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Abstract: A functional differential system is considered. The existence and

stability of the solution are investigated.
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1. Introduction

A more general type of differential equation, is one in which the
unknown function occurs with various different arguments. The simplest and
perhaps most natural type of functional differential equation is a delay
differential equation. The existence, uniqueness and stability are discussed
in specialized books [2, 3, 4, 6] and papers [1, 5, 7] for example.

Let R™ denote the n-dimentional real Euclidean space for a given
1>20. Let " =C[-1,0,R") denote the space of continuous functions

with domain [—7,0] and range in R" . For any element ¢e o", we define the

norm
0], = max Jocs)]
where ” : H is any convient norm in R". Suppose that x € C[(~r,=),R"].

Forany t 20, let X, denote the element of p" defined by

X,(s)=x(t+s), —TS8s0
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Let C(p)={0€ 9" :|0], <p} where P isa given constant.

Now we consider the functional differential system

RO e =, (1.1)

where f € C[3XC (p),R"1, we shall assume that [ (,0)=0 and f (¢,9) is

smooth enough to guarantee the existence of solutions (1.1) in the future.
For the definition of stability of solution see [1, 2, 4, 7].
2. Main Results

We shall state a very general set of conditions for prenventing the
solutions that start in a given set of R" through any given part of its

boundary.

Now we shall make use of the following theorem:
Theorem A [6, Theorem 6.9, pp 37-38] . Let m eCllty—7,%),R.] , and
satisfy the inequality

D.m@)<f (t,m(t),m,), t>t,
where [ € [3xR, x.,R] . Assume that f (t,X,0) is nondecreasing in ¢
for each (t,x) and that T(ty,®,) , o€ §0., is the maximal solution of the
equation

X=X o)

existing for t 2t,. Them ™M, <@ implies

m(E) <1ty 00)t) , 2L, .
Theorem 1: Let H and E be open subsets of R", such that H c E and
let G c 9H (where 0H , the boundary of H). Let V €Cl[-t,%) E,R],
aeC[[-1,2),R] and ¢geCISxRxg@,R], where V (t.x) is locally
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Lipschitzian in x and g(t,u,v) is nondecreasing in v for each (t,u)€ 3XR

Assume that
A;) ¢,(s)e H ,for —1<5 <0 where ¢,€p",
A Vi, <a, where V,, =V (t, +5,0,(5)) , —T=<s <0
As) V (t,x)2a(t),(t,x)e IXG
A) DV (,0(0),0)<S gV (9,00V,) , (.9()NeIxH , —T1<5<0;
where DV (t,9(0),0) = lim sup h™IV (t +h,0(0) + hf (¢,0)=V (t,6(0))]
As) any solution U (t,,6,) of the functional differential equation
u'=g(tu,u) , u =0,<a )
satisfies condition
u=(t,,0,)t)<a() , t2t,
Then there exists no t* >t, such that
X (ty,0)t)e H, ty<t <t , and O, 0,)(t )EG .
Proof : Suppose there exists t > t, satisfying

X (ty,9))eH, te [ty,t ), and x(t;,¢,)t )G .
From assumption Asj, it follows that
V(% (t,00)(t) 2 a(t’) €)
Let m(t)=V (t,x (ty0)(t)) , to<t<t
and using (A4) with Lipschitzian character of V, we get
D'm@)<g(t,m(t),m) , t,st<t (4)
Furthermore from (A.) we have

mfﬂ <a‘u (5)
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Now, by application Theorerh A we have
V (£,X (L, 06) () ST (6, 0,) , LEltot)) (6)
where 7(t;,0,) is the maximal solution of (2) . This together with V' gives
V (", x o 0p)t ) <alt)
which contradicts (3). This completes the Proof.
Remark : If all the assumptions of Theorem 1 hold except that (V) is
replaced by D’a(t)>g(t,a,a) for te3, then the conclusion of
Theorem 1 remains the same .
Theorem 2: Let E be an open subset R",F cE , D c E with DcE.

Assume that:
B,) V €C[[-r,=)XE,R], V (t,X) is locally Lipsehzian in x ;
B,) geCISxXRx@,R], g(t,u,v) is nondecreasing in v for each
(t,u)e IxR and
DV (t,6(0),0)< gtV (,0(0)V,) and (t,0)e Sx "
with ¢(s)eE,-1<s<0;
Bi) 0, F,—1<s <0=>x(ty,9)(t)€ E t 2ty;
By) (t.x)e SXE\D implies V (t,x)2a() ,aeC[3,R],
Bs) There exists a T f=T *(ro,co) such that for any solution u (t;,0,) of
the functional differential equation
u'=g(tuu), u =0,
Satisfies the relation
u(ty,o,)t)<a(t) , t=t,+T~ holds.
Then there exists a T =T (ty,9,) >0 such that
X(ty,0,)t)e D forall t2ty+T .
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Proof : Let (ty,0o(s))€ SXF | for —t1<s <0, so that the assumption (Bs)
X (ty,00)t)€ E |, forall t 2t,. Putting
0,(s) =V [ty +5,90(s)) =V, (5), —1=s=0 (7)
Now we define
T (t5:9) =T (o,V,,).
We clain that X (t;,0,)(t)e D, for all t=t,+T , otherwise there exists a
sequence ft,} such that t, 2t +T, f = as k — oo and
X(ty,00)t)eE\D ,
Then by assumption (B4) we have
V (e x 00Xt ) 2alt,) , k=12, (8)
Furthermore, in view of the assumption B; , B2, Ba, (7) and Theorem A in
[6], we conclude that
Vit 2ltobp )t ) <al) 5 oile 2okl 9)
This contradiction proves the result.
Theorem 3: Assume that
(C)) V €CI[-1,0)xS (p)\{0} , R], V (t.x) is locally Lipschitzian in x
andV (t,x) > —= as [x]| =0, foreach t&[-T,) ;
(C;) beCll-T,)x(0,p),R] and for (t,x)€ IxS(p)\{0},
V (t,x)Zb(,[x]) ;
(Cs) 9 €CISXR x@,R], g(t,u,v) is no decreasing in v for each
(t,u)e SXR and for (t,9)e 3IxC(p)\{0},

D'V (t,0(0),) < g .V (t,9(0).V,) ;

(C,) any solution u(ty,S,) of the functional differential equation

u'=g(t,y,u), u,(s)=0,)<b,(s,r)
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for every r € (0,p) and s €[-7,0], satisfies
u(t,,0,)t)<b(t,r) , t=t, forevery re(0,p).
Then the trivial solution of (1.1) is equistable.
Proof: In view of assumption (C:), for every (t,+8,€)€ [t, —T,22)x(0,p)
there exists a 8, = 8y (t +0,€) such that ¢y(0)eS (85)\ {0} implies
V (t, +6,0,(0) <b(t, +6,e), for 0€[-1,0]
Our aim is to choose & which is independent of 6€[-T,0]. For this

purpose, we notice that the continuity of V', b and ¢, together with the fact

that S (8,) \{0} is open set, implies that there exists Mo > 0 such that
V (t, +5,0,(5)) <b(ty +5,€), holds for s € (~Ne,Me) N[~T,0] and
0y(s)€ S (8,)\{0}.
Such a choice of neighbourhoods is possible for all 9€ [-7,0] .
Consider the collection of open sets of [—7,0] defined by
U={Uy:Ug=( —MeNe)N[-7,0], forall 6e[-7,01}.
It is easy to verify that it forms an open covering for [-7,0]. Since this set is
compact by Heine-Borel Theorem [9 pp 42], we can extract a finite
subcover corresponding to Ms>Me,>Me;>-Me,, some fixed integer n .
Consider the corresponding numbers
5" (t +6,,),8 (t, + 0,,£),..5 (t, +6,,€) ,
and set
5 =min{d"(t, +6,,€),8 (¢, + 0,,€),..8 ((, + 6,,8)} .
Then for 8€[-1,0] , we have

0,(0)e S (8)\{0} and V (to +0,9,(0))<b(t, +6,¢)
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or V., <b,(€)

whenevre ¢, € C (8)\{0} .

Setting now E =S (p)\{0},H =S ()\{0},G =0S{e} and a(t)=b(t,), we
see that all the hypotheses of Theorem 3 are verified. Hence the conclusion

follows.

Remark: Notice that the Liapunov-like function used in this theorem is
neither positive definite nor defined at x =0 .

Theorem 4: Suppose that the hypotheses of Theorem 3 hold. Assume

further that b(t,r) is nondecreasing in r for each te 3 and that there

exists 0 T~ =T (t,,6,)> 0 such that every solution U (ty,0,) of
u'=g(tuuy) , u, =0,

satisfies the relation
ulty,o,)t)<bt,r) , t=t,+T"

for all re€ (0,p). Then the trivial solution of (1) is equiasymptotically

stable.

Proof: Since by Theorem 3, the trivial solution of (1) is equistble, for
e=p, a 8, =8(ty,p) such that ¢o€C(8;)\{0} implies

X (tg,00)t)eS(P)\{0} , 2t
Set F=5(3,)\{0} and E =S(p)\{0} . Then the hypothesis (B3) of
Theorem 2 is verified. Let (t;,€)€ 3x(0,p), and set D =S (€) \{0}. Then
for (t,x)€ 3XE \D and because of the hypothesis (C.) of Theorem 3,

together with monotonicity of b(t,r) we have
V(,x)2b(t,e), for (t,x)eSXE\D
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Choosing a(t)=b(t,€) , we see that B4 of Theorem 2 is verified. The rest

of the hypotheses were checked already in the proof of Theorem 3, Hence

the conclusion of the theorem follows from Theorem 2.

Remark: Observe that the Liapunov function used in Theorem 4 need not

to be positive definite , decrescent and its derivative need not to be negative

definite. Moreover it is not defined at x =0 .
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