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A surface growth model for two species is proposed, when deposition, 
surface diffusion and evaporation are considered, in (1+1)-dimensions. A 
Monte-Carlo simulation is carried out, focusing on the effect of evaporation on 
the evolution of the amount of roughness. The results show that the interplay 
between deposition, surface diffusion and evaporation slows down the rate of 
growth of the surface width. In addition, when the rate of evaporation 
increases, the surface width grows faster to a higher value, in comparison to the 
case of low rate of evaporation. This introduces changes in the scaling 
exponents which show that evaporation should be given equal or as much 
consideration as deposition and surface relaxation.  
 

1. Introduction: 
The growth of surfaces attracts interest due to its technological 

importance since many properties of materials depend on surface roughness. 
During the growth, the surface becomes undesirably rough. In order to avoid 
this morphology, the basic physical effects and the processes that lead to the 
development of surface roughness must be well understood. Apart from specific 
technological applications, most rough surfaces are formed under conditions 
that are far from equilibrium. Therefore, the study of roughening has a relevant 
importance in the understanding of nonequilibrium statistical physics at the 
fundamental level [1-3]. It is well known that a stochastic growing surface 
exhibits scaling behaviour and evolves to a steady state without a characteristic 
time or length scale. This has led to the development of the dynamical scaling 
approach which has been found by Family and Viscek [1]. Starting with a flat 
substrate, defining the surface width W(L,t) as  
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 where L is the system size, h(r,t) is the height of the surface at position r and 
time t, d-1 is the substrate dimension and h t( )  is the average of the surface 
height, the scaling law takes the form  

W L t L f t Lz( , ) ( / )= α  

The dynamical scaling behaviour is characterized by the roughness exponent α 
and the dynamical exponent z with growth exponent β α= / z . The function 

f x( )  scales as f x x( ) = β  for x<<1 and f x const( ) .=  for x>>1. This 
scaling behaviour has been studied and has been argued to be universal [2, 3]. 

 
Discrete growth models have played a major role in the understanding 

of the nature of the surface roughness since they mimic the essential physical 
parameters and eliminate details which are less important [1, 3]. The growth of 
two or more species is common in modern technology [4]. In this case it is 
desirable to study aspects such as kinetics and scaling behaviour in order to get 
microscopic understanding of the growth of the deposition of multi-species. In 
this situation the dynamics of both types of species is important as well as the 
processes, such as deposition, surface diffusion and incorporation, etc., which 
increases the level of difficulty of the problem, to consider all of them at once. 
The use of a rather simple model for two species which includes only simple 
processes, will give insight into the dynamics of roughening. It is common in 
vapour deposition to find local diffusion of the newly arrived particles along the 
surface of the deposited material. Even though the models regarding the growth 
were designed to include deposition and surface relaxations [1-3], there could 
also be evaporation processes in the real growth. Therefore, in order to see only 
the effect of evaporation on the growth kinetics, there should be a simple model 
in which we are able to focus on the evaporation processes during the growth. 
Henceforward, one can get answers to the following questions: "does 
evaporation affect the kinetic roughening? and is it an important process to be 
considered in the case of surface growth of two species?".  

 
Few models for two species have been introduced which incorporate 

evaporation into surface growth models [5, 6]. In reference [5], the authors 
studied the effect of the rules of interaction between the different species on the 
universality. In reference [6] a model for two species (active and inactive) was 
introduced which allows surface diffusion and evaporation. Such a model shows 
growth kinetics where the values of exponents differ from the values of the 
Edwards-Wilkinson's (EW) [7] universality, although it is a random deposition 
model with diffusion (RDD) [1-3]. However, in the previous work, the effect of 
evaporation processes on growth kinetics was not resolved from other 
processes. In order to resolve only the evaporation from other processes, we 
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need to fix the rate at which these other processes occur. Then, the growth 
kinetics can be investigated in order to test the effect of the evaporation on the 
kinetic behaviour.  
 

2. Model: 
In this work, a random deposition model with diffusion for two species 

is proposed, in which evaporation is allowed to take place in such a way, that 
this is the only process under control. We do not allow overhang/voids to occur 
during the growth in order to keep the model simple. The model represents the 
surface growth due to the deposition of two kinds of species with different 
attractive forces where the temperature is sufficiently high such that the less 
active particle is allowed to evaporate. The model does not describe the growth 
of a specific material, rather it concentrates on the effect of evaporation in the 
case when the dynamics of both species is considered. In order to model the 
growth of real material, e.g, semiconductors [4], some details should be 
included which will make the model complicated, thus testing only the effect of 
evaporation will be difficult.  

 
In general, for the model under study here, the rules of interaction are 

such that one type of species (A), active, is always necessary for the deposition 
of both species to occur, while the other (B), less active than (A), is allowed to 
evaporate or to control the diffusion across the surface. Therefore, evaporation 
and surface diffusion will depend on the concentration of the (B) species. In this 
case these processes interfere with each other and the growth occurs according 
to the interplay between both of them, in addition to the deposition. Since 
surface diffusion and evaporation depend on the presence of particles (B), we 
will fix the rate of surface diffusion and will increase the rate of evaporation, 
where the concentration of both species remains same. This will be clear below 
when we describe the model. We believe that the increase in the rate of 
evaporation will produce a change in the topography of the surface during the 
growth. This change can be characterized by the evolution of the amount of 
roughness (kinetic roughening). 

 
The growth occurs as follows: at first a site j is selected at random and 

then a particle (A) (or particle (B)) is deposited on the surface with a probability 
1-P  (or P); i.e, the deposition rate of each particle depends on the chosen 
probability P. Fig. 1(a) shows a piece of the aggregate for model (i) and Fig. 
(1b) represents that of model (ii). The white squares represent the aggregated 
particles of type (A) and dark squares represent those of type (B). Circles 
denote the incoming particles while the down arrows represent deposition. The 
shifted down arrows represent diffusion and the inclined dashed arrows indicate 
evaporation. As shown in Fig. (1a), if the arriving particle is of type (A), it is 
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allowed to deposit and stick over a particle if it is of the same type (particles 2, 
3, 4 and 7) otherwise, it diffuses to a local minimum if the deposition occurs 
over (B) type (particles 1 and 6). For a process 5, deposition occurs for (A) type 
and there is no diffusion since this site represents a local minimum. If the 
incomming particle is of type (B), it is allowed to deposit over type (A) and 
then diffuses to a local minimum (particles 2, 3, 4 and 7). The evaporation 
occurs for (B) type as shown for processes 1 and 6. The deposition of (B) type, 
which is indicated by 5, occurs due to a presence of (A) type in a neighbouring 
column and higher by one step. The modification of model (i) in order to 
increase the rate of evaporation is shown in figure 1(b) which represents model 
(ii). After deposition of (B) type over (A) type, diffusion to a local minimum 
occurs. If this diffusive particle ends over a (B) type, where there is no (A) type 
in any neighbouring site higher by one step, then it evaporates (particles 3 and 
4). This modification increases the rate of evaporation for the same value of the 
deposition probability P. 
 

3. Results: 
The simulation is performed on a lattice of size L with a periodic 

boundary conditions such that the chosen site j is the same as j+L. Statistical 
average is obtained over 200 independent simulations for each parameter. The 
simulation is carried out on the computer by means of a Monte-Carlo method. 
In order to simulate the processes according to models (i) and (ii), a computer 
program is written using the FORTRAN language. We use different random 
number generators from CERN and EMSSL libraries as well as a code written 
by the author in order to satisfy the following conditions: a) the random 
numbers are uniformly distributed in the interval [0-1] and b) these random 
numbers are uncorrelated. Throughout the code of the computer program, a 
two-dimensions array is used to represent the embedded dimensions d. The first 
dimension of the array represents the substrate of dimensions d-1 and the 
second dimension is used for the height of the aggregation. The site on the 
substrate of location (j) is chosen randomly according to a specific model and 
then it is filled by a particle of type (A) or (B) according to the value of P or  
(1-P). The deposition, diffusion or evaporation processes are determined 
according to the content of the surrounding sites of the newly filled particle in 
the location (j). The time is computed as one Monte-Carlo step. At each Monte-
Carlo step, the height h(r,t) at each site and the average height h t( )  of all 
aggregation are calculated in order to get finally the value of the surface width 
W(L,t) at this time. 
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(a) model (i) 
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(b) model (ii) 

 
Fig. (1): A piece of the cross section of the aggregate according to: (a) model (i) 

and (b) model (ii). 
 
 
The results for model (i) are shown in Fig. (2). In this figure we present 

a log-log plot of the surface width W as a function of time for three different 
values of deposition probability P and for RDD model of one type of species 
[when P=0, which is taken as a reference for a comparison]. We see that the 
surface width decreases as P increases. The inset of Fig. (2) shows a log-log 
plot of the size L versus the saturated surface width WS from where the values of 
the exponent α in cases of RDD and P = 0.5, respectively, are obtained. 
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Fig. (2):     Log-log plot of the surface width versus time for different P for L=1500 

for model (i). The upper inset shows the extraction of the exponents for 
RDD-model and P=0.5. 

 
 
 

Table (1) lists the measured values of the exponents for model (i), 
which shows that as P increases, the values of the exponents decrease. This 
means that there is a slow down in the kinetics compared to the RDD model. 
Therefore, the interplay between deposition, diffusion on surface and 
evaporation slows down the growth of the amount of roughness and finally it 
saturates at a lower value when compared with RDD model. As indicated from 
the model, when P increases, the rates of diffusion and evaporation increase and 
at the same time the rate of deposition upon first touch to the surface decreases 
(when (A) type sticks to its same kind). Thus, when the rates of surface 
diffusion and evaporation increase, the surface width grows more slowly and 
saturates at a lower value.  
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Table (1): The computed exponents for model (i) and for different values of P. 

P α ± 0 01.  β ± 0 01.  
0.3 0.48 0.2 
0.5 0.46 0.19 
0.7 0.44 0.18 
 
However, we can not resolve the effect of evaporation process on the 

growth kinetics, neither on the exponents from the behaviour shown in Fig. (2). 
In order to see this effect, we make the log-log plot of surface width as a 
function of time for different values of P for model (ii) in figure 3. It is seen 
from this figure that the surface width decreases as P increases. At the same 
time, the surface width saturates at a higher value than that of model (i) for each 
P but still lower than that of the RDD model. Table (2) lists the values of the 
exponents in the case of model (ii). It is seen from table 2 that the growth 
exponent β remains approximately the same for each P while the exponent α 
decreases as P increases. 

 
Table (2): The computed exponents for model (ii) and for different values of P. 

P α ± 0 01.  β ± 0 01.  
0.3 0.47 0.22 
0.5 0.44 0.22 
0.7 0.40 0.23 

 

The comparison between the results of model (i) (figure 2) and model 
(ii) (figure 3) indicates that the surface width, at the same value of P when the 
rate of evaporation increases (model (ii)), saturates at a higher value than that of 
model (i). At the same time the growth rate of the surface width is higher in the 
case of model (ii) than that of model (i). This is clear from table 1 and table 2 
when growth exponents in both models are compared for each value of P. It is 
also seen that in the case of model (ii), the growth exponent is closer to the 
value of that of RDD model (EW universality). However, when evaporation rate 
increases, the roughness exponent decrease more for model (ii) than that of 
model (i) while this exponent for both models is lower than that of RDD model. 
Therefore, we argue that the evaporation process, when it occurs at a low rate, 
slows down the growth of the surface width. In contrast, when evaporation rate 
increases, the surface width grows fast in comparison to the low rate but still 
with a rate lower than that of the RDD model. Finally, the increase in the rate of 
evaporation leads to a more jagged surface. The lower inset of Fig. (3) shows 
the log-log plot of the surface width as a function of time for models (i) and (ii) 
when P=0.5 in addition to the RDD model for a comparison. 
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Fig. (3): Log-log plot of the surface width versus time for different P for L=1500 for 

model (ii). The upper inset shows the extraction of the exponents for RDD-
model and P=0.5. The lower inset shows the log-log plot of the surface 
width for RDD-model, model (i) and model (ii) for comparison. 

 

 

4. Conclusion: 
In conclusion, we considered evaporation in addition to deposition and 

surface diffusion in the RDD model for two assymmetric species. We have seen 
that the interplay between deposition, surface diffusion and evaporation leads to 
a different kinetic behaviour and different roughening. The values of the 
exponents measured in our simulations are deviated from the values of the EW 
universality of the usual RDD model of one type of species. It is shown that the 
evaporation process alone has affected the evolution of the amount of roughness 
which appeared in the behaviour of the surface width W(t) and the saturated 
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surface width WS. We also show that the increase of the rate of evaporation 
enhances the growth of the surface width which is indicated from the values of 
the exponents β for different deposition probabilities. It is indicated from the 
values of the exponents α that the surface becomes rougher when the rate of 
evaporation increases. In reference [8], RDD model for one kind of species is 
considered to include desorption. The results of this work show that desorption 
has no effect on the universality and hence it has no importance to be 
considered. However, the results of this work show that introducing evaporation 
in the growth of binary species changes the scaling exponents. Therefore, it 
should be treated on the same level of importance as well as deposition and 
surface relaxation.  
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