

Copyright @ by Tanta University, Egypt

Delta J. Sci. 35 2011,(25-29)

MATHEMATICS

Pre - θ - perfect mappings and p - closed spaces

Abdulla Salem Bin Shahna

Department of Mathematics, University of Aden, Aden, Yemen

(Received: 29-12-2011)

Abstract. In this paper, we introduce Per - θ - perfect mappings and investigate some of their characterizations and properties . Also we give a characterization of p - closed spaces

Key words : Pre - heta - closed sets , filter base , p - closed spaces .

1. Introduction

A mapping $f: X \to Y$ is called perfect if f is closed and f^{-1} (y) is compact, for each $y \in Y$. Whyburn [9] proved that a mapping $f: X \to Y$ is perfect if and only if for every filter base Φ on f(X) converging to $y \in Y$, f^{-1} (Φ) is directed towards f^{-1} (y). The purpose of the present paper is to introduce pre - θ - perfect mappings defined in a way similar to the above characterization of a perfect mapping and investigate some of their properties and characterizations. Also we give a characterization of p - closed spaces.

2. Preliminaries

Recall that a subset A of a space X is called preopen [4] if $A \subset int$ (cl (A)). The complement of a preopen set is called precolsed . The intersection of all preclosed sets containing A is called the preclosure of A and denoted by pcl (A) .

Definition 2.1[5] . Let A be a subset of a space X .

- (i) A piont $x \in X$ is called a pre θ cluster point of A if pcl (V) \bigcap A $\neq \phi$, for every preopen set V containing x .
- (ii) The set of all pre- θ cluster points of A is called the pre θ closure of A and is denoted by pcl $_{\theta}$ (A) .
- (iii) A subset A of a space X is called pre θ closed if pcl $_{\theta}$ (A) = A .
- (iv) The complement of a pre θ closed set is called pre θ open .

Remark 2.1. It is obvious that a pre - θ - open (resp. pre - θ - closed) set is preopen (resp. preclosed) , but the converse need not be true as shown by Example 3.3 of [2] .

Definition 2.2. Let X be a topological space.

- (i) Apoint $x \in X$ is called a pre θ cluster point of a filter base Φ in X if $x \in \bigcap \{ \operatorname{pcl}_{\theta}(\mathsf{F}) : \mathsf{F} \in \Phi \} = [\operatorname{ad}]_{\mathsf{P}\theta}(\Phi)$.
- (ii) A filter base Φ in X p θ * converges [2] to a point $x \in X$ if for each preopen set A containing x, there exists an $F \in \Phi$ such that $F \subset pcl(A)$.
- (iii) A filter base Γ is said to be subordinate [6] to a filter base Φ if for each $F \in \Phi$, there exists $G \in \Gamma$ such that $G \subset F$.
- (iv) A filter base Φ is said to be p θ directed towards A \subset X if every filter base subordinate to Φ has a pre θ cluster point in A .

3. Pre - θ - perfect mappings .

Definition 3.1. A mapping $f: X \to Y$ is called pre - θ - perfect ($p\theta$ - perfect in short) if for every filter base Φ in $f(X)p\theta^*$ - converging to $y \in Y$, $f^{-1}(\Phi)$ is $p\theta$ - directed towards $f^{-1}(Y)$.

Remark 3.1. Continuity is not assumed on p θ - perfect mappings .

Definintion 3.2. A mapping $f: X \to Y$ is called pre - θ - closed (p θ - closed in short) if pcl_{θ} (f (A)) $\subset f$ (pcl_{θ} (A)), for every subset A of X.

Theorem 3.1. Every p θ - perfect mapping is p θ - closed .

Proof. Suppose that $f: X \to Y$ is $p\theta$ - perfect mapping . Let A be any subset of X and $y \in pcl_{\theta}(f(A))$. Then there exists a filter base Φ on f(A), $p\theta^*$ - converging to y . Put $\Gamma = \{f^{-1}(F) \cap A : F \in \Phi\}$. Then Γ is a filter base in X and subordinate to the filter base $f^{-1}(\Phi)$. Since $f^{-1}(\Phi)$ is $p\theta$ - directed towards $f^{-1}(y)$, we have $f^{-1}(y) \cap ([ad]_{P\theta}(\Gamma)) \neq \emptyset$. Therefore, we obtain $y \in f(pcl_{\theta}(A))$. This implies that f is $p\theta$ - closed.

Theorem 3.2. A mapping $f: X \to Y$ is $p\theta$ - closed if and only if the image f(A) of each pre - θ - closed subset A of X is pre - θ - closed subset of Y.

Proof. Obvious .

Theorem 3.3. The composition gof: $X \to Y$ of $p\theta$ -closed mappings $f: X \to Y$ and $g: Y \to Z$ is $p\theta$ -closed mapping.

Proof. Obvious.

Theorem 3.4. A mapping $f: X \to Y$ is $p\theta$ -perfect if and only if $[ad]_{P\theta} f(\Phi) \subset f([ad]_{P\theta} \Phi)$, for every filter base Φ in X.

A. S Bin Shahna Pre - θ - perfect mappings and

Proof. Suppose $f: X \to Y$ is $p\theta$ -perfect mapping. Let Φ be a filter base in X and $y \in ([ad]_{P\theta}f(\Phi))$. Then there exists a filter base Γ in f(X) which is subordinate to $f(\Phi)$ and $p\theta^*$ - converges to g. Put

$$H = \{f^{-1}(G) \cap F : G \in \Gamma, F \in \Phi \},\$$

then H is a filter base in X subordinate to f^{-1} (Γ). Since f is p θ - perfect , f^{-1} (Γ) is p θ - directed towards f^{-1} (γ) . Therefore , we have f^{-1} (γ) \cap ([ad] θ H) \neq ϕ and hence $\gamma \in f([ad]_{P\theta} \Phi)$.

Conversely suppose that the condition holds and f is not p θ - perfect . Then there exists a filter base Φ in f(X) such that Φ p θ^* - converges to a point $y \in Y$ and $f^{-1}(\Phi)$ is not p θ - directed towards $f^{-1}(y)$. Thus there exists a filter base Γ in X which is subordinate to $f^{-1}(\Phi)$ and $f^{-1}(y) \cap ([ad]_{P\theta} \Gamma) = \phi$. Therefore, we have $y \notin ([ad]_{P\theta} f(\Gamma))$ and hence $y \notin pcl_{\theta}(f(G_1))$ for some $G_1 \in \Gamma$. Then there exists a preopen set V containing y such that $(pcl(V)) \cap f(\Gamma_1) = \phi$. Since Φ p θ^* - converges to y and Γ is subordinate to $f^{-1}(\Phi)$, there exists $G_2 \in \Gamma$ such that $f(G_2) \subset pcl(V)$. Consequently, we have $G_1 \cap G_2 = \phi$. This contradicts that Γ is a filter base.

4. p - closed spaces

Definition 4.1. A space X is called p – closed [3] if every cover of X by preopen sets has a finite subcover whose preclosures cover X.

Definition 4.2. A subset A of a space X is called p – closed relative to X if for every cover { V_{α} : $\alpha \in \Delta$ } of A by preopen sets of X , there exists a finite subfamily Δ_{O} of Δ such that A $\subset \bigcup$ { pcl (V_{α}): $\alpha \in \Delta_{O}$ }.

Theorem 4.1. A subset B of a space X is p – closed relaive to X if and only if B \bigcap ([ad] $_{P\theta}$ Φ) $\neq \phi$, for every filter base Φ in B .

Proof. Suppose that B is p – closed relative to X . Assume that there exists a filter base Φ in B such that B \bigcap ([ad] $_{\mathbb{P}\theta}$ Φ) = ϕ . Then for each $x \in \mathbb{B}$ there exists a preopen set V_x containing x and an $F_x \in \Phi$ such that $F_x \bigcap \operatorname{pcl}_{\theta} (V_x) = \phi$. Since B is p – closed relative to X , there exists a finite number of points x_1 , x_2 ,, x_n in B such that

$$\mathsf{B}\subset\bigcup\;\{\;\mathsf{pcl}\;(\;\mathsf{V}_{x_i}\;):i=1,2,\ldots,\;\mathsf{n}\,\}\,.$$

Put F = \bigcap { F $_{x_i}$: i = 1,2,...., n } , then we obtain F \bigcap B = ϕ . This contradicts that Φ is a filter base .

Delta J. Sci. (math) 35: (25-29)

Conversely suppose B \bigcap ([ad] $_{P\theta}$ Φ) $\neq \phi$, for every filter base Φ in B . Assume that B is not p – closed relative to X . Then there exists a cover { V $_{\alpha}$: $\alpha \in \Delta$ } of B by preopen sets of X such that .

$$\mathsf{B} \not\subset \mathsf{\bigcup} \{ \mathsf{pcl}(\mathsf{V}_{\alpha}) : \alpha \in \mathsf{\nabla} \}, \text{ for every } \mathsf{\nabla} \in \mathsf{\Gamma}(\Delta) \}$$

where $\Gamma(\Delta)$ denotes the family of all finite subsets of Δ . Now put

$$\mathsf{F}_{\,\nabla}\, \equiv\, \bigcap\,\, \{\, \mathsf{B} - \mathsf{pcl}\,(\mathsf{V}_{\,\alpha}\,) \,\colon\, \alpha \in \nabla\,\,\}\,,\, \mathsf{for}\,\, \mathsf{each}\,\, \nabla \in \Gamma\big(\!\Delta\big)\,\,.$$

Then $\Phi = \{ F_{\nabla} : \nabla \in \Gamma(\Delta) \}$ is a filter base in B and B \bigcap ([ad] $_{P\theta} = \Phi$) = ϕ . This is a contradiction . Therefore B is p – closed relative to X .

Theorem 4.2. If a mapping $f: X \to Y$ is $p\theta$ - perfect, then $f^{-1}(B)$ is p - closed relative to X, for every p - closed relative to Y set B of Y.

Proof. This follows from Theorem 3.4. and Theorem 4.1.

Theorem 4.3. A mapping $f: X \to Y$ is $p\theta$ - perfect if and only if

(i) f is $p\theta$ - closed, and

(ii) $f^{-1}(y)$ is p – closed relative to X , for each $y \in Y$.

Proof. Necessity. Follows from Theorem 3.1 and Theorem 4.2.

Sufficiency. This is proven in a similar manner as the proof of conversely of Theorem 3.4.

Theorem 4.4. The composition gof: $X \to Z$ of $p\theta$ -perfect mappings $f: X \to Y$ and $g: Y \to Z$ is $p\theta$ - perfect mapping.

Proof. For p θ - closedness of (gof) , this follows from Theorem 3.1 and Theorem 3.3 and (gof) $^{-1}$ (z) = f^{-1} (g $^{-1}$ (z)) is p-closed follows from Theorem 4.3 and Theorem 4.2.

Theorem 4.5. Let S be a singleton with its unique topology . For a space X , the following statements are equivalent

(i) X is p - closed

(ii) The constant mapping $c: X \to S$ is $p\theta$ - perfect.

Proof. The equivalence (i) \Leftrightarrow (ii) follows from Theorem 4.3.

Theorem 4.6. If $f: X \to Y$ is $p\theta$ - perfect mapping and Y is p - closed, then X is p - closed.

Proof. We show that the constant mapping $k: X \to S$ is $p\theta$ - perfect . Since Y is p- closed , therefore the mapping $c: Y \to S$ is $p\theta$ - perfect . Now k is $p\theta$ - perfect follows by noting that it is the composition (cof) of two $p\theta$ - perfect mappings . Hence X is p- closed .

References

- [1] S. H. Cho, A note on strongly θ precontinuous functions , Acta Math. Hungar. 101 (1-2) (2003) , 173-178 .
- [2] S. H. Cho and J. K. Park , on regular preopen sets and p* closed spaces , J. Appl. Math. And Computing 18 (1-2) (2005) , 525 537 .

[3] J. Dontchev , M. Ganster and T. Noiri , On p – closed spaces , Internat. J. Math. Sci. 24 (2000), 203–212 .

[4] A. S. Mashhour , M. E. Abd El-Monsef and S. N. El-Deeb , On precontinuous and weak precontinuous mappings , Proc. Math. Phys. Soc. Egypt , 53 (1982) , 47 – 53 .

[5] O. Njastad , On some classes of nearly open sets , Pacific J. Math. 15 (1965) , 961 – 970 .

[6] T. Noiri , Ageneralization of perfect functions , J. London Math. Soc. (2) . 17 (1978) , 540 – 544 .

[7] T. Noiri , Strongly heta - precontinuous functions , Acta Math. Hungar. 90 (4) (2001) , 307 – 316.

[8] I. L. Reilly and M. K. Vamanamurthy , On some questions concerning preopen sets , Kyungpook Math. J. 30 (1990) , 87 – 93 .

[9] G. T. Whyburn, Directed families of sets and closedness of functions, Proc. Nat. Acad. Sci. U.S.A, 54 (1965). 688 – 692.

الرواسم قبل التامة من النوع θ وفراغات p المغلقة

عبدالله سالم بن شحنة قسم الرياضيات- جامعه عدن- اليمن

في هذا البحث قدمنا مفهوم الرواسم قبل التامة من النوع θ وقمنا بمناقشة بعض من خواصها وخصائصها , كما قمنا أيضاً في هذا البحث بتقديم بعض الخصائص لفراغات θ المغلقة .