by BCI were listed in Tables compared with calculated results of 
normal lattice. For example, Tables (3, 4 and 5)  lists the energy of the emitted 
channeling radiation (in the forward direction) of planar channeled positrons at 
50 MeV in copper in the planar direction (100) in normal lattice and disordered 
lattice by  DBC or by BCI  for the allowed transitions n,n-1, n,n-3 and  n,n-5 by 
using anharmonic(b) potential respectively. The calculated results of transition 
probabilities were given in Fig. (6) for transition probability per unit time, 
normalized to the total probability for transitions n,n-5, for spontaneous 
emission in normal lattice and disordered lattice by DBC or by BCI.  
 
Table (3). Energy of the emitted channeling radiation (in the forward direction) 

of planar channeled positrons at 50 MeV in copper in planar 
direction (100) in normal lattice and disordered lattice by BCI or by 
DBC for  the  transitions n, n-1. 

 

Energy of the emitted radiation (keV) Allowed 
transitions 

n, n-1 
Normal lattice 

nmax=10 
BCI  lattice 

nmax=11 
DBC  lattice 

nmax=13 
1→ 0 40.9319 45.4602 56.8441 
2→ 1 43.5282 47.9990 59.2808 
3→ 2 46.4878 50.8627 61.9744 
4→ 3 49.8108 54.0514 64.9249 
5→ 4 53.4970 57.5650 68.1322 
6→ 5 57.5465 61.4036 71.5965 
7→ 6 61.9594 65.5672 75.3177 
8→ 7 66.7356 70.0557 79.2958 
9→ 8 71.8750 74.8691 83.5308 

10→ 9 77.3778 80.0075 88.0227 
11→ 10 No transition 85.4709 92.7715 
12→ 11 No transition No transition 97.7771 
13→ 12 No transition No transition 103.0397 
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Table (4): Energy of the emitted channeling radiation (in the forward direction) 

of planar channeled positrons at 50 MeV in copper in planar 
direction (100) in normal lattice and disordered lattice by DBC or 
by BCI for  the  transitions n, n-7.  

 

Energy of the emitted radiation (keV) Allowed 
transitions 

n, n-3 
Normal lattice 

nmax=10 
BCI  lattice  

nmax=11 
DBC  lattice  

nmax=13 
3→ 0 130.9479 144.3219 178.0992 
4→ 1 139.8268 152.9130 186.1800 
5→ 2 149.7956 162.4791 195.0314 
6→ 3 160.8543 173.0200 204.6536 
7→ 4 173.0029 184.5358 215.0465 
8→ 5 186.2415 197.0264 226.2100 
9→ 6 200.5700 210.4919 238.1443 

10→ 7 215.9884 224.9323 250.8492 
11→ 8 No transition 240.3475 264.3249 
12→ 9 No transition No transition 278.5712 

13→ 10 No transition No transition 293.5883 
 
 
 
Table (5): Energy of the emitted channeling radiation (in the forward direction) 

of planar channeled positrons at 50 MeV in copper in planar 
direction (100) in normal lattice and disordered lattice by DBC or 
by BCI for  the  transitions n, n-5. 

 

Energy of the emitted radiation (keV) Allowed 
transitions 

n, n-5 
Normal lattice 

nmax=10 
BCI  lattice  

nmax=11 
DBC  lattice  

nmax=13 
5→ 0 234.2557 255.9383 311.1563 
6→ 1 250.8703 271.8817 325.9087 
7→ 2 269.3015 289.4499 341.9457 
8→ 3 289.5492 308.6428 359.2671 
9→ 4 311.6135 329.4606 377.8730 

10→ 5 335.4943 351.9031 397.7635 
11→ 6 No transition 375.9703 418.9384 
12→ 7 No transition No transition 441.3978 
13→ 8 No transition No transition 465.1417 
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5. Conclusion  

In planar channeling of positively charged particles through crystals, the 
channeled particles execute a periodic motion, due to the transverse planar 
potential of the crystal, in a definite eigenstates and radiation results from 
spontaneous transitions between these states. The eigenstates and the 
eigenfunctions of the channeled particles have been found previously by solving 
Shrödinger equation governing the transverse motion by using planar potential 
function in a series expansion form to fit the real channeling potential function. 
In the present work, we used a more accurate planar potential by including 
higher anharmonic terms, i.e., x6 term in the series expansion. Then by using the 
perturbation theory we obtained, the first-order eigenvalues and eigenfunctions, 
therefrom, the frequency of the emitted radiation and the dipole matrix elements 
could be calculated. So, by using the more accurate planar potential we could 
get in addition to the known transitions  ∆n = ± 1 , ± 3,  a new transition line at  
∆n = ± 5.  
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Fig. (6): Transition probability per unit time, normalized to the total  probability for 
transitions ∆n =5 , for spontaneous emission of planar channeled 
positrons at 50 MeV in copper in planar direction (100) in normal lattice 
and disordered lattice by DBC or by BCI for  the transitions n, n-5.  
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As a very useful application of channeling radiation in crystal defect 
studies, calculations of channeling radiation characteristics  have been executed 
to relativistic positrons at energies 10-500 MeV channeled in Cu single crystal, 
for normal lattice and for lattice disordered by dumb-bell configuration (DBC) 
or body-centered interstitial (BCI).  

      
The calculations showed that, the maximum number of bound states 

increases by using higher anharmonic terms in the planar channeling potential, 
also it increases in the disordered lattices by DBC or BCI,  i.e., we realize that 
the maximum number of bound states increases in the direction of increasing 
the channeling potential. In addition, the calculations showed that, the effect of 
higher anharmonic terms in the channeling potential on channeling radiation 
characteristics is very significant for transitions at higher bound states, and the 
significance decreases for transitions at lower bound states. 
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