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To verify the validity of the crystallite theory of amorphous models, the 

phase of α –quartz has been chosen for representing the silica glass. The full-
pattern fitting of Rietveld method is used as a possible approach to produce 
artificial amorphous-like powder diffraction patterns, also, the corresponding 
distance correlation functions were calculated. From comparative study of the 
characteristics of the obtained XRD patterns and real space correlation 
functions, it is concluded that the silica glass can be modeled as a strained very 
small crystals (crystallites) of a polymorph. This can be considered as a useful 
application of Rietveld method and competent verification of the crystallite 
theory of glass modeling. 
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Introduction 

 Study of the materials in the amorphous state and information about the 
amorphous structure are of vital importance from the scientific and 
technological points of view. The crystalline-to-amorphous ratio and the 
structural information of the amorphous materials, as that of the crystalline one, 
are essential prerequisites to understand the physical and chemical properties. 
One of the theories of the amorphous models is the crystallite theory, which 
envisaged glass as an assembly of very small crystals (crystallites) of the same 
structure as the corresponding crystalline counterpart. Thus, useful information 
on the structure of amorphous solids can be obtained from a simple comparison 
with the corresponding crystalline polymorphs as a starting point for structural 
models. This does not necessarily mean that the crystallite theory is accepted, 
but the short-range order may resemble that of the associated crystals [1]. 

  
In order to obtain the correct form of diffraction pattern from a crystal 

based model, it is necessary to include disorder (strain). Le Bail et al.[2] and Le 
Bail [3] have applied a modified Rietveld program (ARITVE) to refine pure 
amorphous phases like crystalline ones using microstrained crystalline models. 
This is based on the fact that, when a crystalline model is distorted 
mathematically by the application of a statistical isotropic microstrain and/or 
decreasing the crystallite size (nano-crystallite), an artificial amorphous-like 
powder diffraction patterns are produced. The method was considered [4] as a 
variation of the Reverse Monte Carlo (RMC) technique. Also, it can be 
classified among the methods using periodic boundary conditions [3].  
 

Although, there are many evidence for the existence of such a model, 
there are still some doubt and questions about its validity. Therefore, this work 
aims to verify the validity of such crystallite theory of amorphous models by 
careful inspection of the simulated artificial amorphous-like powder diffraction 
patterns of silica glass (with different microstrain and crystallite size) and the 
corresponding total distance correlation function. An Algorithm Based on a 
reliable line broadening theory [5] will be applied using Warren-Averbach 
approach [6] to connect the profile with the crystallite size and microstrain. 
 
Method 

1. Simulated diffraction pattern 

The Rietveld method can be used to simulate artificial powder 
diffraction patterns [7]. The powder diffraction pattern may be thought of as a 
collection of individual reflections profiles, each of which has a peak position, 
a breadth, tails and an integrated area which is proportional to the Bragg 
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intensity. Many Bragg reflections contribute to the calculated (simulated) 
intensity Icalc ( )2θ  at any arbitrary chosen point, 2θ . The first step for the 
evaluation of Icalc ( )2θ  is the calculation of intensities I hklcalc ( )  from the 
atomic arrangement of the model (unit cell): 

2
Pcalc )hkl(FSL)hkl(I = ,                                 (1) 

 
where S is a scaling factor and LP  contains the Lorentz, polarization and 
multiplicity factors while the h, k and l are the Miller indices for a Bragg 
reflection. The structure factor F(hkl) for any particular (hkl) reflection is 
calculated from the fractional atomic coordinates of all atoms in the unit cell 
and their atomic form factors. 

 
 The I hklcalc ( )  values obtained from Eqn.(1) are subsequently 

transform into Icalc ( )2θ . This is achieved by adding all those intensities 
I hklcalc ( )  for each of which the )(2 hklθ  value lies in the interval ( θθ ∆−2 , 

θθ ∆+2 ), where θ∆  depends on the width of a reflection (hkl). Thus,  
 

))hkl(22()hkl(I)2(I
hkl

calccalc θ−θφ⋅=θ ∑            (2) 

 
where φ is the profile shape function. 
  

 In the existing and known programs of Rietveld Method (DBWS [8] or 
GSAS [9]) and the ARITVE program modified and used by Le Bail [3], the 
effects of microstructural disorder (crystallite size and microstrain) on the 
profile broadening were described mathematically by profile shape parameters, 
for example of the empirical formula of Cagoliote et al. [10] following the 
original procedure indicated by Rietveld [11]. However, a different view point 
is adopted in the used program (LS1 [12]). Instead of using phenomenological 
relations, such as the Caglioti formula, to describe the change of profile 
broadening as a function of diffraction angle (2θ  ) relationships were derived 
for profile parameters which are based on a reliable line broadening theory. A 
model based on the Warren-Averbach approach [6], using conditions on cosine 
Fourier coefficients and their derivatives, has been adopted to connect the 
actual profile width and shape directly with the crystallite size and microstrain 
[5&13]. The profiles are described [5] by convolution of the true line 
broadening, hf, the symmetric, gs, and asymmetric, ga, parts of the instrumental 
function plus the background, Yb, thus, 

 

( )[ ] )2(Y)2(g)2(g)2(h)2(h basfc θ+θ∗θ∗θ=θ        (3) 
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The profiles hf and gs have been modeled by pseudo-Voigt function (pV) and ga 
by an exponential function while the background is reproduced by a 
polynomial. The shape parameters for the true line broadening are determined 
by the crystallite size M and root-mean-square (r.m.s) microstrain (E2)1/2. They 
(M and (E2)1/2) have been introduced by following the single peak method for 
Fourier analysis developed by Nandi et al. [14]. The Fourier transform of pV 
function (AL) was subjected to the following condition: 

 

hklL
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where the column length (normal to the reflecting hkl plane) 
222 lkhndL ++=  and n and d are a harmonic number and the interplaner 

spacing, respectively. The Fourier coefficient AL is the product of coefficients 
for both effects; distortion D

LA  and crystallite size S
LA , thus  
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The strain and size Fourier coefficients are connected to M and 2/12 〉〈ε , 
respectively, by  
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It can be seen from Eqn.(6) that the crystallite size distribution, which is 
proportional to the second derivative of the Fourier Coefficient S

LA , is a 
weighted sum of two distributions representing the contribution of Cauchy and 
that of Gauss component of the profile, where K is the weight. The above 
conditions were imposed to the analytical transform of pV profiles obtaining 
equations connecting the half width at half maximum (w) and the Gaussian 
fraction η  in pV function to M, (ε2)1/2 and K, which can be solved within the 
refinement procedure. 
 

Another problem in Rietveld method is the anisotropy of both size and 
strain where profiles with different indices are broadened in a different manner. 
An important feature of the present approach is the possibility to introduce the 
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anisotropy effect by the description of Mhkl and (ε2)1/2 by tensors to account for 
anisotropy along different crystallographic directions. In the present work, only 
the isotropic case was enough to be considered. 
 

2. Correlation function 

The distance correlation function, T(r), includes merely one 
dimensional information of the three dimensional atomic distribution of the 
amorphous materials in the real space. It is the Fourier transform of the total 
structure factor (F(Q))[15]. Thus, 

 

∫ −
π

+ρπ= maxQ
0 th0 QdQ)Qrsin()Q(M]1)Q(F[2r4)r(T           (7) 

where ρ0  is the average number density of atoms, Q is the scattering vector            
(Q=4πsinθ/λ) and Qmax is its upper limit. The function Mth (Q) = exp (-BthQ2) is 
introduced in order to reduce the termination effect, where thB is artificial 
thermal function. The total structure factor, F(Q), is calculated as, 
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ci  is the atomic fraction of i-atoms in the molecule and fi  is the X-ray form 
factor. The I Q( )  is the normalized coherent intensity. The Krogh-Moe-
Norman method was used to normalize the measurement intensities [15]. The 
distance correlation function, T(r), includes merely one dimensional 
information of the three dimensional atomic distribution of the amorphous 
materials in the real space. The reliability of the structural characteristics 
obtained from T(r) reflects the validity of the corresponding diffraction pattern 
and the used model.  
 

3. Model of amorphous silica 

The phase of α -quartz has been chosen for representing the silica in 
this study because the similarities in bonding, density and position of the first 
diffraction peak in amorphous silica and α -quartz  (crystalline), have led to the 
suggestion that there is a close structural relationship over short length scales 
between these two phases (amorphous and crystalline)[16,17]. 

 
 In order to produce an artificial amorphous-like powder diffraction 

patterns, α-quartz of hexagonal structure (P312) was used. The structural 
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characteristics of the used model [18] are lattice parameters a= b= 0.4913 nm 
and c= 0.5405 nm and number of molecules per unit cell z = 3. The three 
silicon atoms are placed at positions of (3a): (-u,-u,1/3), (u,0,0) and (0,u,2/3) 
with u=0.465. The other six oxygen atoms are at the positions (6c): (xyz) (y-x,-
x,z+1/3), (-y,x-y,z+2/3), (x-y,-y,-z), (y,x,2/3-z) and (-x,y-x,1/3-z) with x = 
0.415, y = 0.272 and z = 0.125. Using the given crystallographic information 
and increasing microstrain and decreasing crystallite size, the simulated 
diffraction pattern of the amorphous phase was obtained using the LS1 program 
[12]. From the simulated intensities, the real space correlation function, T(r), 
has been calculated obeying the line of Wright[1].  
 

Results and Discussion 

To verify the crystallite theory using the simulated diffraction patterns 
of amorphous structure, the microstrain was varied from 0.01 to 0.06 and 
crystallite size from 4 to 1 
nm, then, the 
corresponding correlat-ion 
function, T(r), was 
determined at each value. 
The diffraction patterns 
and T(r) for the crystalline 
form (M = 50 nm and 
(ε2)1/2 = 0.0001) are shown 
in Fig.(1). Sharp peak 
profile for both the XRD 
and T(r) is clearly 
observed. Two series of 
data were considered. In 
the first series, the 
crystallite size was kept 
constant at 1 nm while the 
values of strain are 
increased from 0.01 to 
0.06 and, in the second 
one, the strain value is 
kept constant at 0.02 
while the crystallite size is 
decreased from 4 to 1 nm.  

 

 
Fig.(1): Simulated XRD pattern and distance correlation 

function, T(r), of the  crystalline form. 
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Figures (2&3) depict the variation of XRD and T(r) at various values of 
strain and crystallite size, respectively. There are a clear analogy between the 
T(r) curves of the artificial amorphous-like and that of their crystalline counter 

 
Fig.(2): Simulated XRD patterns and distance correlation functions, T(r), at 

crystallite size equals 1 nm and microstrain equals a) 0.01, b) 0.02, c) 
0.03, d) 0.04, e) 0.05 or f) 0.06. 
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Fig.(3): Simulated XRD patterns and distance correlation functions, T(r), at micros-

train equals 0.02 and crystallite size equals a) 4, b) 3, c) 2 or d) 1 nm. 
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part except for peak degradation which is an indication of less order in the 
network structure[19]. The XRD peak profile are broadened as either the 
microstrain increases or the crystallite size decreases. For T(r) profile, in the 
first case, the broadening is considerable at short- and medium-range up to 1.6 
nm. However, in the second case, the broadening of the peaks is predominant 
mainly at r-range >0.8 nm and almost remains with considerable resolution in 
the shorter range of r < 0.8. This is because the decrease of crystallite size and 
increase of microstrain broaden the XRD profile while the distortion of the 
atomic coordinates are affected mainly by the internal strain and, consequently, 
the T(r) profile. The effect of decreasing the crystallite size down to 1 nm has 
no pronounced effect as the increase of the internal microstrain up to 0.06.This 
is in accordance with the finding of Keen and Dove [17] that the similarities 
between the crystalline and amorphous structure extends over a too short 
correlation length; of 0.75 nm in case of HP-tridymite. If one needs to admit 
crystallite size less than this value, it will be of meaningless, since the lattice 
parameters ~ 0515 + 0.025 nm. Taken into account the XRD patterns and the 
T(r) curves, it was found that crystallite size M of about 1 nm and strain (ε2)1/2 
= 0.045 +0.015 are the optimum values. 

 

The profile fitting of T(r) for this condition is shown in Fig.(4) and the 
corresponding data are given in Table (1). There are three peaks in the short-
range region at r = 0.163nm, for the Si-O bond, r = 0.261nm for the O-O bond  
and r = 0.311nm for the Si-Si bond. Thus, there are no significant difference 
between the T(r) curves of the artificial amorphous-like and the that of the 
amorphous silica[17]. Homma et al.[20] compared the RDF(r) of amorphous 
alloys with those of the intermetallics with the same composition. They found 
that the short rang structure of most of the studied amorphous alloys resembling 
their crystalline counterparts. So, the short-range structure, i.e., atomic 
correlation of the first and second coordination shells in the r-range up to about 
0.3 nm, matches, at least, qualitatively that of the crystalline counterpart. Thus, 
the comparative study of the amorphous material with their crystalline 
counterparts is helpful to understand their short-range structure[20].  
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Fig.(4): T(r) curve and fit (solid line) for the first three peaks corresponding to 

Si-O, O-O and Si-Si, respectively. The residuals are displaced by –1 
and depicted in the bottom of the figure (dashed line). 

Table (1) 
Bond lengths, angle and atomic densities (ρρρρo) for crystalline α -quartz and 

silica glass (All data were calculated from the T(r) curves). 
 

Silica Glass  α -Quartz 
Ref. [17] Ref. [17] This Work 

oρ (atoms/nm)   66.1   65.7   65.4 

Si-O   (nm)     0.160    0.162    0.163 
O-O   (nm)     0.262    0.263    0.261 
Si-Si  (nm)     0.311    0.310    0.311 
O-Si-O ( ° ) 109.5 108.6 106.4 
Si-O-Si ( ° ) 151.0 147.0 145.1 



Egypt. J. Sol., Vol. (23), No. (1), (2000) 11

Conclusions 

One can concluded that: (i) Decreasing crystallite size increases the 
broadening of the XRD profile, however, it affects T(r) only in r-range >0.8 
nm, and (ii) Increasing strain affects the resolution of both XRD profile and 
T(r) in the short- and medium-range up to 1.6 nm. On general, decreasing 
crystallite size down to about 1 nm and increasing microstrain up to range of 
0.045 + 0.015 result in a diffraction pattern similar to that of the amorphous one 
as well as the a distance (real space) correlation function with the 
characteristics corresponding to that of the amorphous structure of silica glass. 
Accordingly, this comparative study is a good verification of the crystallite 
theory and emphasizes the importance of the microcrystalline approach, that 
amorphous solid is composed of strained very small crystals of a polymorph. 
Also, it is worth to mention that, using the full pattern fitting of Rietveld 
method is a possible approach to study amorphous materials of non-crystalline 
structure. 
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