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Abstract :

We study theoretically, tracer diffusion in a lattice-gas
model that has been proposed to explain the anomalous
diffusion anisotropy of hydrogen (H) adatoms on a W
(110). We use the Green's function method to develop an
analytic mean-field theory for the tracer diffusion . We
then present a derivation of an improved solution (o
second order in the Green's function expansion for the
tracer-diffusion coefficients and the mean-square
displacement.

1. Introduction :
Perhaps the simplest example of a diffusive process consists of

particles executing Isotropic random walks on an inert lattice. In the
case of only one particle, the corresponding diffusion constant can

trivially be written down as | a2/z, where z is the coordination number
of the lattice, | Is the jump rate, and a is the latlice constant (l.e., the

length of each jump)m - However, in the presence of other particles, the

diffusion process becomes correlated and nonlrlvlalm. Additionally, a
distinction has to be made between single particle or tracer and
collective - or chemical - diffusion processes. The interparticle
correlations play a particularly important role in two-dimensional
systems. A substantial amount of analylic work and numerical
simulations have been done in simple lattice-gas systems in order to

study these correlation effects as a function of the coverage c(0<c<l)“’2l
. So far, complete analytic solutions for all coverages exist only in
cases where interactions between particles can be neglected, except for

the double-occupancy or site exclusion hard-core interactiont?l. Most of
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the current work has concentrated on tracer diffusion, since with only
on one-site hard-core Interaction present the collective-diffusion tensor

Is independent of coverage's'
dependence on c.

. while tracer diffusion shows complicated

Surface diffusion of adatoms on a substrate provides an important
realization of classical diffusion in two dimensions, which has

frequently been modeled by latlice-gas systcms'z' Sto 7'.Howcvcr. in
reality, the adsorption of an adatom is often accompanied by a local

substrate relaxation or dlstoruonl" to 9] .Recently . it has been
proposed that this local distortion can have significant effect on the

surface-diffusion tcnsor's to 8'. A novel lattice-gas model was
introduced which incorporates the essence ol such a distortion with

respect to dlﬂ'uslonlel. This model has been proposed (o explain the
observed diffusion anisotropy of H adatoms on a W (110) surfacel”].

2. The Model :
The essence of the model Is to recognize that the binding energy of
a H adatom can be lowered if it is displaced locally from the original

adsorption site along the [1 1 O] direction and accompanied by the
shift of surrounding substrate atoms in the same direction (see Fig. 1) .
Obviously, the same is ture If the displacements of both the adatom and
surrounding substrate atoms are reversed, This results in a "dynamical”
double-well-type adsorption polential, which Is imposed on the surface
unit cell by each diffusing particle. When Lhese distortions start to
correlate mutually for higher coverages, a global surface reconstruction

may occur, such as has been observed for H on W (110) mm,,,del ¢ ~0.5.

An important feature of the model is that. even without direct
adatom interactions, double occupation of an adsorption site IS not
favorable. This happens because of the opposing substrate distortions of
two adatoms within the same cell that leads to a large local increase in
the energy. Since the time scale for the adatom motion is much longer
than a typical time scale for the substrate response, the effect just
described can be approximately modeled by splitting the original single
adsorption sile Into two symmetric sites. When this is done, an energy
barrier exists for the motion from one subsite to another. Moreover, a
simultaneous occupation of the two subsiles is then forbiden; le., the
hard-core repulsion applies within each cell. In the context of a simple
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random-walk theory, the diffusive motion of the adatoms then be
considered to consist of two separate steps on a static lattice. The first
Is an intracell jump across the barrier orginating from the local
distortion, while the second s an intercell jump across the barrier due
to the usual periodic arrangement of the substrate atoms. The
compettion between these two processes can be parameterized by a
branching ratio r, which is the ratio of the intracell-to-intercell
difusion rates. In realistic adsorption systems additional direct or
indirect interactions exist belween adatoms on different adsorption
sites, as evidenced by the appearance of many distinct ordered phases of

the adlayer'gl. However, even without these interactions, the presence of
both intracell and Intercell jJumps as well as the exclusion of double
occupancy within a cell already leads to a very complicated coverage
dependence and causes strong correlation effects to appear for both
tracer and collective diffusion in the model . Having said this, a note of
caution must also be added. The assumplion of a static substrate
renders the model physically applicable for H/W (110} only in the
regime where no global reconstruction of the substrate accurs.

To explore fully the effects of a local lattice distortion on
diffusion, we have undertaken a comprehensive study of the collective-
diffusion prcoess within our lattice-gas model. In this paper we shall
concentrate on the case of a hard-core repulsion which applies to both
sites In a given cell. This Implies a strict exelusion of a dobule
occupany in each cell.

3. Green's-Function :

To calculate the effect of correlations for the case of tracer

diffusion, an equation-of-motion based on Green's-function formalism

has been developed by Tahir-Kheli and Eltiout!!1) (TKE) and further

refined by Tahir-Kheli and El-Meshad!'® '2] _ The TKE method has
been applied with very good results to a variety of lattice-gas systems,
where only the one-site blocking Interaction is present. This method
can be generalized to treat the case of collective diffusion as well as we
use it below to derive an analytic solution of D for our lattice-gas
model,

Let us consider diffusion on the somewhat more general alttice-gas
model of Fig. 2 with two distinct sublattices A and B in a given unit
cell, In addition to the single-site hard-core exclusion. we shall impose
the condition that only one of these sublaltice siles can be
simultaneously occupied. Each cell of this generalized model then
correspnods to the hourglass adsorption sites of our surface model , Let



S. 8. Zaher et al, 4

Fig. 1.

a) Geometry of an undistorted W (110) surface (from [ 6 ]) I he
hourglass adsorption sites of adatoms (cells) are denoted by 1L, While
S denotes the saddle points of the surface potential. b) A schemat
figure ol a local distortion caused by an adsorped H adatoms (shaded
circle). The arrows represent the displacements of the out most
atomic layer. <) Each hourglass now contains two equivalent sites,
denoted by dots . Dilfusion consists of two steps namely, mtracell

jumps with rate M and ntercell jumps with rate |,
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n (t) denotes a stochastic occupancy variable of the diffusing particles,
which are all assumed to be tdentical. If at a time t a particle is on

sublattice A in cell (Le., the hourglass) labelled g, then n: (t) =1;
otherwise, n‘) (t) =0.

Taking into account that a background particle can be blocked by

the tracer as well as an other background particle, we can write an
exact rate equation for a particle occupying sublatiice A in cell g :

<ond (0 =-MAn} ©+M"n? (©

-X 1M @nd ) [1-0f ©-nf©-pf©-pf ©]
(3.1)
+2, 1% (@ nf (0 [1-nf 0 -nf O -pd 0 -pf )]

The diffusing particles jump between neighboring lattice cells,
which have sublattices A and B. Double occupation of a cell by either
the tracer and a background particle, or two background particles, is
forbidden. Let p (t) be the stochastic occupancy variable of the tracer

particle, Thus, the rate equation for the tracer particle occupying
sublattice Aatcell g i1s :

< pA = - MA pJ(0 + M™ plt)

-2 ¢ P§ 0 1% (g0 [1-nfV - n}(t)] B2

+2 ¢ PP O 1™ (i@ [1 - nft) - nf(v)]

The corresponding equation for sublattice B follows by interchanging

labels for A and B. Here M® is the intracell jump rate assoctated with
the particle hopping form sublattice A (o sublattice B within the

hourglass, while MB is the rate for a jump in the opposite direction. In
the same way MA° and MP are defined as a Jump rates assocaited with

the tracer. IA (gh and lB (fg) are hopping rates of particles jump in an
intercell jump from cell g to cell [ originating from either A or B

sublattice, respectively. The same is for A0 ang 1BO . but the lattter are
associated with the tracer jump. We restrict ourselves (o the case where
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Fige 2.
Geometry of the generalized two-step model. Sublattices A (circled

dots) and sublattices B (dots). The vectors 6| and &, connecting

periodic cells. L and S refer to the original surface model of Fig. | .

only nearest-neighbor jumps are allowed |, f.¢. IA(gﬂ _— . where [-g = §;

or 89, lBo(fg) = 189 for [-g = -8 or -89, and both are zero otherwise. Here
8] = (a, b) and §7 = (-a, b) connect adjacent cells, as shown in Fig, 2.

The background occupancy varlables can be written in terms of
fluctuations ui‘(t) = n:(() - ¢%on sublattice s= A or B. the

components of the tracer-diffusion tensor can be extracted from the
pole of the retarded Green's-function for the tracer, this pole occurs at ©
= -lk.D.K. In the liImit k-0, =0 . The resull Is:

G, (0 =-2r10 (1) < ppt) pl(o)> . (3.3)

Where © (U 1s a step function. The corresponding four next-higher-
order Green's functions are given by :
Gy = << pg() ui'(t); ph(0) >> (3.4)
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for s, 8" = A or B. To obtain an equatin of motion for G“ (t) . weuse
the rate equation (3.2). This gives :

d
=% G” () =-2xid(t) < pf(l) p: (0) >

=-2x 18 (1) < pJlO0) > 3, . 854
- 2215 (1) -;- 8r. N (3.5)

where N iIs the total number of lattice sites. Defining the Fourler
transforms of the Green's-functins in frequency and reciprocal space:

Ge(t) = % [ do Y, G§ (@) e '@t e'® B (4
- o k

and

O ) ] - - y k. g+ 02(19
GEMW = N—,-L daGS (1) = Fl_duﬂ% Gl o (o) e e

(3.7)
The corresponding Fourier transforms for the jump rates are :

JS(q) = Y 15 (gn e'd @D (3.8)
ot

Now, we can wrile the corresponding equations of motion for G:(m)
and G (w) as:
[-lm + MA? 4 vJ“"(O)] Gl - [M™ +vJI™(-k)] GHw)

o Z Z[ MIGA (@) + "GR8 (w) ] (3.9)

-1 o Lo c""[c'“‘“G” (“’"""“Gx.u.uu(“’)]

b
GE (w) can be obtained by Interchanging lables for A and B. Here u is
summed over the first Brillouin Zone, § Is summed over §; and 85, and

the vacancy factor v = (1-¢) = [1 - M+ cB)l . The quantity

J%°0) = Y 1%°(gh
[
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. JAo(k) - ZIM(SO c-nk.(g-n
g-f

gle( c'"“an +e 3y
k8 1k3,
similarly, J2°(k)=1P% e '+e )

4. Mean-field solution :

Within the mean-fleld (MF) approximation, we neglect all second-
order Green's functions in (3.9) , which, in addition to the tracer
occupancy variable, also involve a density-fluctuation fleld for the
background particles. This leads to the set of equations :

(o + MA° 4 vJA° (0)] - IMP° 4 v POk GA )
k
A A Bo B
A MAC L vIAC (k)] [FHo+MP? + vJP%0)) Gf(u))
- N
0 (4.1)

We observe that the background particles enter only through the
vacancy factor v in (4.1). We obtain the elements of the diffusion tensor
from the pole of the Green's-function.

2vI® (M* +2vIV) .2

x (4.2)
M» 4+ M™ 42 v (1™ +1%)
and
Ao o
v >
D” = 2vM™ 1 h* . (4.3)
M+ M% 42y (1% +1%)
To make the connection to model of diffusin of identical particles,
we sel
MAO = MBO =M%, le = l!30 =19, and r'\ acPa /2. which gives
Dyx = vi° a® (4.4)
and
o o
Y M b? (4.5)

D -
W M+ 2vIY)
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For the diffusion anisotropy we then obtain, In terms of the
branching ratio , r = Mn°,

D 2
Yy r b
= -_— (4.6)
D, r+2v |a
The corresponding mean-square displacements are :
<ri)>=2vi°a’t (4.7)
2 2vI°M® 2
<rit) > = b*t (4.8)
: (M°+2vI9

Interestingly enough, this latter result applies for the isotropic
lattice cases as well. where collective diffusion Is constant for all

coverages ¢ < 1 and Is given simpley by D, = Dlc = Olm . It 1s also
interesting to note that while the coverage dependence of Dy, in(4.4) is

{dentical to the usual isotropic MF result with D = 1° a®, Dy y reduces
to this simple functional form only in the Hmit r - o= .

5. Second-order solutin :
To derive second-order correction, which Is obtained from the

equation of motion for the Green's-functins G:ﬁ- (t) . weget:

467 w=-250<p©O uf O p©>
dt gy ¢ ' .
+ << -g; pg () ]uf' (t) ; pg(0O) >>
+ << pg (1) [ad_t. uf (t)] i pe(0) >>

(5.1)

From (5.1). the scond order Green's-functions, as a matrix
equation given by :

2) (1)
QG](%”'E-QK*B-QK (5.2)

where the elements of the matrices C. F and R are given In the appendix
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AA
GK-u.u
BBG
G u g (5.3)
BAGM'"
GK-u.u
and
Gx
Q:(" = B (5.4)
GK
The vector pi s given by
Py
pk - | (55)
P
with component p) -pg:
pL=  px (8y)) p2 = P (5,)
p3 = px (-8 pa = px (=8y)
ps = px (8) 6 = Py (By)
p7 = px =8, pg = Px (-8,) (56
pg =  px (=8, Plo= Pk (=8,)
Bo §'8)
P11 = Px (8)) pr2a=  pg (8,)
p1a =  px (=8)) Prla= P (=8,
P15 = Px (6, prle=  Px (84
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px. (6 = -r%- Z,e™' i . (0 (5.7)

where the sum over p goes over the first Brillouin zone. and 5 Is elther
8) or 89 . In the fully symmetric case

Ao Bo 0 MAO _MBO . MO and
cA = cB =¢/2, we oblain
Dyy =v 1°a2 [, (5.8)
and
o o
(M®°+2vI19
where fy and fy represent the tracer correlation factors .

As a matter of fact equatios (5.8) and (5.9) are the two main
equations of this paper. Consequently we can write the mean-square
displacements of tracer diffuses anisotropically on a deformable lattices
as:

(5.9)

<rif)> =2vica’f, t (5.10)
2vI°M®

<ri(t)> = b?f, t (5.11

o M°+2vI® 7 ’

6 - Conclusion :

In this work we have presented a theoretical study of tracer
diffusion in the two-step lattice-gas model with single-site and Intracell
hard-core interactions. To understand this model, we have used the

Gren's function method of Tahir-Kheli and Elllou“" to analytically
compute the elments of the tracer-diffusion tensor for the model. We
have derived an improved solution to second order in the Green's
function expansion, which leads to an expression for D. We have also
obtained an analytic solution for D within the mean field
approximation. The second-order solution becomes less accurate for the
tracer-diffusion process as r diminishes, The results presented in this
anisolropy Is a universal property of the underlying lattice for
branching ratios r2 1.
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