

Delta J. Sci. 35 (2011)1-9 MATHEMATICS

Asymptotic Behaviour Functional Differential Systems

Dr. Fatma M.Kandil

Mthematics Department ,Faculty of Science King Abdul Aziz University Jeddah - Saudi Arabia (Received 29-3-2011)

Abstract: A functional differential system is considered. The existence and stability of the solution are investigated.

A.M.S. Classifications: 34K20, 34K17.

Keywords: Functional, differential, stability.

1. Introduction

A more general type of differential equation, is one in which the unknown function occurs with various different arguments. The simplest and perhaps most natural type of functional differential equation is a delay differential equation. The existence, uniqueness and stability are discussed in specialized books [2, 3, 4, 6] and papers [1, 5, 7] for example.

Let R^n denote the *n*-dimentional real Euclidean space for a given $\tau \ge 0$. Let $\wp^n = C[-\tau, 0], R^n$) denote the space of continuous functions with domain $[-\tau,0]$ and range in \mathbb{R}^n . For any element $\phi \in \mathbb{R}^n$, we define the norm

$$\left\|\phi\right\|_0 = \max_{-\tau \le s \le 0} \left\|\phi(s)\right\|$$

where $\|\cdot\|$ is any convient norm in R^n . Suppose that $x \in C[(-r,\infty), R^n]$.

For any $t \ge 0$, let x_t denote the element of \wp^n defined by

$$x_t(s) = x(t+s)$$
, $-\tau \le s \le 0$

Let $C(\rho) = \{ \phi \in \wp^n : ||\phi||_0 < \rho \}$ where ρ is a given constant.

Now we consider the functional differential system

$$x' = f(t, x_t)$$
, $x_{t_0} = \phi_0$ (1.1)

where $f \in C[\mathfrak{I} \times C(\rho), R^n]$, we shall assume that $f(t,0) \equiv 0$ and $f(t,\phi)$ is smooth enough to guarantee the existence of solutions (1.1) in the future. For the definition of stability of solution see [1, 2, 4, 7].

2. Main Results

We shall state a very general set of conditions for prenventing the solutions that start in a given set of R^n through any given part of its boundary.

Now we shall make use of the following theorem:

Theorem A [6, Theorem 6.9, pp 37-38] . Let $m \in C[[t_0 - \tau, \infty), R_+]$, and satisfy the inequality

$$D_{-}m(t) \le f(t, m(t), m_t), \quad t > t_0$$

where $f \in [\Im \times R_+ \times \wp_+, R]$. Assume that $f(t, x, \phi)$ is nondecreasing in ϕ for each (t, x) and that $r(t_0, \phi_0)$, $\phi_0 \in \wp_+$, is the maximal solution of the equation

$$x' = f(t, x, x_t)$$

existing for $t \ge t_0$. Them $m_{t_0} \le \phi_0$ implies

$$m(t) \le r(t_0, \phi_0)(t)$$
 , $t \ge t_0$.

Theorem 1: Let H and E be open subsets of R^n , such that $\overline{H} \subset E$ and let $G \subset \partial H$ (where ∂H , the boundary of H). Let $V \in C[[-\tau,\infty)_x E,R]$, $a \in C[[-\tau,\infty),R]$ and $g \in C[\Im \times R \times \wp,R]$, where V(t,x) is locally

Lipschitzian in x and g(t,u,v) is nondecreasing in v for each $(t,u) \in \Im \times R$

Assume that

A₁)
$$\phi_0(s) \in H$$
, for $-\tau \le s \le 0$ where $\phi_0 \in \wp^n$,

A₂)
$$V_{t_0} < a_{t_0}$$
 where $V_{t_0} = V(t_0 + s, \phi_0(s)), -\tau \le s \le 0$

$$A_3$$
) $V(t,x) \ge a(t), (t,x) \in \Im \times G$

$$\mathsf{A_4})\ D^+\!\!V\ (t,\phi(0),\phi) \leq g\ (t,V\ (\phi,0),V_t)\ ,\ (t,\phi(s)) \in \mathfrak{I} \times H\ ,\ -\tau \leq s \leq 0\ ;$$

where
$$D^{+V}(t,\phi(0),\phi) = \lim_{k\to 0} \sup h^{-1}[V(t+h,\phi(0)+hf(t,\phi)-V(t,\phi(0))]$$

 A_5) any solution $u(t_0, \sigma_0)$ of the functional differential equation

$$u' = g(t, u, u_t)$$
, $u_{t_0} = \sigma_0 < a_{t_0}$ (2)

satisfies condition

$$u = (t_0, \sigma_0)(t) < a(t), t \ge t_0$$

Then there exists no $t^* > t_0$ such that

$$x(t_0, \phi_0)(t) \in H$$
, $t_0 < t < t^*$, and $\phi(t_0, \phi_0)(t^*) \in G$.

Proof: Suppose there exists $t^* > t_0$ satisfying

$$x(t_0,\phi_0)(t) \in H$$
, $t \in [t_0,t^*)$, and $x(t_0,\phi_0)(t^*) \in G$.

From assumption A₃, it follows that

$$V(t^*, x(t_0, \phi_0)(t^*) \ge a(t^*)$$
(3)

Let $m(t) = V(t, x(t_0, \phi_0)(t)), t_0 \le t < t^*$

and using (A_4) with Lipschitzian character of V, we get

$$D^{+}m(t) \le g(t, m(t), m_t)$$
 , $t_0 \le t < t^*$ (4)

Furthermore from (A_2) we have

$$m_{t_0} < a_{t_0} \tag{5}$$

Now, by application Theorem A we have

$$V(t,x(t_0,\phi_0)(t)) \le r(t_0,\sigma_0) , t \in [t_0,t^*)$$
(6)

where $r(t_0,\sigma_0)$ is the maximal solution of (2). This together with V gives

$$V(t^*, x(t_0, \phi_0)(t^*) < a(t^*),$$

which contradicts (3). This completes the Proof.

Remark: If all the assumptions of Theorem 1 hold except that (V) is replaced by $D^*a(t) > g(t,a,a_t)$ for $t \in \mathfrak{I}$, then the conclusion of Theorem 1 remains the same .

Theorem 2: Let E be an open subset $R^n, F \subset E$, $D \subset E$ with $\overline{D} \subset E$. Assume that:

- B_1) $V ∈ C[[-r, \infty) \times E, R]$, V(t, x) is locally Lipsehzian in X;
- B₂) $g \in C[\Im \times R \times \wp, R]$, g(t,u,v) is nondecreasing in v for each $(t,u) \in \Im \times R$ and

$$D^+V(t,\phi(0),\phi) \le g(t,V(t,\phi(0)),V_t)$$
 and $(t,\phi) \in \Im \times \wp^n$
with $\phi(s) \in E, -\tau \le s \le 0$;

- B₃) $\phi_0 \in F$, $-\tau \le s \le 0 \Rightarrow x(t_0, \phi_0)(t) \in E$, $t \ge t_0$;
- B₄) $(t,x) \in \Im \times E \setminus D$ implies $V(t,x) \ge a(t)$, $a \in C[\Im,R]$,
- B₅) There exists $a T^* = T^*(t_0, \sigma_0)$ such that for any solution $u(t_0, \sigma_0)$ of the functional differential equation

$$u' = g(t, u, u_t)$$
, $u_{t_0} = \sigma_0$

Satisfies the relation

$$u(t_0, \sigma_0)(t) < a(t)$$
, $t \ge t_0 + T^{\infty}$ holds.

Then there exists a $T = T(t_0, \phi_0) > 0$ such that

$$x(t_0,\phi_0)(t) \in D$$
 for all $t \ge t_0 + T$.

Proof: Let $(t_0, \phi_0(s)) \in \Im \times F$, for $-\tau \le s \le 0$, so that the assumption (B_3) $x(t_0, \phi_0)(t) \in E$, for all $t \ge t_0$. Putting

$$\sigma_0(s) = V(t_0 + s, \phi_0(s)) = V_{t_0}(s), \quad -\tau \le s \le 0$$
 (7)

Now we define

$$T(t_0,\phi_0) = T^*(t_0,V_{t_0}).$$

We clain that $x(t_0, \phi_0)(t) \in D$, for all $t \ge t_0 + T$, otherwise there exists a sequence $\{t_k\}$ such that $t_k \ge t_0 + T$, $t_k \to \infty$ as $k \to \infty$ and $x(t_0, \phi_0)(t_k) \in E \setminus D$.

Then by assumption (B₄) we have

$$V(t_k, x(t_0, \phi_0)(t_k) \ge a(t_k), \quad k = 1, 2,$$
 (8)

Furthermore, in view of the assumption B_1 , B_2 , B_3 , (7) and Theorem A in [6], we conclude that

$$V(t_k, x(t_0, \phi_0)(t_k) < a(t_k), \quad t_k \ge t_0 + T$$
 (9)

This contradiction proves the result.

Theorem 3: Assume that

- (C₁) $V \in C[[-\tau,\infty) \times S(\rho) \setminus \{0\}, R]$, V(t,x) is locally Lipschitzian in x and $V(t,x) \to -\infty$ as $||x|| \to 0$, for each $t \in [-\tau,\infty)$;
- (C₂) $b \in C[[-\tau,\infty)\times(0,\rho),R]$ and for $(t,x) \in \Im \times S(\rho)\setminus\{0\}$, $V(t,x) \ge b(t,||x||)$;
- (C₃) $g \in C[\Im \times R \times \wp, R]$, g(t,u,v) is no decreasing in v for each $(t,u) \in \Im \times R$ and for $(t,\phi) \in \Im \times C(\wp) \setminus \{0\}$, $D^+V(t,\phi(0),\phi) \leq g(t,V(t,\phi(0)),V_t)$;
- (C₄) any solution $u(t_0, \sigma_0)$ of the functional differential equation $u' = g(t, y, u_t)$, $u_{t_0}(s) = \sigma_0(t) < b_{t_0}(s, r)$

for every $r \in (0, \rho)$ and $s \in [-\tau, 0]$, satisfies

$$u(t_0, \sigma_0)(t) < b(t, r)$$
, $t \ge t_0$ for every $r \in (0, \rho)$.

Then the trivial solution of (1.1) is equistable.

Proof: In view of assumption (C₁), for every $(t_0 + \theta, \varepsilon) \in [t_0 - \tau, \infty) \times (0, \rho)$

there exists a $\delta_{\theta}^* = \delta_{\theta}^*(t + \theta, \varepsilon)$ such that $\phi_0(\theta) \in S(\delta_{\theta}^*) \setminus \{0\}$ implies

$$V(t_0 + \theta, \phi_0(\theta)) < b(t_0 + \theta, \varepsilon), \text{ for } \theta \in [-\tau, 0]$$

Our aim is to choose δ which is independent of $\theta \in [-\tau, 0]$. For this purpose, we notice that the continuity of V, b and ϕ_0 together with the fact that $S(\delta_{\theta}^*) \setminus \{0\}$ is open set, implies that there exists $\eta_{\theta} > 0$ such that

$$V(t_0 + s, \phi_0(s)) < b(t_0 + s, \varepsilon)$$
, holds for $s \in (-\eta_\theta, \eta_\theta) \cap [-\tau, 0]$ and $\phi_0(s) \in S(\delta_\theta^*) \setminus \{0\}$.

Such a choice of neighbourhoods is possible for all $\theta \in [-\tau, 0]$

Consider the collection of open sets of $[-\tau,0]$ defined by

$$U = \{U_{\theta} : U_{\theta} = (-\eta_{\theta}, \eta_{\theta}) \cap [-\tau, 0] \text{, for all } \theta \in [-\tau, 0]\}.$$

It is easy to verify that it forms an open covering for $[-\tau,0]$. Since this set is compact by Heine-Borel Theorem [9 pp 42], we can extract a finite subcover corresponding to $\eta_{\theta_1}, \eta_{\theta_2}, \eta_{\theta_3}, ... \eta_{\theta_n}$, some fixed integer n. Consider the corresponding numbers

$$\delta^*(t+\theta_1,\varepsilon), \delta^*(t_0+\theta_2,\varepsilon),...\delta^*(t_0+\theta_n,\varepsilon)$$
,

and set

$$\delta = \min\{\delta^*(t_0 + \theta_1, \varepsilon), \delta^*(t_0 + \theta_2, \varepsilon), ... \delta^*(t_0 + \theta_n, \varepsilon)\}.$$

Then for $\theta \in [-\tau, 0]$, we have

$$\phi_0(0) \in S(\delta) \setminus \{0\}$$
 and $V(t_0 + \theta, \phi_0(\theta)) < b(t_0 + \theta, \varepsilon)$

or
$$V_{t_0} < b_{t_0}(\varepsilon)$$

whenevre $\phi_0 \in C(\delta) \setminus \{0\}$.

Setting now $E = S(\rho) \setminus \{0\}, H = S(\epsilon) \setminus \{0\}, G = \partial S\{\epsilon\}$ and $a(t) = b(t, \epsilon)$, we see that all the hypotheses of Theorem 3 are verified. Hence the conclusion follows.

Remark: Notice that the Liapunov-like function used in this theorem is neither positive definite nor defined at x = 0.

Theorem 4: Suppose that the hypotheses of Theorem 3 hold. Assume further that b(t,r) is nondecreasing in r for each $t \in \mathcal{I}$ and that there exists $o(T^* = T^*(t_0, \sigma_0) > 0$ such that every solution $u(t_0, \sigma_0)$ of

$$u'=g\left(t,u,u_{t}\right)\ ,\quad u_{t_{0}}=\sigma_{0}$$

satisfies the relation

$$u(t_0, \sigma_0)(t) < b(t, r)$$
, $t \ge t_0 + T$

for all $r \in (0,\rho)$. Then the trivial solution of (1) is equiasymptotically stable.

Proof: Since by Theorem 3, the trivial solution of (1) is equistble, for $\varepsilon = \rho$, $a \delta_0 = \delta(t_0, \rho)$ such that $\phi_0 \in C(\delta_0) \setminus \{0\}$ implies

$$x(t_0,\phi_0)(t) \in S(\rho) \setminus \{0\}$$
, $t \ge t_0$

Set $F = S(\delta_0) \setminus \{0\}$ and $E = S(\rho) \setminus \{0\}$. Then the hypothesis (B_3) of Theorem 2 is verified. Let $(t_0, \varepsilon) \in \Im \times (0, \rho)$, and set $D = S(\varepsilon) \setminus \{0\}$. Then for $(t, x) \in \Im \times E \setminus D$ and because of the hypothesis (C_2) of Theorem 3, together with monotonicity of b(t, r) we have

$$V(t,x) \ge b(t,\varepsilon)$$
, for $(t,x) \in \Im \times E \setminus D$

Choosing $a(t) = b(t, \varepsilon)$, we see that B_4 of Theorem 2 is verified. The rest of the hypotheses were checked already in the proof of Theorem 3, Hence the conclusion of the theorem follows from Theorem 2.

Remark: Observe that the Liapunov function used in Theorem 4 need not to be positive definite, decrescent and its derivative need not to be negative definite. Moreover it is not defined at x = 0.

References

- [1] Berezansky, L. Braverman, E., On stability of some linear and nonlinear delay differential equations. J. Math. Anal. Appl. Vol. 314 (2006) 391-411.
- [2] Diver, R. Ordinary and Delay Differential equation springer-Verlag, New York, 1977.
- [3] Gyori, I. and Ladaas G., Oscillation Theory of Delay Differential Equations, Clarenton Press, Oxford, 1991.
- [4] Hale, J. Theory of functional differential equation 1973.
- [5] Ladas, G. Sficas, Y, Stavroulakis, I., Asymptotic behavior of solutions of retarded differential equations Proc. Amer. Math. Soc. Vol. 88, (1983) 247-253.
- [6] Lakshmikantham, V. and Leela, S., Differential and integral inequalities, Vol. I and II, Academic Pres, New York 1969.
- [7] Partheniadis, E. Stability and oscillation of neutral delay differential equations. Differential and Intrgral Equations Vol.1, (1988), 459-472.
- [8] Rouche, N, Habets, P. and Laloy, M., Stability Theory by Liapunov's Direct Methods. Springer-Verlage New York, 1977.
- [9] Royden, H. Real Analysis, The Macmillan Comp. New York, 2nd End 1968.

السلوك القربي لنظام تقاربي دالي

فاطمه محمد قنديل قسم الرياضيات-كليه العلوم- جامعه الملك عبد العزيز- جده- المملكه العربيه السعوديه

تعتبر المعادلات التفاضلية ذات تأخير أكثر عمومية من المعادلات التفاضلية العادية ويناقش هذا البحث

دراسة نظام تفاضلی دالی فی R^n من هذا النوع وهذا النظام متعادل علی الصورة

$$f \in C[\mathfrak{I} \times C(\rho), R^n]$$
 حيث $x' = f(t, x_t)$, $x_{t_0} = \phi_0$

$$x_t(s) = x(t+s)$$
, $-\tau \le s \le 0$

واستنتاج شروطا كافية على النظام ليضمن وجود الحلول ووحدانيتة ودراسة استقرار النظام