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 Chemokines are classified as proteins with chemoattractant activities that have multiple crucial roles in 
health and disease, where they participate in the processes of development, angiogenesis, 
hematopoiesis and tumor metastasis. Multiple cells are involved in the production of chemokines. 
However, the main cells involved in such role are blood monocytes, macrophages and 
polymorphonuclear leukocytes, where they exert their role in the inflammatory reaction following 
antigen recognition by tissue phagocytes. Due to their important role in the establishment of successful 
immune response, several microbes are incriminated in the production of proteins that mimic 
chemokines. In addition, their receptors could be used by microbes as a portal of entry to host cells, e.g., 
human immunodeficiency virus. Chemokines showed significant involvement in the pathogenesis of 
multiple diseases, e.g., thyroid autoimmune diseases, Behçet’s disease and atherosclerosis. Presented 
is a concise minireview on some of the documented roles of chemokines in several physiological and 
pathological conditions.  
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1. Structure and classification 

Chemokines can be defined as chemoattractant 
proteins, secreted by cells to act on other cells, either by 
attracting them to a specific site or changing their biological 
behavior [1, 2]. According to their amino acid structure, they 
are subdivided into either CXCL (16 members), CCL (28 
members), XCL (2 members) or CX3CL (one member) 
chemokines [2]. They serve important roles in multiple 
physiological and pathological disciplines, development, 
angiogenesis, hematopoiesis and tumor metastasis [3–10]. 

2. Chemokine-secreting and chemokine-responsive 
cells 

The main cells involved in chemokine release are blood 
monocytes, macrophages and polymorphonuclear 
leukocytes (PMN) with destined activity on PMN (CXCL1, 2, 3, 
4, 5, 6, 7, 8, 12 and 15, CCL1, 2, 3, 4, 5, 7, 8, 13, 15, 24 and 24 
and CX3CL1), fibroblasts (CXCL1, 2, 3, 4 and 7 and CCL26), 
endothelial cells (CXCL4, 5, 6, 7, 8, 8, 10, 11, 15 and 16 and 
CCL22), T cells (CXCL8, 9, 10, 11, 12, 13 and 14, CCL1, 2, 3, 4, 
5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 
24, 25, 27 and 28, XCL1 and 2 and CX3CL1), monocytes 
(CXCL12 and 14, CCL1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14 and 15 
and CX3CL1), macrophages (CXCL12, CCL3, 4, 5, 25 and 
CX3CL1), natural killer T cells (CXCL16), dendritic cells (CXCL12 
and 13, CCL2, 3, 4, 5, 7, 8, 13, 15, 16, 17, 18, 19, 20, 21, 22, 
25, XCL1 and 2 and CX3CL1), natural killer cells (CXCL10, 11 
and 12, CCL2, 3, 4, 5, 6, 7, 8, 16, 21 and 22, XCL1 and 2 and 
CX3CL1) and B cells (CXCL10, 11, 12, 13 and 14 and CCL4, 6, 
12, 18, 19, 20, 21 and 27) [2, 11]. The main regulatory 
pathway of chemokine release is the inflammatory cascade 
[2, 12]. Their function in angiogenesis, the initial primordial 

germ cell migration in the early embryo, trigeminal neuron 
migration and the attraction of hematopoietic stem cells to 
their bone marrow niche are exerted through CXCL12 [10]. 
They also serve in lymphoid tissue development [8]. Among 
the cells associated with chemokine function, platelets 
express both chemokines, CXCL4, ß-thromboglobulins, CCL5 
and CCL17, and chemokine receptors, CCR (CCR1, 2, 3, 4, 5, 6, 
7, 8, 9, and 10) and CXCR (CXCR1, 2, 3, 4, and 5), on their outer 
cell membrane [13, 14].    

3. Chemokines role in B cell responses 

CCL28, a ß-chemokine, is expressed by mucosal epithelial 
cells, showing high expression in the salivary gland, small 
intestine and colon, is specialized in the recruitment of IgA+ 
plasma cells to mucosal sites [15–19]. CCL28 expression and 
the associated B cell recruitment was also recorded in the 
mammary gland [16]. 

4. Chemokines function in wound healing 

 Wound healing regularly occurs at the end of the 
inflammatory process, following the eradication of the 
causative agent of cellular injury and/or noxious stimuli [20, 
21]. In the preliminary stages of the inflammatory process, 
chemokines play a crucial role in directing leukocytes to the 
inflammatory site [1, 22], and hence guaranteeing the 
establishment of an inflammatory process. Chemokines are 
also essential for the closure of wounds [23], where CX3CR1, 
a receptor for CX3CL1 (also known as fractalkine), disruption 
caused a reduction of alpha-smooth muscle actin (a marker 
for myofibroblasts) and collagen deposition in skin wounds 
and reduced neovascularization. Similar effects on defective 
reepithelization were recorded in models of deficient CXCR2 
[24]. In addition, CXC chemokine interleukin (IL)-8 stimulates 
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keratinocyte migration and proliferation in cutaneous injury 
[22, 25–28]. 

5. Chemokines and cancer 

 CXCL1 expression was detected in gastric, colonic, 
colorectal, and urinary bladder cancer patients, and it was 
associated with the expression of vascular endothelial growth 
factor (VEGF) and phospho-signal transducer and activator of 
transcription 3 (p-STAT3) in gastric cancers, stimulators for 
angiogenesis [29–34]. Its expression was an indication of an 
advanced cancer grade and it increased xenograft tumor 
growth with its microvasculature. An in vitro application of 
CXCL1 in gastric cancer cell line increased cellular migration 
and increased the VEGF signaling (which was suppressed by 
CXC receptor 2 blockage) and p-STAT3 expression. In a 
different work by Xu et al. [35], gastric cancer cells stimulated 
CXCL1 release from lymphatic endothelial cells in a co-culture 
system, which in turn stimulated lymphatic endothelial cell 
migration and tube formation. In addition, 
CXCL1/MGSA/GRO-1 (melanoma growth stimulatory 
activity/growth regulated oncogene) is involved in the 
mutagenesis or transformation of melanocytes and ovarian 
cells [36, 37]. CXCL1 was also expressed by ovarian cancer cell 
lines and increased their invasiveness [38]. Pancreatic ductal 
adenocarcinoma cells showed high expression of CXCL1 
which had a role in tumor progression [39]. 

 Murine CXCL2, expressed by oral squamous cell 
carcinoma, was incriminated in osteoclast activation and the 
resulting bone destruction in cases of oral cancers [40]. In 
addition, CXCL1 and CXCL2 produced from bone marrow 
adipocytes were incriminated in the osteolysis associated 
with prostate cancers [41]. Inhibition of CXCL1 and CXCL2 
reduced the metastasis of breast and prostate cancers [42–
44]. Mammary adenocarcinoma induced the expression of 
CCL2, CCL5, and CXCL2 chemokines and CCR1, CCR2, CCR3 
and CXCR2 chemokine receptors in splenic murine T 
lymphocytes [45]. Murine CXCL2 was found to be involved in 
the translocation of calreticulin (surface marker on cancer 
cells to be identified and uptaken by phagocytes/antigen-
presenting cells) to the outer leaflet of the plasma membrane 
of cancer cells [46–48]. 

6. Viral mimicry of chemokines, their receptors, or 
their binding proteins 

 Besides mimicry of cytokines, some viruses encode 
proteins that mimic chemokines (e.g. human 
immunodeficiency virus, respiratory syncytial virus, members 
of betaherpesvirus and gammaherpesvirus genera, and 
molluscum contagiosum virus), chemokine receptors (e.g. 
members of betaherpesvirus and gammaherpesvirus genera 
and members of poxviridae), or chemokine-binding 
proteins/chemokine scavengers (e.g. members of 
alphaherpesvirus, betaherpesvirus, and gammaherpesvirus 
genera and members of poxviridae) aiming towards 
modulating the immune response against the invading viral 
pathogen [49–62].  

7. Chemokine receptors acting as a portal of entry for 
human immunodeficiency virus (HIV) infection 

CD4 is considered the primary receptor for HIV, where gp 120 
and gp 41 (envelope proteins) mediate virus binding to the 
target cell membrane followed by consequent interaction 
with chemokine receptors CCR3 and 5 CCR2B or CXCR4 
leading to merging of the host cell membrane and HIV 
membrane [63–72]. Other chemokines, CCR2, 3, 8 and 9, 
STRL33, Gpr15, Gpr1, APJ, ChemR23 and CX3CR1, are also 
used by HIV for host cell entry during in vitro infection [64, 
73–76]. In addition, highly exposed persistently seronegative 
individuals showed upregulated expression of chemokines, 
RANTES (Regulated upon activation, normal T Cell expressed 
and presumably secreted), MIP-1α (macrophage 
inflammatory protein) and MIP-1β when exposed to gag 
peptide from HIV [77]. 

8. Chemokine signaling in skin diseases 

Being one of the most common skin diseases, psoriasis 
involves chronic dermatitis evidenced by leukocytic 
infiltration (T cells, neutrophils and macrophages) of the 
dermis and the subcutaneous tissue [78]. The most common 
chemokines incriminated in the recorded leukocytic 
recruitment are CXCL8 (IL-8) and 10, CX3CL1 (fractalkine), 
CCL2/MCP-1 (monocyte chemoattractant protein-1), 5 

(RANTES), 20 (MIP-3), 26 (eotaxin2) and 27 [79, 80].  

9. Chemokines and arterial disease  
9.1. Hypertension 

Being a serious risk factor for cardiovascular disease, a 
chemokine-mediated immune response is incriminated in the 
established disease pathogenesis, including MCP-1/CCL2, IP-
10/CXCL10 (interferon (IFN)-γ inducible protein), IL-8/CXCL8, 
RANTES/CCL5, fractalkine (CX3CL1) and their receptors CCR2, 
CCR5, CXCR1, CXCR2, CXCR3 and CX3CR1, acting mainly 
through the activation of macrophages and monocytes 
migration to the vascular wall and causing endothelial cell 
dysfunction and vascular smooth muscle cells proliferation 
[81–83]. 

9.2. Atherosclerosis 

Being one of the established complications of arterial 
hypertension, chemokines also play important role in the 
pathogenesis of atherosclerosis through the induced IL-8, 
fractalkine, MCP-1 which cause vascular inflammation as 
indicated by the observed vascular leukocyte infiltration and 
endothelial cell dysfunction [81]. Plasmacytoid dendritic cells 
seem to play important role in the established pathogenesis 

through the production of IFN- cytokine and chemokines 
(CXCL1, CXCL10) [84]. 

10. Thyroid autoimmune diseases 

Chemokine, particularly CXCL9, 10, and 11, and chemokines 
receptors, CXCR3, mediate T cell responses that play 
important role in the pathogenesis of thyroid autoimmune 
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disorders, e.g. Graves’ disease [85–89]. Other chemokines, 
e.g. CCL2 and CCL5 showed variable levels of expression [90].   

11. Alzheimer’s disease 

 Chemokines play an eminent role in the physiology 
of the nervous system [91]. Upon antigenic stimulation, 
neuroglial cells, endothelial cells, and neurons of the central 
nervous system, as well as Schwann cells of the peripheral 
nervous system can release chemokines. In Alzheimer’s 
disease, a neurodegenerative disease caused by the 
extracellular deposition of amyloid protein, intracellular 
neurofibrillary tangles, and the lack of neurons and synapses, 
inflammatory chemokines may play a vital role in its 
occurrence and development [20, 21, 91]. They mostly induce 
immune cell migration to the inflammatory site and regulate 
the migration of neuroglial cells, neurons and neural 
progenitors to sites of nervous tissue inflammation 
(neuroinflammation) [91]. MCP-1/CCL2 and its receptor CCR2 
(in the serum, the cerebrospinal fluid (CSF) and the brain 
tissue) are considered as markers for Alzheimer’s disease 
progression and their levels were positively correlated with a 
rapid loss of cognition and developing dementia. IL-8 also 
showed a positive correlation with Alzheimer’s disease 
progression in the serum, and the CSF [92]. IP-10/CXCL10  
showed an increase in the CSF of Alzheimer’s disease patients 
[93, 94]. In contrast, RANTES/CCL5 showed downregulation 
in the serum and upregulation in the brain tissue of 
Alzheimer’s disease patients [95, 96]. On the other hand, 
CXCL12/SDF-1 (stromal cell-derived factor 1) was reduced in 
the serum and CSF of reported cases of Alzheimer’s disease 
[97].  

12. Brain injury 

Chemokines are known to be expressed in the vasculature of 
the blood-brain barrier, e.g. CXCL12, CCL19, CCL20, CCL21 
and CCL27, through which endothelial cells regulate 
leukocytes entry into the central nervous system (CNS), 
hence called homeostatic chemokines [98, 99]. They also 
sustain signals for migration, proliferation, or differentiation 
to neurons and glia cells [100]. In addition, CX3CL1 and 
CXCL14 are expressed by the CNS and it appears that they are 
mainly expressed by the neurons [99, 101–103]. CXCL12 
appears to be also involved in the process of neurogenesis 
and neuronal survival, a function also shared by CX3CL1 
chemokine [99, 100, 104, 105].  

13. Hepatic disease 

Upon liver injury or establishment of hepatic disease, 
activated Kupffer cells secrete immunoregulatory protein 
including CXCL1, 2, and 8 (IL-8) as chemoattractants for 
neutrophils to exert their role in the eradication of the 
injurious agent that usually culminates in the organ healing 
upon successful eradication [2, 20, 21, 106–109]. 
Chemokines, CXCL9, CXCL10 and CXCL11, also play 
fundamental roles in the recruitment of lymphocytes to sites 
of chronic hepatic inflammation [107, 109, 110].  

14. Pulmonary disease 

Chemokines, CXCL1, 2, 5 and 8 were revealed to participate 
in the pathogenesis of acute lung injury through urgent 
leukocyte recruitment to the inflammatory site [111]. On the 
other hand, CCL2, CXCL1, 2, 5, 7, 8, 9, 10, 11 and 16, with their 
respective receptors, seem to play important role in the 
pathogenesis of the chronic obstructive pulmonary disease, 
not only causing recruitment to innate immune cells, 
neutrophils and monocytes but also enhancing the migration 
of T cells and B cells to target areas of pulmonary 
inflammation [112–114]. In addition, it was revealed that the 
activation of chemokine receptors, CXCR3 on T helper 1 cells 
and CCR4 and 8 and CXCR4 on T helper 2 cells, through their 
respective chemokine ligands is responsible for the 
establishment of idiopathic pulmonary fibrosis [115]. Other 
chemokines, Eotaxin, Eotaxin-2, RANTES, MCP-3, MCP-1, 

MIP-1 and CCR3 have roles in allergic airway hyper-
reactivity [116]. 

15. Diabetes 

Being one of the leading reasons for chronic renal failure, 
diabetes culminates in a set of renal degenerative changes 
that include glomerular hypertrophy, thickening of basement 
membranes of renal tubules and glomeruli through the 
accumulation of extracellular matrix leading to renal fibrosis 
[117–119]. One of the genetic response towards diabetes-
associated hyperglycemia is the enhanced transcription of 
CCL2 chemokines and other modulators of inflammation 
[120]. In addition, it was revealed that MCP-1 plays a crucial 
role in the diabetes-associated nephropathy through its 
known function of macrophage activation [121]. 

16. Host-microbe homeostasis 

One of the recorded models of dysbiosis or disruption in the 
homeostasis between host and microbes is periodontitis, 
where regulatory T cells are involved, through the 
chemoattractant CCL22, in orchestrating the resulting 
immune response following antigen recognition to exert a 
balance between immune response and tolerance, 
controlling inflammation and helping in the establishment of 
repair mechanism [122–124]. Such regulatory function of 
regulatory T cells prevents the resulting tissue pathology if 
their function is otherwise prohibited. 

17. Behçet’s disease 

Behçet’s disease, a chronic recurrent systemic 
inflammatory disorder, is associated with multiple organ 
pathologies, oral and genital ulcerations, skin lesions, and 
uveitis [20, 21]. Multiple etiologies were implicated in the 
disease pathogenesis, microbial antigens, environmental 
causes, endothelial cell dysfunction, genetic susceptibility, 
and immunological aberrations [125]. T helper 1 cells play a 
crucial role in the pathogenesis of Behçet’s disease [126, 
127]. Also, the expression of T helper 1-related chemokine 
receptors seems to be crucial in the established pathogenesis 
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CCR5 and CXCR3 [128–130], where CXCR3 is considered a 
marker for IFN-γ-producing T cell population.  

Conclusion 

This review elucidated the roles of chemokines as 
chemoattractant proteins in various physiologic and 
pathologic states. They have protective roles in the blood-
brain barrier and share in the process of neurogenesis and 
neuronal survival in CNS. On the other hand, chemokines 
served in the pathogenesis of the chronic obstructive 
pulmonary disease, Behçet’s disease, thyroid autoimmune 
disease and chronic hepatic disease through recruitment of T 
cells. They also shared other cell receptors as viral receptors 
for HIV.  
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