Disturbances in Pituitary-Thyroid Axis Hormones in Rats Exposed to CCL₄ and/ or Gamma-Irradiation

N. Abdel Aziz

Radiation Biology Dept., National Centre for Radiation Research and Technology (NCRRT), P. O. Box; 29 Nasr City, Egypt.

> THIS WORK aims to detect the disturbances in hormones of pituitary-thyroid axis in male rats exposed to liver injury by carbon tetrachloride (CCl₄) and/ or γ -irradiation, as well as modulating these disturbances by supplementation of hepato-protective agent, silymarin-plus (S+). Subcutaneous injection of CCl₄, as a hepatotoxic agent, 1 ml/ Kg body wt two times/ week for 3 weeks alone or combined with 6Gy fractionated doses of whole body γ -irradiation (1Gy two times/ week for 3 weeks) induced hepato-toxicity as manifested biochemically by an elevation of liver marker enzymes; transaminases (ALT & AST) and alkaline phosphatase (ALP).

> Oxidative stress in liver was evidenced by a significant increase of malondialdehyde (MDA) along with reduction of glutathione (GSH) content. Liver damage induced by CCl₄ and/or γ -irradiation was accompanied by a significant decrease in the levels of serum triiodothyronine (T₃) and thyroxin (T₄), while thyroid-stimulating hormone (TSH) showed a significant increase. In addition, significant increases were recorded in total cholesterol and triglycerides levels whereas; significant decrease was recorded in glucose level in group exposed to CCl₄ and γ -irradiation. Oral supplementation of S+ ameliorated the changes induced by exposure to CCl₄ and/ or γ -irradiation.

> In conclusion, the present data demonstrated that exposure to chemical as well as physical environmental biohazards induced liver injury concomitant with a hypothyroid state. This disturbance can be modulated by supplementation of hepatoprotective agent.

Keywords: CCl₄, γ-rays, rats, liver, thyroid hormones, silymarin.

Exposure to xenobiotic and ionizing radiation induce complex cellular responses in both experimental animals and humans which may lead to adverse outcomes. Several investigations indicated that damaging effects of radiation and xenobiotic as CCl₄ result from production of highly reactive free radicals

and their consequent action on biological molecules which leads to injury of different tissues (Ashry, 2008 and Hanafy *et al*., 2008).

Liver injury is a prevalent pathology that involves a variety of disorders including oxidative stress, hepatitis, fibrosis, cirrhosis, apoptosis and hepatocellular carcinoma. Numerous reports have shown an indirect effect of liver disorders on serum levels of thyroid hormones (Moustafa *et al.*, 2009), where the liver plays an important role in the metabolism of thyroid hormones and regulates their systemic endocrine effects (Malik and Hodgson, 2002). In turn, thyroid hormones regulate the basal metabolic rate of hepatocytes and modulate hepatic function. Hence, liver and thyroid hormones closely connected, and dysfunction of one causes a disturbance in the other (Malik and Hodgson, 2002 and Khan, 2012). Consequently, treatment of liver injury is important in modulation of the disturbance in pituitary-thyroid axis hormones resulting from exposure to chemical and/ or physical environmental biohazards.

Silymarin is a flavonoid derived from milk thistle that has been reported to afford hepato-protection *in vitro* and *in vivo* by inhibiting the production of proinflammatory and pro-fibrogenic factors (Grattagliano *et al.*, 2013). S+ is a combination of silymarin and other standard antioxidants that include acetyl cysteine, vitamin E, vitamin C, vitamin A, selenium and zinc. It was reported that combination of antioxidants exerts synergistic action in scavenging free radicals (Fang *et al.*, 2002) and employs a series of redox reactions (Blokhina *et al.*, 2003 and Mandelker, 2004) since deficiency in one component may affect the efficiency of the other (Vertuani *et al.*, 2004).

This work aims to underscore the similarity of the toxic effect of CCl_4 metabolites and its highly reactive derivatives to those of gamma irradiation, as well as, their synergistic impact on pituitary-thyroid axis hormones. Investigating the impact of the hepato-protective drug, S+ also is intended.

Material and Methods

Male albino rats weighing 120-150 g (45-60 days) were obtained from the National Research Centre, Giza, Egypt. The animals were maintained under conventional conditions with free access to water and standard pellet concentrated diet.

Radiation exposure

Whole body γ -irradiation was performed at the NCRRT, Cairo, Egypt using a ventilated Canadian ¹³⁷Cs Gamma Cell-40 at a dose rate of 0.47 Gy/min. Rats were exposed to fractionated doses, 1Gy two times/ week for three weeks.

Chemicals

CCl₄ was purchased from El-Nasr Pharmaceutical Chemical Co., Egypt. Animals were injected subcutaneously 1ml/kg body wt (Ibrahim and Abdel Aziz, 2009) two times/ week for a period of 3 weeks. The S+ produced by SEDICO pharmaceutical Co, Egypt. It was available in the form of sachets containing Silymarin (200 mg), acetylcysteine (200 mg), vitamin A (300 IU), ascorbic acid (30 mg), vitamin E (5 IU), selenium (18.3 μ g) and zinc (3.6 mg). It was orally administered 150 mg (dissolved in water)/ kg/day (Omar *et al.*, 2012).

Experimental design

Animals were divided into 7 groups: Control untreated normal rats, CCl₄: Rats injected with CCl₄ (1ml/ kg body wt) subcutaneously two times/ week for a period of 3 weeks, S+ plus CCl₄: Rats orally supplemented with S+ daily for one week before and then through CCl₄ administration for a period of 3 weeks. IRR: Rats whole body exposed to γ -irradiation (1Gy) two times/ week for 3 weeks, S+ plus IRR: Rats supplemented with S+ daily for one week before and then through exposure to γ -irradiation for a period of 3 weeks. CCl₄ plus IRR: Rats injected with CCl₄ (1ml/ kg body wt) two times/ week for 3 weeks and exposed to γ -irradiation (1Gy) two times/ week for 3 weeks. S+ plus CCl₄ (1ml/ kg body wt) two times/ week for 3 weeks. S+ plus CCl₄ plus IRR: Rats injected with CCl₄ (1ml/ kg body wt) two times/ week for 3 weeks. S+ plus CCl₄ pus IRR: Rats injected with S+ and CCl₄ and exposed to irradiation as described above. The animals were sacrificed one day after the last dose of irradiation and / or treatment.

Biochemical analysis

Animals were lightly anesthetized with ether and blood was collected by heart puncture. Serum was separated by blood centrifugation at 3000 rpm. Liver was quickly removed and homogenized in ice-cold saline. Both serum and homogenate were stored at -20° C till biochemical analysis. Serum transaminases (ALT & AST) and ALP were determined according to Reitman and Frankel (1957) and Belfield and Goldberg (1971), respectively. Total T₃ and T₄ in serum were measured using radioimmunoassay kits, TSH was

measured using immunoradiometric assay kit produced by Diagnostic Products Corporation, USA. Liver GSH and MDA contents were determined according to Beutler *et al.* (1963) and Yoshioka *et al.* (1979), respectively. Serum cholesterol, triglycerides and glucose levels were determined according to Richmond (1973), Fossati and Principe (1982) and Trinder (1969), respectively.

Statistical analysis

The SPSS computer program was used for statistical analysis of the results. Values were expressed as mean \pm S.E.. Statistical comparison between groups was done by using one way ANOVA. Differences were considered significant at *P*< 0.05.

Results

The results of the present study revealed that exposure of rats to CCl_4 and/ or γ -radiation induced a significant increase (P < 0.05) in hepatic MDA associated with a significant decrease (P < 0.05) in GSH content as compared to control values. Oral supplementation with S+ induced significant amelioration of the changes induced by CCl_4 or irradiation as well as their combination (Table 1).

 TABLE 1. Changes in liver MDA and GSH levels of adult male albino rats in different groups.

Groups	MDA (µmol/g tissue)	GSH (mg/g tissue)
Control	125.40 ± 6.06	2.64 ± 0.08
CCl ₄	170.80 ± 5.67^{ac}	$1.95{\pm}~0.07^{ m ad}$
S+ plus CCl ₄	138.00 ± 5.91^{bd}	2.48 ± 0.05^{bcd}
IRR	146.80 ± 4.91^{abd}	$1.93 \pm 0.08^{\mathrm{ad}}$
S+ plus IRR	132.80 ± 4.07^{bd}	2.45 ± 0.07^{bcd}
CCl ₄ plus IRR	175.80 ± 4.37^{ac}	$1.16 \pm 0.04^{ m abc}$
S+ plus CCl ₄ plus IRR	144.00 ± 5.45^{abd}	$2.13 \pm 0.07^{\mathrm{acd}}$

Data are represented as means± S.E. (n=5). ^{a:}Significantly different from control. ^{b:}Significantly different from CCl₄. ^{c:}Significantly different from irradiated. ^{d:}Significantly different from CCl₄ plus irradiation.

As shown in Table 2., the administration of CCl_4 and/ or irradiation resulted in a significant increase (P < 0.05) of serum ALT, AST and ALP activities as compared to control values, indicating liver injury. Oral supplementation of S+ induced significant decrease in the activity of these enzymes in CCl_4 , irradiated, or dual treated group.

Egypt. J. Rad. Sci. Applic., Vol. 26, No. 1-2 (2013)

88

Groups	ALT (U/ L)	AST (U/ L)	ALP (U/L)	
Control	16.78 ± 0.45	55.86± 1.24	23.40 ± 0.81	
CCL ₄	29. ^v 2± 1. ^v 0 ^{ad}	72.60 ± 1.43^{ad}	34.90 ± 0.87^{acd}	
S+ plus CCl ₄	17.64 ± 0.50^{bcd}	55.96 ± 0.85^{bcd}	22.56 ± 1.09^{bcd}	
IRR	28.12 ± 0.78^{ad}	71.22 ± 0.98^{ad}	31.08 ± 0.68^{abd}	
S+ plus IRR	19.08 ± 1.15^{bcd}	58.80 ± 1.77^{bcd}	25.36 ± 1.15^{bcd}	
CCl4 plus IRR	34.58 ± 1.44^{abc}	$78.70 \pm .66^{abc}$	40.4 ± 1.16^{abc}	
S+ plus CCl4 plus IRR	21.76 ± 0.90^{abcd}	60.10 ± 1.14^{abcd}	25.38 ± 1.42^{bcd}	

 TABLE 2. Changes in serum ALT, AST and ALP enzyme activities of adult male albino rats in different groups.

Legends as Table 1.

The results in Table 3 showed that exposure of rats to CCl_4 and/ or γ -radiation induced a significant decrease (P < 0.05) in both total T_3 and T_4 and a significant increase (P < 0.05) in TSH level compared to control values. Administration of S+ significantly elevated the levels of T_3 and T_4 and normalized TSH level in the treated groups.

TABLE 3. Changes in serum levels of T3, T4 and TSH of adult male albino rats indifferent groups.

Groups	$T_3(ng/dl)$	$T_4(\mu g/dl)$	TSH (µIU/ ml)
Control	91.80± 1.91	5.21 ± 0.09	0.203 ± 0.012
CCL ₄	77.74± 1.63 ^{acd}	4.63 ± 0.11^{ad}	0.288 ± 0.029^{a}
S+ plus CCl ₄	89.02 ± 1.17^{bcd}	4.96 ± 0.18^{d}	0.216 ± 0.011^{bcd}
IRR	63.84± 1.21 ^{ab}	4.58 ± 0.12^{ad}	0.310 ± 0.015^{a}
S+ plus IRR	88.42 ± 1.29^{bcd}	5.03 ± 0.08^{cd}	0.232 ± 0.009^{bcd}
CCl4 plus IRR	63.44 ± 1.76^{ab}	3.10 ± 0.08^{abc}	0.328 ± 0.024^{a}
S+ plus CCl4 plus IRR	79.16± 2.37 ^{acd}	4.17 ± 0.25^{abcd}	0.236 ± 0.019^{cd}

Legends as Table 1.

Table 4. showed a significant decrease (P < 0.05) in glucose level after exposure to both CCl₄ and γ -rays as compared to control value. Oral supplementation of S+ significantly increased (P < 0.05) the glucose level in this group. Whereas, non-significant changes were observed in glucose level in the other groups. A significant elevation (P < 0.05) in triglycerides level was recorded in all groups exposed to CCl₄ and/ or γ -rays, compared to control value. Exposure to CCl₄ alone or combined with irradiation induced a significant increase (P < 0.05) in cholesterol level. Oral supplementation of S+ significantly decreased (P < 0.05) cholesterol and triglycerides levels in these groups to near normal values.

Groups	Cholesterol (mg/ dl)	Triglycerides (mg/ dl)	Glucose (mg/ dl)
Control	69.40 ± 2.50	83.80± 3.06	124.60 ± 3.54
CCL ₄	79.00 ± 2.85^{a}	95.80 ± 4.13^{a}	117.00 ± 4.05^{cd}
S+ plus CCl ₄	70.80 ± 3.02^{d}	85.00 ± 3.02^{bcd}	121.20 ± 4.86^{cd}
IRR	78.00± 2.98	99.80 ± 3.26^{a}	135.80 ± 5.28^{bd}
S+ plus IRR	76.80 ± 4.35^{d}	85.64 ± 2.78^{bcd}	130.00 ± 4.65^{bd}
CCl4 plus IRR	86.40 ± 2.29^{a}	101.80 ± 1.85^{a}	93.80± 1.66 ^{abc}
S+ plus CCl4 plus IRR	77.80 ± 2.56	90.64 ± 2.65^{cd}	115.80 ± 5.85^{cd}

 TABLE 4. Changes in serum cholesterol, triglycerides and glucose levels of adult male rats in different groups.

Legends as Table 1.

Discussion

In this study subcutaneous administration of CCl_4 two times a week for three weeks induced significant elevation in the activity of liver marker enzymes; ALT, AST and ALP. Elevated activities of these enzymes are indicative of cellular leakage and loss of functional integrity of liver cell membrane (Rajesh and Latha, 2004) and damage of hepatocyte cells (Shah and Shah, 2012). The additional findings of the elevated levels of hepatic MDA and decreased GSH content in liver corroborated the hepatic toxicity of CCl_4 .

The change in the pituitary-thyroid axis hormones, a decrease in total T₃ and T₄ levels and an increase in TSH may be an outcome of CCl₄-induced hepatotoxicity (Itoh et al., 1989, Jatwa and Kar, 2008 and Khan et al., 2011). Significant decrease in total T₃ level was also reported in patients with various hepatic disorders (Moustafa et al., 2009). According to Costa et al. (2001), Torlak et al. (2007) and Khan et al. (2011) serum total T₄ entirely originate from thyroid gland, while more than 80% of total T_3 is produced by deiodination of T_4 in other tissues, especially the liver and kidney through iodothyronine 5'-monodeiodinase enzyme. In particular, the hepatic enzyme is thought to be responsible for the major part of peripheral total T₃ production. It was established that CCl₄-induces liver injuries in rat (Ashry, 2008 and Sreelatha et al., 2009), reduction in serum T₃ level could partly be due to the decreased conversion of T₄ to T₃ on account of low activity of iodothyronine 5'-monodeiodinase enzyme (Jatwa and Kar, 2008). Furthermore, T_3 concentration appears to parallel the severity of liver dysfunction (Moustafa *et al.*, 2009). However, injuries of CCl_4 metabolites leading to dysfunction of thyroid cannot be excluded (Khan et al., 2011). It could be suggested that the disturbances in thyroid function or thyroid hormone levels in blood after CCl₄ administration may be secondary to hepatotoxicity of CCl₄.

CCl₄ hepatotoxicity derives from its metabolic activation in the liver. Adewole *et al.* (2007) explained that CCl_4 is metabolized by cytochrome P450 2E1 to trichloromethyl radical (CCl_3). The CCl_3 and its highly reactive derivative, the trichloromethyl peroxyl radical (Cl3COO⁻), are assumed to initiate free radical-mediated lipid peroxidation leading to accumulation of lipid peroxidation products that causes hepatic and renal injuries. These radicals are capable of initiating a chain of lipid peroxidation reactions by abstracting hydrogen from polyunsaturated fatty acids (PUFA). Peroxidation of lipids, particularly those containing PUFA, can dramatically change the properties of biological membranes at cellular and subcellular levels. These changes lead to hepatocyte destruction and release of intracellular enzymes; ALT, AST and ALP as observed in this study. This phenomenon results in the generation of reactive oxygen species (ROS), (like superoxide anion O₂-, H₂O₂ and hydroxyl radical OH⁻). Therefore, the elevation of hepatic lipid peroxidation observed in this study could be an outcome of CCl₄-induced cellular damage. It could also be due to the decreased GSH level as observed in this study as well as endogenous antioxidant enzymes, SOD, CAT and GPX (Ashry, 2008 and Chiu et al., 2012). The decreased GSH level after CCl₄ administration might be due to its increased utilization by the hepatocytes in scavenging toxic radicals of CCl₄ (Bhadauria et al., 2008). On the other hand, ionizing radiation induced lipid peroxidation through the generation of ROS which attack the PUFA constituent of the cell membrane and other cell components (Zahran et al., 2006). The increase in ALT, AST and ALP activities in serum-observed in this study reflects an increase of plasma membrane permeability, which may be associated with cell death (Gharib, 2007). In this study, γ -irradiation induced non-significant increase in total cholesterol level and significant increase in triglycerides levels, which runs in agreement with the results of Ashry et al. (2009) and Ashry et al. (2010). They attributed this increase to the suppression of lipoprotein lipase activity that reduces the uptake of lipids by adipose cells in addition to decreased fatty acid oxidation and increased rate of cholesterol biosynthesis in the liver and other tissues.

The thyroid status disturbance-observed after irradiation-seemed to be due to both inhibited T_4 and T_3 biosynthesis in thyroid and disturbed hormone peripheral metabolism under radiation exposure (Nadol'nik *et al.*, 2004).

Consequently, TSH level in serum increased - as observed in this result-in order to activate the thyroid gland to increase its production of T_3 and T_4 (Abdel Fattah *et al.*, 2003). From the above results, the extent of liver damage and thyroid hormone disturbances upon simultaneous CCl₄ and radiation exposure is greater than that caused by each of them alone.

The significant decrease in glucose level observed in this work can be discussed on the bases that, thyroid hormones stimulate almost all aspects of carbohydrate metabolism, decreasing of these hormones under the effect of free radicals generated from xenobiotics reduced hepatic glucose uptake (Arai *et al.*, 2010). Moreover, studies have demonstrated decreased hepatic glycogen content after treatment with CCl₄ (Morsy *et al.*, 2002 and Muriel *et al.*, 2001), reflecting decreased gluconeogenesis by the liver (Althnaian *et al.*, 2013). Furthermore, hypoglycaemia was observed previously in liver cirrhotic rats (Mion *et al.*, 1996). As well as, all aspect of fat metabolism are also enhanced under the influence of thyroid hormones. Decreases of thyroid hormones secretion increase the plasma concentration of cholesterol and triglycerides and almost always cause excessive deposition of fat in the liver as well. In addition intracellular T₃ acts as an antioxidant by reducing ROS accumulation through producing the NADPH required for regeneration of reduced GSH, a potent endogenous antioxidant (Moustafa *et al.*, 2009).

Oral supplementation of S+ during exposure to CCl₄ and/ or γ -rays ameliorated the disturbances in oxidative stress in liver tissue and decreased the activity of liver enzymes and consequently modulated the disturbances in pituitary-thyroid axis hormones, decreased cholesterol and triglycerides and increased glucose levels in serum. This ameliorating effect of S+ observed in this study is attributed to its components; mainly silymarin which have the ability to reduce membrane permeability and restore impaired liver function (Ozturk et al., 2012), acetyl cysteine which exerts its hebato-protective effect by counteracting accumulated ROS in the liver through its antioxidant properties and a GSH precursor (Liu et al., 2007), zinc which plays an important role in treatment of liver injury due to its catalytic, structural and regulatory role in a large number of enzymes (Fatimah and Mahboob, 2012), vitamin C which is a major watersoluble antioxidant is believed to decrease lipid peroxidation either directly or indirectly by regenerating vitamin E (Adikwu and Deo, 2013), vitamin E which prevents ROS damage in PUFA as a liposoluble antioxidant acting against damage caused to phospholipids as a membrane-stabilizing agent (UBOH et al.,

2012). The ameliorating effect of S+ on thyroid hormones may be due to the activation of 5[']-deiodinase enzyme in the liver which stimulates conversion of T_4 to T_3 . It is well known that deiodinases contain Se in the form of the amino acid selenocystein located at their active sites, so injection of an antioxidant drug including Se may cause changes in deiodinases activities (Abdel-Fattah *et al.*, 2003). Also vitamin E, a lipid soluble antioxidant in the cell membrane, could increase the release of stored T_4 through the membrane of thyroid cells into the blood (Abdel-Fattah *et al.*, 2003). The benefit of S+ might be attributed to the synergistic effect of the antioxidants content therein which act as free radical scavengers and lipid peroxidation inhibitor, acting thus to prevent the membrane permeability changes especially those of the hepatocyte membrane transport, thereby improving the xenobiotics induced changes in liver function.

According to the results obtained in the current study, oxidative damage resulting from the metabolism of CCl_4 in the liver as well as exposure to γ -ray exhibit the same effect on liver and pituitary-thyroid axis hormones. As well as, exposure to CCl_4 and ionizing radiation exert a synergistic effect on liver injury associated to a hypothyroid state. Treatment of liver injury by hepato-protective drug S+ modulated liver function and consequently modulated the disturbances in pituitary-thyroid axis hormones.

References

- Abdel-Fattah, K. I., Abou-safi, H. M., Abdel-Khalek, L. G., Mehany, N. L. and Ragab, M. T. (2003) The protective and curative role of selenium and vitamin E against disorders induced by gamma radiation on the hypophysis – thyroid axis in rats. *Arab. J. Nucl. Sci. Applic.*, 36, 297.
- Adikwu, E. and Deo, O. (2013) Hepatoprotective Effect of Vitamin C (Ascorbic Acid). *Pharmacol. Pharm.*, **4**, 84.
- Adewole, S. O., Salako, A. A., Doherty, O. W., and Naicker T. (2007) Effect of melatonin on carbon tetrachloride-induced kidney injury in wistar rats. *Afr. J. Biomed. Res.*, 10, 153.
- Althnaian, T., Albokhadaim, I. and El-Bahr, S. M. (2013) Biochemical and histopathological study in rats intoxicated with carbontetrachloride and treated with camel milk. Springer Plus, 2, 57
- Arai, H., Awane, N., Mizuno, A., Fukaya, M., Sakuma, M. and Harada, N., (2010) Increasing early insulin secretion compensate adequately for hepatic insulin resistance in CCl4-induced cirrhosis rats. J. Med. Invest., 57, 54.
- Ashry, O. M. (2008) Hisperidin, a citrus bioflavonoid attenuates liver oxidative stress in rats produced by CCl₄ and irradiation. *Egypt. J. Rad. Sci. Applic.*, 21, 407.

- Ashry, O. M., Hussein, E. M. and Salama, S. F. (2009) Boosting of antioxidants defence by interferon-alpha in irradiated bone marrow transplanted rats. *Egypt. J. Rad. Sci. Applic.*, 22, 19.
- Ashry, O. M., Kafafy, Y. A. and El Tawil, G. R. (2010) Influence of hesperidin on lipid metabolism, oxidative stress and related trace elements in γ irradiated rats. *Egypt. J. Rad. Sci. Applic.*, 23, 15.
- Belfield, A. and Goldberg, D. M. (1971) Revised assay for serum phenyl phosphatase activity using 4-amino-antipyrine. *Enzyme.*, 12, 561.
- Beutler, E., Duran, O. and Kelly, B. (1963) Improved method for the determination of blood glutathione. *J. Lab. Clin. Med.*, 61, 852.
- Bhadauria, M., Nirala, S. K. and Shukla, S. (2008) Multiple treatment of propolis extract ameliorates carbon tetrachloride induced liver injury in rats. *Food Chem. Toxicol.*, 46, 2703.
- Blokhina, O., Virolainen, E. and Fagerstedt, K.V. (2003) Antioxidants, oxidative damage and oxygen deprivation stress: A review. *Ann. Bot.*, **91**, 179.
- Costa, V. M.da, Moreira, D. G. and Rosenthal, D. (2001) Thyroid function and aging; gender related differences. J. Endocrinol., 171, 193.
- Chiu, C. C., Huang, C. Y., Chen, T. Y., Kao, S. H., Liu, J. Y., Wang, Y. W., Tzang, B. S. and Hsu1, T. C. (2012) Beneficial effects of ocimum gratissimum aqueous extract on rats with CCl₄-Induced Acute Liver Injury. Evid. Based Complement. *Altern. Med.*, 2012, 1.
- Fatimah, S. N. and Mahboob, T. (2012) Effect of zinc supplementation on antioxidant enzymes in liver cirrhosis. *Pak. J. Biochem. Mol. Biol.*, 45, 68.
- Fang, y., Yang, S. and Wu, G. (2002) Free radicals, antioxidants, and nutrition. *Nutrition*, 18, 872.
- Fossati, P. and Prencipe, L. (1982) Serum triglycerides determined colourimetrically with an enzyme that produces hydrogen peroxide. *Clin. Chem.*, 28, 2077.
- Gharib, O. A. (2007) Does Kombucha tea reduce the damage-induced by radiation exposure?. *Egypt. J. Rad. Sci. Applic.*, 20, 141.
- Grattagliano, I., Diogo, C. V., Mastrodonato, M., de Bari, O., Persichella, M. and Portincasa, P. (2013) A silybin-phospholipids complex counteracts rat fatty liver degeneration and mitochondrial oxidative changes. World J. Gastroenterol., 19, 3007.
- Hanafy, N., Osman, N. and Farag, F. (2008) Reversal of carbon tetrachloride (CCl₄) induced alteration in rat tissues by diferuloyl methan (DM). *Egypt. J. Rad. Sci. Applic.*, 21, 357.
- Ibrahim N. K. and Abdel Aziz, N. (2009) Shark cartilage attenuates oxidative stress in liver of guinea pigs exposed to carbon tetrachloride and/ or gamma irradiation. J. Rad. Appl. Sci., 2, 990.

- Itoh, S., Yamagishi, F. and Matsuyama, Y. (1989) Relationship between liver microsomal function and serum thyroid hormones in rats treated with carbon tetrachloride. *Res. Commun. Chem. Pathol. Pharmacol.*, 65, 111.
- Jatwa, R. and kar, A. (2008) Protective effects of L-ornithine-L-aspartate and silymarin on chemically induced kidney toxicity and thyroid dysfunction in mice. *EXCLI J.*, 91, 139.
- Khan, R. A. (2012) protective effects of sonchusasper (L.) Hill, (Asteraceae) against CCI₄-induced oxidation stress in the thyroid tissue of rats. *BMC complement. altern. Med.*, **12**, 181.
- Khan, M. R., Memon, A., Khan, G. N., Shabbir, M., Saeed, N., Ali Shah, N., Bokhari, J. and Rashid, U. (2011) Protective effects of *Digera muricata* (L.) Mart. against carbon tetrachloride induced oxidative stress in thyroid of rat. *Afr. J. Biotechnol.*, **10**, 17564.
- Liu, Y., Zhang, H., Zhang, L., Zhou, Q., Wang, X., Long, J., Dong, T. and Zhao, W. (2007) Antioxidant N-acetylcysteine attenuates the acute liver injury caused by X-ray in mice. *Eur. J. Pharmacol.*, 575, 142.
- Malik, R. and Hodgson, H. (2002) The relationship between the thyroid gland and the liver. Q. J. Med., 95, 559.
- Mandelker, L. (2004) The natural activities of cells, the role of reactive oxygen species, and their relation to antioxidants, neutraceuticals, botanicals, and other biologic therapies. *Vet. Clin. North Am. Small Anim. Pract.*, **34**, 39.
- Mion, F., Géloën, A., Agosto, E. and Minaire, Y. (1996) Carbon tetrachloride-induced cirrhosis in rats: Influence of the acute effects of the toxin on metabolism. *Hepatology*, 23, 582.
- Morsy, F. A., Abdel Razik, H. and El-Sharkawy, L. (2002) L-Carnitine and melatonin reverse CCl4 induced liver injury fibrosis in rats (Histological and Histochemical studies). *The Egyp. J. Hosp. med.*, **17**, 70.
- Moustafa, A. A., Ali, E. M. M., Mohamed, T. M. and Abdou, H. I. (2009) Oxidation stress and thyroid hormones in patients with liver diseases. *Eur. J. Intern. Med.*, 20, 703.
- Muriel, P., Alba, N., Pérez-Alvarez, V. M., Shibayama, M. and Tsutsumi, V. K. (2001) Kupffer cells inhibition prevents hepatic lipid peroxidation and damage induced by carbon tetrachloride. *Comp. Biochem. Physiol. C. Toxicol. Pharmacol.*, 130, 219.
- Nadol'nik, L. I., Netsetskaia, Z. V. and Vinogradov, V. V. (2004) Effect of long-term exposure to low dose gamma-irradiation on the rat thyroid status. *Radiat. Biol. Radioecol.*, 44, 76.
- Omar, H. M., Zedan, Z. Ibraheim, Z. Z, El-Shimy, N. A. and Ali, R. S. (2012) Antiinflammatory, antipyretic and antioxidant activities of the earthworms extract. J. Biol. Earth Sci., 2, 10.

- Ozturk, M., Akdogan M., Keskin, I., Kisioglu, A. N., Oztas, S. and Yildiz, K. (2012) Effect of *Silybum marianum* on acute hepatic damage caused by carbon tetrachloride in rats. *Biomed. Res.*, 23, 268.
- Rajesh, M. and Latha, M. (2004) Preliminary evaluation of the antihepatotoxic effect of Kamilari, a poly herbal formulation. *J. Ethnopharmacol.*, **91**, 99.
- Reitman, S. and Frankel, S. (1957) A colorimetric method for the determination of serum glutamic oxaloactic and glutamic pyruvic transaminases. Am. J. clin. Pathol., 28, 56.
- Richmond, W. (1973) Preparation and properties of a cholesterol oxidase from Nocardia sp. and its application to the enzymatic assay of total cholesterol in serum. *Clin. Chim.*, 19, 1350.
- Shah, B. and Shah, G. (2012) Antifibrotic effect of heparin on liver fibrosis model in rats. *World J. Gastrointest. Pharmacol.*, **3**, 86.
- Sreelatha, S., Padma, P. R. and Umadevi, M. (2009) Protective effects of Coriandrum sativum extracts on CCl₄-induced hepatotoxicity in rats. Food Chem. Toxicol., 47, 702.
- Torlak, V., Zemunik, T., Modun, D., Capkun, V., Pesutic-Pisac, V., Markotic, A., Pavela-Vrancic, M. and Stanicic, A. (2007) 131I-induced changes in rat thyroid gland function. *Braz. J. Med. Biol. Res.*, 40, 1087.
- Trinder, P. (1969) Determination of blood glucose using 4-amino phenazone as oxygen acceptor. J. Clin. Pathol., 22, 246.
- Uboh, F. E., Ebong, P. E., Akpan, H. D. and Usoh, I. F. (2012) Hepatoprotective effect of vitamins C and E against gasoline vapor-induced liver injury in male rats. *Turk. J. Biol.*, **36**, 217.
- Vertuani, S., Angusti, A. and Manfredini, S. (2004) The antioxidants and proantioxidants network: an overview. *Curr. Pharm.*, 10, 1677.
- Yoshioka, T., Kawada, K., Shimada, T. and Mori, M. (1979) Lipid peroxidation in maternal and cord blood end protective mechanism against activated-oxygen toxicity in the blood. *Am. J. Obstet. Gynecol.*, **35**, 375.
- Zahran, A. M., Azab, KH. SH. and Abbady, M. (2006) Modulatory role of allopurinol on xanthine oxidoreductase system and antioxidant status in irradiated rats. *Egypt. J. Rad. Sci. Applic.*, 19, 373.

(Received: 27/10/2013; accepted: 08/12/2013)

اضطرابات هرمونات محور النخامية الدرقية في الجرذان المعرضة لرابع كلوريد الكربون أو اشعة جاما

ناهد عبد العزيز

قسم بحوث البيولوجيا الاشعاعية ، المركز القومي لبحوث و تكنولوجيا الإشعاع ، ص. ب. ٢٩ مدينة نصر ، مصر.

يهدف هذا البحث الى دراسه الاضطرابات التي تحدث في هرمون الغدة النخامية المحفز لافراز الغدة الدرقية و كذلك هرمونات الغدة الدرقية. التراى أيودوثيرونين و الثيروكسين- في ذكور الجرذان المعرضة لاصابة الكبد بمادة رابع كلوريد الكربون مع/ أو التعرض لاشعة جاما ومعالجة هذه الاضطرابات بتجريع الجرذان علاج واقي للكبد وقدتم حقن الجرذان برابع كلوريد الكربون ١مجم/كم من وزن الجسم مرتين اسبوعيا و لمدة ثلاثة اسابيع مع/ أو التعرض لأشعة جاما المجز أة بجر عه قدر ها ١ جراى مرتين اسبو عيا و لمدة ثلاثة اسابيع. وقد أدى ذلك الى زيادة مستوى المالونداى الدهايد مصحوبا بنقص في مستوى الجلوتاثيون في الكبد. و قد ارتبط بالاجهاد التأكسدي الناتج عن الاشعاع زيادة في الانزيمات الداله على تلف وظيفة الكبد (االاسبارتيت ترانس امينيز والانين امينوترانسفيراز وانزيم الفوسفاتيز القاعدى) وكذلك أدى الي نقص في هرموني التراى أيودوثيرونين و الثيروكسين في الدم بينما أدى الى زيادة في هرمون الغدة النخامية. كما لوحظ زيادة في مستويات كل من الكوليسترول الكلي والدهون الثلاثيه ونقص في مستوى الجلوكوز. وقد أدى تجريع الجرذان عقار السيليمارين الزائد الى تحسن هذه الاضطرابات. نستخلص من هذه النتائج أن التعرض للملوثات البيئية الكيميائية أو الاشعاعية يؤدى الى تلف الكبد مع اضطرابات في هرمونات الغدة الدرقية في الدم و أن تجريع الجرذان عقار السيليمارين الزائد يؤدى الى تحسن هذه الاضطر ابات.