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ABSTRACT 

We use a method recently introduced by some of the authors to obtain a semi-analytical solution to a 

problem of deformation of a long cylindrical conductor carrying a steady axial current, in the quasi-electrostatic 

approximation. The method relies on the expansion of the unknown harmonic functions arising in the process of 

solution in terms of Cartesian polynomial and rational harmonic functions. The normal cross-section of the 

conductor is taken to be nearly circular and the thermal and magnetic parts are solved independently of each 

other and of the elastic problem. 

Numerical results and plots are provided and discussed. A comparison with the case of a circular cross-

section allows to assess the influence of imperfection of the cross-sectional shape on the quantities of practical 

interest. The effect of the dependence of the magnetic permeability on strain is investigated as well.  

Keywords: Thermo-magnetoelasticity, Cartesian polynomials, Plane problem, Electric conductor, Long 

cylinder, Nearly- circular cross-section, Magnetic vector potential, Semi-analytical solution. 

 

1  INTRODUCTION 

 The interactions between the mechanical, thermal and electromagnetic fields in deformable solids 

have been the subject of permanent interest to researchers and engineers in the past hundred years or 

so. This is conditioned by the important applications in technology, especially in those devices which 

contain current-carrying parts. Important contributions to the theory and applications of this subject in 

Technology and in Geophysics may be found in many books, among which we cite only [1], [2] and 

[3]. The applications in electromagnetic elasticity span a wide variety of devices like sensors, 

actuators, magnetic levitation, etc. 

An important application of the theory of electromagnetic continua concerns the deformation of 

cylindrical conductors carrying a steady axial current. Such elements are essential in electrical stations 

under the name of “busbars”. These are usually of rectangular or cylindrical normal cross-section, 

tens of centimeters long and carry currents of several ampères. It is expected that a respectable 

amount of heat is released from these busbars, which is nothing else but the well-known Joule heat. In 

addition, the busbar statically deforms under the action of heat and the magnetic forces due to the 

electric current. The problem thus involves mechanical, thermal and magnetic interactions, and 

requires a suitable mathematical model to describe them. In the quasi-electrostatic, uncoupled 

approach to be adopted here, it is convenient to use the magnetic vector potential which is parallel to 

the axis of the cylinder. The mathematical problem reduces to the determination of five harmonic 

functions, interrelated by a set of boundary conditions: Two of these harmonic functions combine to 

yield Airy’s stress function in the cross-sectional domain in case the mechanical problem is solved in 

stresses. A third harmonic function enters in the formulation of the thermal problem for temperature 

distribution. The two remaining harmonic functions are used to describe the vector potential 

distribution inside the conductor and in the surrounding region. The results find application in 
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calculating the deformation of straight central sections of electric conductors in various instruments, 

in particular busbars in electric power stations, and the stresses induced in them due to the electric 

current. 

The deformation of long, current-carrying wires has been the subject of active research for fifty 

years or so. We only cite the following references by Ghaleb [4] for the circular boundary, Ayad [5] 

for the elliptical boundary, Abou-Dina and Ghaleb [6] for a boundary integral formulation of the 

problem, Deviatkin [7] for cylinders of elliptic or narrow rectangular cross-sections, El Dhaba et al. 

[8, 9, 10] for the elliptic or square boundaries by boundary integrals, including a numerical approach, 

El Dhaba [11] and El Dhaba and Ghaleb [12] for a rod with square normal cross-section in an initially 

uniform transverse magnetic field by boundary integrals. Recently, the authors have investigated the 

elliptic and the rectangular contours under the Dirichlet thermal condition and uniform normal 

extension on the boundary [13]. Other work relating to the mechanical-thermal-electromagnetic 

interaction may be found in the literature in a different context. We cite, among others, the work by 

Othman and Abbas [14] and Altenbach et al. [15]. 

The present work concentrates on the cylindrical conductor of nearly-circular normal cross-section 

as being an imperfection of the circular one. The aim is to investigate the influence of this 

imperfection on the distribution of quantities of practical interest on the cross-sectional contour, viz. 

the magnetic field and the stresses. The results may be of interest in the non-destructive testing of 

materials. Moreover, the model includes two material constants illustrating the dependence of the 

magnetic permeability on the strain. These will go into the equations of elasticity. We believe that 

proper elastic measurements may lead to interesting relations which would permit the determination 

of these two constants (c.f. [4]). 

The method of solution relies on the expansion of the unknown harmonic functions of the problem 

in Cartesian polynomials and rational harmonic functions. The coefficients of these expansions are 

determined numerically using the method of boundary collocation. 

The basic equations and accompanying conditions are presented in brief, more details may be 

found in [13]. Numerical results are provided and discussed.  

2  PROBLEM FORMULATION 

 Let the long elastic cylinder carrying a steady, axial uniform electric current of density  be 

placed in a medium of steady temperature . A system of orthogonal Cartesian coordinates  

with -axis along the axis of the cylinder and centered at point  as shown on Fig.1 is used to 

describe the problem, where we have indicated the directions of the electric current density and the 

magnetic vector potential. The normal cross-section is denoted  with boundary .  

 

Figure  1: Geometry of the problem. 

The cross-section  has parametric equations:  
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     (1) 

where  is the usual polar angle measured from the origin of coordinates. The unit vectors along the 

normal and the tangent to the contour  with the usual orientation are:  

     (2) 

respectively, with . The ‘dot’ over a symbol refers to differentiation w.r.to the parameter 

. When the boundary parameter in the arc length, then . One can use formula (2) to find the 

normal and the tangential derivatives of a function  on the boundary. 

3  BASIC FIELD EQUATIONS AND BOUNDARY CONDITIONS 

 The governing equations of static, linear uncoupled thermo-magnetoelasticity are quoted here 

below without proof as presented in [10]. These will be solved under prescribed proper mechanical 

and thermal boundary conditions. The model takes into account the dependence of the magnetic 

permeability on strain. In addition, the equations are complemented with the usual mechanical 

condition of continuity of the total stress vector across the boundary, and the magnetic boundary 

conditions expressing the continuity of the magnetic scalar or vector potential and the normal 

component of the magnetic induction in the absence of surface electric currents:  

3.1  Equation of heat conduction 

 The temperature , as measured from a reference temperature , satisfies the inhomogeneous 

Poisson’s equation (c.f. [4] and [6]):  

      (3) 

  is the coefficient of heat conduction and  the coefficient of electrical conductivity. 

The general solution of equation (3) is  

      (4) 

 where  is the harmonic part of  and  is any particular solution of Poisson’s equation (3). It is 

easily verified that  

     (5) 

 A Dirichlet thermal condition is taken at the boundary:  

     (6) 

The temperature distribution generates “temperature displacements”, which will be included in the 

expressions for the mechanical displacement. These are [8]:  

     (7) 

where  and  are Poisson’s ratio and the coefficient of linear thermal expansion respectively. Here 

 is an arbitrarily chosen point in the domain of the cross-section, usually taken to coincide with 
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the origin ,  is the general point at which the function is calculated. The integration is path 

independent. Superscript ‘ ’, stands for the harmonic conjugate.  

3.2  Equations of Magnetostatics 

 The magnetic vector potential is parallel to the axis of the cylinder (the -axis), with component 

. In the quasi-electrostatic approximation used here, it is well-known that the Cartesian components 

of the vector potential satisfy poisson's equation inside the matter. Thus (c.f. [4] and [6]): 

      (8) 

 is the magnetic permeability of the cylinder and  is the magnetic permeability of vacuum, with 

value  

In the surrounding vacuum labeled ‘ ’ one has and , so that 

      (9) 

The solutions of equations (8), (9) are expressed as:  

    (10) 

 and  being the harmonic parts of the vector potential inside and outside the domain  

respectively, and  is the expression for the vector potential far away from the cylinder’s axis, 

giving the magnetic vector potential of a straight, infinite current-carrying wire, as may be verified in 

standard books of Electrodynamics, in the form:  

   (11) 

The boundary conditions for the magnetic problem illustrate the continuity of the tangential 

component of the magnetic field and the normal component of the magnetic induction. They are 

expressed as [8]:  

       (12) 

       (13) 

and the vanishing behavior at infinity  

  

The magnetic field may be calculated from the magnetic vector potential using the well-known 

relation 

      (14) 

The magnetic field inside the conductor yields a distribution of “magnetic displacements”, which will 

go into the equations for the mechanical displacement. These are: [8]:  

   (15) 
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where 

   (16) 

   (17) 

and 

  

The integrations in (15) are path independent.  

3.3  Equations of Elasticity 

The basic equation is the biharmonic equation for the stress function   

   (18) 

 of which the general solution is expressed in terms of two basic harmonic functions  as  

     (19) 

 and  is any particular solution of the equation:  

  (20) 

The constants  and  appearing in the above formulae express the linear dependence of the 

magnetic permeability of the cylinder’s material on strain as in [10],  is Young’s modulus. 

The stress tensor components ,  and  are defined through the stress function  by 

the relations  

    (21) 

where “comma” in the subscript means differentiation with respect to the shown variables. 

The stress components are given in terms of  and  as:  

       (22) 

        (23) 

       (24) 

The mechanical displacement in Cartesian coordinates are expressed as:  

      (25) 

      (26) 

where ,  and ,  are defined in (7), (15). 



 CARTESIAN HARMONIC POLYNOMIALS FOR A PROBLEM...... 21 

The tangential component  and the normal component  of the mechanical displacement 

at the boundary are sometimes needed as boundary conditions. They read:  

  

      (27) 

  

      (28) 

The boundary conditions associated with the mechanical problem specify a uniform normal extension 

of value . Other types of mechanical conditions may be treated equally well. The rigid body 

motion is eliminated as usual. Details may be found in [13].  

4  THE METHOD OF SOLUTION 

4.1  Generation of harmonic functions 

 Our problem involves five harmonic functions, related by boundary conditions, to be determined: 

Functions  for the temperature, ,  for the magnetic vector potential in the whole space, and , 

 for the stress function. These functions will be expanded in terms of Cartesian polynomial and 

rational harmonics in a way explained in [13]. These harmonic functions contain a number of 

coefficients, to be determined by the method of boundary collocation to satisfy the boundary 

conditions of the problem.  

4.2  Solution to the inhomogeneous biharmonic equation 

 There is a permanent interest in resolving Poisson’s equation and the non-homogeneous 

biharmonic equation in two-dimensional regular or irregular regions (c.f. [16, 17]). The proposed 

method yields an easy resolution of the involved non-homogeneous biharmonic equation (18), 

independently of the complexity of the r.h.s. of this biharmonic equation. Due to the expansions of the 

harmonic functions representing the solution, the r.h.s. of the biharmonic equation turns out to be a 

polynomial expression in  and . Use of the expressions  

     (29) 

 and the fact that  

      (30) 

makes it possible to directly integrate the inhomogeneous biharmonic equation for the particular 

solution. Once the integration is completed, the variables  and  are restored back into the obtained 

expression for the particular solution .  

4.3  Coefficients of the expansions 

 The coefficients of the expansions of the different harmonic functions are determined by 

collocation through the satisfaction of: (i) the boundary conditions, (ii) the conditions at the interface, 

(iii) the conditions for eliminating the rigid body motion at the origin of coordinates, (iv) the 
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additional conditions at particular points of the boundary. This requires a choice of some boundary 

points at which the boundary conditions are exactly satisfied. As a result, one obtains a system of 

linear algebraic equations for the determination of the unknown coefficients. Finally, all quantities of 

practical interest are determined everywhere in  and in .  

4.4  Error estimation 

 The field equations are satisfied rigorously. The only errors in the solution are those arising from 

the solutions of three systems of linear algebraic equations satisfying the thermal and the mechanical 

boundary conditions, and the interfacial conditions of the magnetic field. Any of these rectangular 

systems of linear algebraic equation in matrix form  

      (31) 

is reduced to a square system by the transformation  

      (32) 

where superscript T denotes the transpose. The solution then follows by Least Squares. If  denotes 

the obtained solution of this last system, the error in satisfying the system of equations is defined as  

  

5  APPLICATION AND NUMERICAL RESULTS 

 The application considered here below concerns the so-called nearly-circular contour with 

parametric equations:  

    (33) 

where  and  are positive geometric parameters. In what follows, we choose . When , 

the contour becomes circular with unit radius. As , the contour tends to a cardioid. Fig.2 shows 

a nearly-circular contour with , in comparison to a circular boundary of unit radius. The 

almost flat part of the boundary is centered around the boundary point  on the interval 

 approximately. The normal cross-sectional area of the cylinder is 

, which is a bit larger than the area of the unit circle.  

 

Figure  2: A nearly-circular contour with  (solid contour), compared to a circular boundary of 

unit radius (dotted contour) with two points of tangency. Notice the flat part to the left. 

   

All the equations are expressed in dimensionless form. For this purpose, introduce the 

dimensionless quantities:  
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and two dimensionless parameters:  

  

For definiteness, calculations have been carried out with collocation nodes uniformly distributed w.r.t. 

the central polar angle on the contour. The values of the different dimensionless material parameters 

were taken as:  

  

A Dirichlet thermal condition with varying temperature, together with a uniform normal extension, 

are prescribed on the boundary. Numerous numerical experiments have been carried out for different 

expansions and different numbers of collocation nodes, only the best results have been retained. 

Additionally, improvements can be achieved by varying the number and the positions of the nodes on 

the boundary. This latter aspect has been disregarded for the sake of conciseness. 

The distribution of temperature prescribed on the boundary is in the form:  

     (34) 

 and a normal extension of value  is applied to the boundary. 

The number of terms for the different expansions that yielded the present results were as follows: 

20 terms for the temperature, 10 terms for each of the internal and the external vector potential, 20 

terms for the elasticity harmonic functions, and  collocation nodes. The absolute errors in 

satisfying the arising three linear systems of algebraic equations did not exceed . 

The following figures show the comparison between the nearly-circular and the circular contours 

in the boundary distributions of some functions involved in the solution.  

   

Figure  3: The boundary temperature displacement  (solid) compared to the circular case (dotted). 
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Figure  4: The boundary temperature displacement  (solid) compared to the circular case (dotted). 

   

Figure  5: The normal boundary temperature displacement  (solid) compared to the circular case 

(dotted). 

The components of the magnetic field and the stress at boundary points can be measured. The form 

of this boundary will undoubtedly affect the values of the different components of the magnetic field 

and the stress. It is thus possible to detect the imperfections in the boundary shape by purely magnetic 

measurements, and also by mechanical measurements involving the stress. For boundary conditions 

involving the stress, one could measure the boundary displacement. 

Both components of the magnetic field on the boundary vary in the approximate range . 

The amplitudes of variation for the nearly-circular contour are somewhat larger than the 

corresponding quantities for the circular contour as in figs.6 and 7. This is due to the difference in 

area between the two contours. The boundary component  of the magnetic field parallel to the axis 

of symmetry of the contour has a point of inflection at the center of the flat part with tangent inclined 

at a smaller angle to the axis than for the circular case. As seen in fig.7, the boundary component  

of the magnetic field perpendicular to the axis of symmetry of the contour along the flat part of the 

boundary is almost constant and is at a minimum. This is to be compared with the local minimum for 

the circular boundary at almost the same value. The maximum value of this component is attained on 

the axis of symmetry of the contour on the opposite side. The normal component of the magnetic field 

at the boundary is shown in fig.8. 

The normal stress distribution on the boundary is shown in fig.12 for both contours. Due to the 

applied boundary displacement, it may be noticed that the normal stress for the circular contour 

amounts to a compression at all points of the contour. This is not the case for the nearly-circular 

contour, where parts of the boundary acquire positive values. Moreover, the amplitude variation of the 

normal stress for the nearly-circular contour is almost two-thirds of its value for the circular contour.  
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Figure  6: The boundary magnetic field component  (solid) compared to the circular case (dotted). 

 

Figure  7: The boundary magnetic field component  (solid) compared to the circular case (dotted). 

 

 Figure  8: The boundary normal magnetic field  (solid) compared to the circular case (dotted). 

 

 Figure  9: The boundary magnetic displacement  (solid) compared to the circular case (dotted). 

 

Figure  10: The boundary magnetic displacement  (solid) compared to the circular case (dotted). 
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Figure  11: The boundary normal magnetic displacement  (solid) compared to the circular case 

(dotted). 

 

Figure  12: The boundary normal stress component  (solid) compared to the circular case (dotted). 

    

6  EFFECT OF THE MAGNETIC PERMEABILITY DEPENDENCE ON STRAIN 

 The present model foresees the dependence of the magnetic permeability tensor on strain as:  

     (35) 

 where  denote the strain tensor components and  is the first invariant of this tensor (c.f. [4]). The 

two material parameters  and  illustrating the dependence of the magnetic permeability on strain 

are not found in the literature. One of the aims of the present work is to use the obtained approximate 

solution to propose ways for finding the values of these two parameters. Figure13 illustrates the 

boundary normal stress for two values of the parameter  and for . Taking in 

consideration that the boundary is subjected to a uniform extension , an increase of the value 

of parameter  increases the values of the normal stress to become all positive.  

   

Figure  13: The boundary normal stress component  for  (solid) and for  

(dotted). 

Figure14 shows that the effect of the increase of parameter  is to decrease the values of the 

normal stress. Thus, the increase of the two parameters  and  yields the opposite effects.  
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Figure  14: The boundary normal stress component  for  (solid) and for  

(dotted). 

7  CONCLUSIONS 

 A method of solution previously proposed by the authors has been applied to the plane problem of 

thermo-magnetoelasticity of a long cylinder with nearly-circular normal cross-section carrying a 

steady, uniform electric current in the quasi-electrostatic approximation. The boundary is subjected to 

a Dirichlet-type thermal boundary condition, in addition to a prescribed boundary normal mechanical 

displacement. 

Comparison with the circular contour has allowed us to assess the influence of the boundary shape 

imperfection on the distribution of the magnetic field and normal stress on the boundary. 

Measurement of the boundary magnetic field allows estimating the degree of imperfection of the 

boundary shape, i.e its deviation from the circular boundary. This can also be achieved by 

measurement of the normal stress component.  
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 الحلول التقريبية لمسألة مرور تيار كهربى فى  

 ت الحدود الكارتيزية على شكل أشباه  دوائر بطريقة دوال كثيراة المقطع طويل ةمرن ةإسطوان

 

 سيد محمد الششتاوى 1 , عبدالشافى فهمى عبادة 1 , مصطفى صابر أبودينه 2 , أحمد فؤاد غالب 2  

 

, جامعة الأزهر , مدينة نصر, القاهرة , مصر)بنين( قسم الرياضيات , كلية العلوم  – 1  

, مصر    الجيزة قسم الرياضيات , كلية العلوم , جامعة القاهرة  ,   – 2  
  

 

 ملخص البحث: 

قمنا   البحث  هذا  كهربائيا  فى  تيارا  يحمل  دائرى،  شبه  العمودى  مقطعه  طويل  كهربائى  موصل  تشوه  مسألة  بحل 

تأثير حرارة "جول" وشرط دريشليه الحرارى على السطح، وشرط ازاحة ميكانيكية عمودية منتظمة  محوريا ثابتا تحت 

ت للدوال التوافقية الواردة فى الحل  على السطح، وذلك فى اطار التقريب شبه الكهروستاتيكى .نستخدم فى هذا الحل مفكوكا

الاهمية  ذات  الكميات  برسم  وقمنا  عددية  نتائج  على  حصلنا  ديكارتية.  توافقية  كسرية  ودوال  حدود  كثيرات  دوال  بدلالة 

دم  التطبيقية وبينا الخطأ الناتج عند تحقيق الشروط الحدية. وقارنا ذلك بالخطأ فى حالة المقطع الدائري، وذلك لبيان تأثير ع

 انتظام دائرية المقطع. 

 


