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The excited binomial state of the radiation field has been recently 
introduced by repeated application of the photon creation operator on binomial 
states. In this paper the Glauber second order correlation functions, the 
quasiprobability distribution functions (Winger function and Q -function) for 
such states are examined.  
 

1. Introduction: 

Extensive efforts have been paid to generate new states other than 
number (Fock) states n  or coherent states α . The Fock state is the 
eigenstate of the photon number operator aan ˆˆˆ †= , i.e. nna =nâˆ †  where 

†â  and â  are boson creation and annihilation operators respectively. On the 
other hand, the coherent state is the eigenstate of the annihilation operator â  
i.e. ααα =â ; besides the value of its normalized second-order correlation 
function )0()2(g  is unity. Recently, there has been a great deal of interest in 
producing and generating new states in addition to the usual ones (Fock state 
and coherent state). Some of the excited quantum states were introduced in the 
processes of the field-atom interaction in a cavity such as the excited coherent 
states (ECS) [1]. The ECS exhibits some nonclassical properties such as sub-
poissonnian photon statistics and squeezing in one of the quadratures of the 
radiation field, etc. Several other excited quantum states, even and odd ECS [2], 
excited squeezed states [3-5], and excited thermal states [6, 7] have been 
studied. These excited quantum states can be prepared by conditional 
measurement on a beam splitter [8]. It would be interesting to states of the 
radiation field which can be generated by repeated application of the photon 
creation operator on binomial states (BS) [9-11] and negative binomial states 
(NBS) [12-15] are termed as the excited binomial states (EBS) and excited 
negative binomial states (ENBS) respectively. They reduce to Fock states and 
excited coherent states in certain limits and can be viewed as intermediate states 
between Fock states and ECS [16]. In what follows we wish to shed some light 
on the properties of EBS. 
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The organization of the paper is as follows: In section 2 we review 
briefly the EBS. In section 3 the normalized second-order correlation function is 
studied. Section 4 is devoted to discuss the quasiprobability distribution 
functions Q -function and (Wigner) W -function. Finally, discussion of the 
result and conclusions are drawn in sec. 5. 
 

2. The normalized EBS 

We review briefly the EBS as defined in [16] 
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n  photons in the BS. Here nk,  and M  are integers, η  is a real number, â  

and †â  satisfy the commutation relation [ ] 1ˆ,ˆ † =aa , their effects on the Fock 

state n  are 

1ˆ −= nnna ,   11ˆ † ++= nnna ,          (4) 
 
while ),,( Mk ηλ  is a normalization constant of the EBS. For determining 

),,( Mk ηλ , the expectation value of the operator k†ˆˆ aak  on the BS is 
calculated as follows 
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 The normalization constant is 
 

[ ] 2
1

),,(),,( −= MkBMk ηηλ  .                                (6) 
 

After the state is being introduced, we shall discuss some of its properties in 
what follows. 
 

3. Normalized second-order correlation function 

We shall employ the Glauber second-order correlation function to 
discuss some statistical properties such as sub-Poissonian distribution [17, 18] 
which is characteristic of nonclassical states. The condition for sub-Poissonian 

statistics, for any state, is that the variance 
222 ˆˆ)ˆ( nnn −=∆  must be less 

than the mean photon number n̂ . This can be presented by the Glauber (zero 
time) second-order correlation function of the form 
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A light field has a sub-Poissonian distribution (nonclassical effect) if 

1)0()2( <g , super-Poissonian distribution effect if 1)0()2( >g , and 

Poissonian distribution if 1)0()2( =g . Examples for sub-Poissonian, super-
Poissonian and Poissonian light statistics are Fock, chaotic and coherent states, 
respectively. Moreover, the generation of sub-Poissonian light has been 
established in semiconductor laser [19] and in the microwave region using 
maser operating in the microscopic regime [20]. 
 

To discuss )0()2(g  of EBS we should calculate the expectation values 

of aan ˆˆˆ †=  and 2†2 )ˆˆ(ˆ aan =  with respect to the state, which read as follows: - 
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The autocorrelation function )0()2(g  for this state is plotted in fig. (1) for 

different values of kM , . It is apparent that for 0→η  then )0()2(g  goes to 

k
11−  for the state )0(,,, ≠kMk η  and as 1→η  then )0()2(g  tends to 

kM +
−

11 . This is depicted clearly in the figure for )0()2(g . The state gives 

partial coherent light because 1)0(0 )2( << g . The figures are quantitatively 
different from that for the BS especially near 0=η  where it tends to very large 
values for the BS, in contrast to the finite value for the EBS.  
 
 

 

 

 

 

 

 

 

 

 

 

 

 

4. Quasi-probability distribution functions 

It has been shown from earlier studies [21-24] that the quasi-probability 
functions W -function, (Husimi) Q -function, (Glauber-Sudershan) P -
function, are important for the statistical description of a microscopic system 
and provide insight into the nonclassical features of the radiation fields. In this 
section we shall concentrate on the Q -and W -functions only. 
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The quasi-probability distribution function can be expressed in an integral form 
through 
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The integration in equation (10) is carried out over the complex β -plane, 

where ξββ ie=  and ),( sC β  is the s -ordered generalized characteristic 
function, which is defined as 
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where s  is a parameter that defines the relevant quasi-probability distribution 
functions. For 0=s  we obtain the W -function, and for 1−=s  we have the 
Q -function and for 1=s  the P -function is obtained. The function ),( sF α  

can be represented as a sum over a displaced coherent state k,α  namely [25] 
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where ρ̂  is the density matrix for the EBS given by equation (1). It is well 
known that the Q -function is positive definite at any point of the phase space 
for any quantum state and can be given in another form as 

αραπα ˆ)( 1−=Q . However the W -function can take negative values for 
some states and this is regarded as reflection of the nonclassical effects. By 
inserting equation (11) into (10), and after performing the integrals and taking 

0=s  or 1−=s  in equation (12) we obtain expression, for the W - and Q -
functions. The expression for the W -function is: 
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where A  and B  are given by 
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the Laguerre polynomial )4( 2βknL + , in equation (14), and the associated 

Laguerre polynomial )4( 2βm
knL + , in equation (15), are given by: 
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and the off-diagonal element of the density operator nnm ,+ρ  is given by: 
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On the other hand the Q -function is given by: 
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In Figures. (2), one plots the Wigner function for different values of the 
parameters M, k and η. The case with k = 0 which related to the binomial state 
for M = 4 and η=0.4 is plotted in Fig. (2a) where the negative value, meaning a 
non-classical behaviour is apparent. The figure is asymmetric due to the 
inclusion of the double summation in the expression (13) for the Wigner 
function. The general behavior is in agreement with reference [26]. When the 
excitation is increases to k = 2, then more wobbles appear. It is to be noted that 
there is a peak at the origin. The asymmetric behaviour as well as the negativity 
of the function is observed and more pronounced than the earlier case. When 
one takes k = 1, M = 6 and η=0.2, Fig .(2c), one notes that the central peak is 
inverted downward. This behaviour is noted for all odd k, and can be checked 
from the definition of the Wigner function of equation (13). The increase of M 
to 8 increases the additional excited states and extends the area of the figure 
over the α -plane. Once again the asymmetry and the appearance of the 
inverted peak are noted as well as the negative values which the function attain 
which means non-classical behaviour of the state. 
 

The Husimi Q-function is plotted in Fig. (3). The same parameters 
considered in plotting the Wigner function of Fig. (2) are taken. The plot of the 
binomial state 4.0,0,4  appears in Fig. (3a). The appearance of an almost 
Gaussian bell but with little squeezing is one of its axes, shows the deviation 
from the classical behaviour. As one increases the excitation to k = 2, Fig.(3b), 
the asymmetry appears clearly, a crescent like shape is observed for this case. 
This shape but with the outer ring complete is observed in Fig. (3c, d) when the 
number M or the factor η are increased. 
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5. Conclusion: 

In this article we have discussed some statistical properties of the EBS. 
The second-order autocorrelation function )0()2(g  is investigated. 

 
It is found that as 0→η  the curves differ qualitatively from those 

characteristics for the BS. This is due to the inclusion of the state k  as 

0→η  for EBS in contrast to the state 0  for the BS. The quasidistribution 
functions especially W - and Q -functions are discussed non-classical effects 
are exhibited since it is found that the W -function assumes negative values for 
certain range of the domain. Our concentration was on the averaging case, 
where we found for small value of η  the Wigner function is almost Gaussian. 
However, the shape of the function is insensitive to change in M . In contrast 
we find that the Q -function is insensitive to any change in either η  or M . 
 
References: 

1. G. S. Agarwal,  and K. Tara, Phys. Rev. A43, 492(1991) 



M. Darwish                                                                                                        196 

 196

2. V. V. Dodonov, Ya. A. Korennoy, V. I. Man'ko and Y. A. Moukhin, 
Quantum Semiclass. Opt. 8, 413(1996) 

3. Z. Zhang and H. Fan, Phys. Lett. A165, 14(1992) 
4. Zs. Kis, P. Adam and J. Janzky, Phys. Lett. A188, 16(1994) 
5. V. I. Man'ko and A. Wunsche, Quantum Semiclass. Opt. 9, 381(1997) 
6. G. S. Agarwal and K. Tara, Phys. Rev. A46, 485(1992) 
7. G. N. Jones, J. Haight and C. T. Lee, Quantum Semiclass. Opt. 9, 

411(1997) 
8. M. Dakna, L. Knoll and D. G. Welsh, Optica Comm Unvcations 145, 

309(1998) 
9. D. Stoler, B. E. A. Saleh and M. C. Teich, Opt. Acta 32, 345(1985) 
10. G. Dattoli, J. Gallardo and A., J. Torre, Opt. Soc. Am. B2, 185(1987) 
11. H. C. Fu and R. Sosaki, J. Phys. 24, 483(1996) 
12. K. Matsuo, Phys. Rev. A41, 519(1990) 
13. A. Joshi, and A.-S.F. Obada, J. Phys. A: Math. Gen. 30, 81(1997) 
14. H. C. Fu and R. Sasaki, J. Phys. Soc. Japan 66, 1989(1997) 
15. S. M. Barett, J. Mod. Opt. 45, 2201(1998) 
16. X. G. Wang and H. C. Fu, Int. J. Th. Phys. 39, 1437(2000) 
17. J. Perina, “Quantum statistics of linear and nonlinear optical phenomena”, 

Reidel, Dordrecht, P. 78(1984) 
18. M. Hillery, Phys. Rev. A36, 3796(1987) 
19. Y. Yamamoto and S. Machida, Phys. Rev. A35, 5114(1987)  
20. G. Rempe, F. Schmidt-Kaler and  H. Walther, Phys. Rev. Lett. 64, 

2783(1990) 
21. E. Wigner, Phys. Rev. 40, 749(1932) 
22. Z. Wigner Phys. Chem. B19, 203(1932)  
23. K. E. Cahill, and R. J. Glauber, Phys. Rev. 177, 1882(1969)  
24. M. Hillery, R. F. O'Connell, M. O. Scully and E. P. Winger, Phys. Rep. 

106, 121(1984) 
25. H. Moya-Cessa and P. L. Knight, Phys. Rev. A48, 2479(1993) 
26. A. Vidiella-Barranco and J. A. Roversi, Phys. Rev. A50, 5233(1994) 
 


