EFFECT OF SALINITY AND NITROGEN BIO-FERTILIZATION ON SOME SUDAN GRASS (*SORGHUM SUDANENSE* (L.) MOENCH) VARIETIES AT RAS SUDR

[50]

Abd El-Rahman¹, S.M.; K.A. El Shouny²; M.A. Ashoub²; M.A. Abd El-Gawad¹ and M.Sh. Abd El-Maaboud¹

ABSTRACT

This study was carried out at Ras Sudr Experimental Station, South Sinai during 2001 and 2002 seasons. Four sudan grass varieties (Giza2, Piper, Hybrid102 and Is3214) were tested under five nitrogen fertilizer (Mineral and biofertilizer) treatments under two levels of irrigation water salinity (3700 and 9200 ppm). Growth characters i.e. plant height, number of tillers/plant, stem diameter, number of leaves/plant, leaf area, leaves/stem ratio, and forage vield (fresh and dry weight of stem+sheaths and fresh and dry weight of forage yield) were recorded. In addition, carbohydrates, protein, fibers and ash percentages (in leaves and stems) and proline in leaves were determined. Results demonstrate that the Piper variety had the highest value of forage yield compared with the other varieties. The recommended dose of mineral nitrogen fertilizer gave the highest values followed by mixture of biofertilizers (Azospirillum plus Azotobacter) under the two salinity levels of irrigation water at both cuts (the first one was harvested after 65 days from sowing date and the second was obtained at the same time interval). Moreover there was a significant decrease in all growth characteristics and the yield of four sudan grass varieties by increasing the level of irrigation water salinity from 3700 to 9200 ppm except proline in leaves which significantly increased by increasing the level of salinity

Key words: Sorghum, (Sorghum sudanense), Salinity of irrigation water, Biofertilizers.

INTRODUCTION

Forage sudan grass (*Sorghum* sudanense (L.) Moench) is considered as one of the most important fodder crops in many countries of the world due to its

high fodder yielding potential and good better quality. Sudan grass has excellent growing habit, quick growing regrowth after first cut and better palatability, digestibility, ratoonability and various forms of its utilization like green chop,

¹⁻ Desert Research Center, Matariya, Cairo, Egypt

²⁻ Department of Agronomy, Faculty of Agriculture, Ain Shams University, Shoubra El-Kheima, Cairo, Egypt.

silage and hay (Karwasra et al 1996 and Dahiva et al 1997). In Egypt there is a great shortage in green forage in summer that considered being one of the main problems for feeding animals. Sudan grass is among the moderate crops to salinity tolerance therefore, it is important to develop new varieties, which are capable to grow under elevated salt levels in the soil and/or irrigation water (Francois et al 1984). Teosinte. Maize and Sudan grass are important forage crops which are grown extensively in salt affected semi-arid regions. Moreover sudan grass was comparatively more salt tolerant than Maize and Teosinte as far as various morpho-physiological characteristics are concerned (Kumar et al 1991 and Datta et al 1996).

The soil and ground water salinity generally co-exist and have become a colossal agro-ecological problem associated with declining crop yield as reported by Hassan (1994) and Nassar et al (2000). Nitrogen fertilizers play an important role in increasing forage production of sudan grass with better nutritive value (Patel & Rajagopal 2003 and Ramesh & Sammi 2004). The cost of nitrogenous fertilizers is very high; hence, it becomes imperative to substitute nitrogen by some other cheaper sources. such as Azospirillum and/or Azotobacter which promote root growth and nitrogen fixation in soil, which may partially meet the nitrogen requirement of the crop (Patel et al 1992; Desale et al 1999 and Patidar & Mali 2004). Subba Rao et al

(1979) demonstrated that application of *Azospirillum* and/or *Azotobacter* promoted root growth and more nitrogen fixation in soil, which help in increasing, fodder yield.

The main objective of the present investigation was to study the effect of nitrogen fertilizer (mineral and biofertilizer) treatments on yield and growth of sudan grass under high salinity conditions.

MATERIAL AND METHODS

This study was carried out at Ras Sudr Experimental Station, South Sinai during 2001 and 2002 seasons. Four sudan grass varieties namely: Giza2. Piper. Hvbrid102 and Is3214 were chosen for the present study. Grains of the four varieties were provided by the Forage Research Division, Field Crops Research Institute of Agricultural Research Center, Ministry of Agriculture and Land Reclamation, Egypt. Efficient strains of Azotobacter chroococcum (AC), and (AB) Azospirillum brasilense were supplied by Microbiology unit, Desert Research Center, Egypt. The preceding winter crop was wheat. Sudan grass grains were sown on May 5th at the two seasons. Experimental plot was four ridges, 3 meters long and 50cm width. The size of each plot was 6m²; the distance between hills was 15cm on one side of the ridges. Split-split plot design

¹⁻ Desert Research Center, Matariya, Cairo, Egypt

²⁻ Department of Agronomy, Faculty of Agriculture, Ain Shams University, Shoubra El-Kheima, Cairo, Egypt.

with five replications was used. Irrigation water levels of salinity (3700 and 9200 ppm) occupied the main plots and nitrogen fertilizer the sub-plots, whereas, the four sudan grass varieties occupied the sub-sub plots. Mineral nitrogen fertilizer treatments were applied as:

- a- Recommended rate; 60 kg N/fed. as ammonium nitrate 33.5 % N added in two equal doses. The first one was applied after 20 and 50 days (half-and-half) and the second was applied after the first cut.
- b- Without (control).
- c- *Azotobacter chrococcum* (AC), rate of application five liters/fed.

- d- *Azospirillum brasilense* (AB), rate of application five liters/fed.
- e- Mixture of (AC) and (AB), rate of application five liters/fed.

Two cuts were taken every season, the first one was harvested after 65 days from sowing date and the second was obtained at the same time interval. Phosphorus fertilizer as calcium super-phosphate (15.5%) was added at a rate of 100 kg/fed. as a basal application during soil preparation and the other cultural practices were applied as recommended for growing sorghum in the area.

Mechanical and chemical properties of the soil are shown in Table (1) and chemical analysis of irrigation water at the two seasons is shown in Table (2).

Table 1. Mechanical and chemical properties of experimental soil at Ras	s Sudr in 2001
and 2002 growing seasons.	

Season	Physical analysis										
	Part	ticle size distribution	Class texture								
	Sand	Silt	Clay								
2001	58.41	20.23	21.36	Sandy loam							
2002	62.34	17.15	20.51	Sandy loam							

	Chemical analysis											
Season	Cations (mg/L) Anions (mg/L)											
-	Ph	Ec (ppm)	Ca ++	Mg ++	Na +	K ⁺	CO3-	Hco3-	Cŀ	SO4-	CaCO3-	
2001	7.84	5510	19.01	47.31	18.32	0.67	-	6.51	51.03	27.47	49.37	
2002	7.72	5700	21.13	48.92	20.19	0.69	-	8.04	49.5	31.19	52.94	

Table 2. Chemical analysis of irrigation water at Ras Sudr in 2001 and 2002 growing seasons

Arab Univ. J. Agric. Sci., 13(3), 2005

Season	Cations (mg/l)						Anions (mg/l)				
	Ph	Ec (ppm)	Ca ++	Mg ++	Na ⁺	K ⁺	CO3-	Hco3-	Cl-	SO4-	
2001	8.56	3700	40	75	33	0.28	-	8.0	65.51	74.01	
2002	8.35	9.200	35	70	37.4	0.31	-	9.5	62.02	71.21	

Arab Univ. J. Agric. Sci., Ain Shams Univ., Cairo, 13(3), 755-769, 2005

¹⁻ Desert Research Center, Matariya, Cairo, Egypt

²⁻ Department of Agronomy, Faculty of Agriculture, Ain Shams University, Shoubra El-Kheima, Cairo, Egypt.

Free proline in the leaves were determined according to the method described by Bates et al (1973). Total carbohydrate were determined in leaves and stems at first and second cuts according to the method described by Smith et al (1964). Total nitrogen was determined in leaves and stems as dry matter by using the modified micokieldahl method as described by Peach and Tracev (1956). Protein content was calculated by multiplying the total nitrogen by 6.25. Crude fibers and ash contents were determined in leaves and stems according to the method described by (A.O.A.C. 1990). At cut, ten guarded plants were taken randomly from each plot of the five replicates to determine the growth characteristics at the two cutting stages. Combined analysis of the two growing seasons data was carried out according to procedure outlined by Steel and Torrie (1980). Duncan's multiple range test, (Duncan, 1955) was used to verify the significance of mean performance for all traits recorded.

RESULTS AND DISCUSSION

1. Effect of irrigation water salinity and nitrogen fertilizers on some growth characters and forage yield

Results given in Table (3) show that generally increasing salinity level of irrigation water from 3700 to 9200 ppm significantly decreased all of the growth characters of the four sudan grass varieties at the two cuts. Reduced growth levels under salinity conditions may be due to the water deficit as a result of water and osmotic potentials in the growth medium or to water and ionic disequilibrium in the aerial parts of the plant. Moreover, high concentration of salts may reduce the absorption capacity of roots. In this respect **Kramer (1969)** demonstrated that high concentration of salt cause a decrease in the permeability of roots to water, and hence a decrease in the rate of its entry into the plant. Kaoud and El-Fieshawy (1990) indicated that the N, P, Ca⁺⁺ and K⁺ concentrations were decreased while Na⁺ and Mg⁺⁺ increased with increasing salt levels.

The interaction effect among salinity of irrigation water and nitrogen fertilizers on some growth characteristics of the four sudan grass varieties indicated that adding the recommended dose of mineral nitrogen fertilizer increased significantly plant height, fresh and dry weight of stem+sheaths/plant and leaves/stem ratio of Piper variety at the two cuts under 3700ppm. On the other hand, the lowest mean values of plant height, was for Is3214 followed by Hybrid102 under treatment without nitrogen fertilization when irrigated with saline water 9200ppm. Such trends were cited by Hassan (1994) and Karwasra and Dahiya (1997). Regarding, number of tillers per plant, Is3214 variety showed the highest mean values at the recommended dose of mineral nitrogen

¹⁻ Desert Research Center, Matariya, Cairo, Egypt

Department of Agronomy, Faculty of Agriculture, Ain Shams University, Shoubra El-Kheima, Cairo, Egypt.

fertilizer followed by the mixture of biofertilizers with salinity of irrigation water 3700ppm at first and second cut. Meantime, there were no significant differences between the four sudan grass varieties at recommended dose of mineral nitrogen fertilizer with saline water 9200ppm. These results could be attributed to the effect of high concentration of salts which caused an osmotic pressure that inhibited soluble nitrogen absorption and consequently prevent the stimulating effect of nitrogen on plant growth. Similar results were obtained by Ramamurthy (2002): Patel & Rajagopal (2003) and Ramesh & Sammi (2004). Concerning, stem diameter, results in Table (3) indicate that the highest mean values were obtained for Is3214 at the recommended dose of mineral nitrogen fertilizer followed by Azospirillum and mixture of biofertilizers at 3700ppm of irrigated water. On the other hand, Piper and Giza2 varieties had the higher stem diameter values at the recommended dose of mineral nitrogen fertilizer at salinity of irrigation water 9200ppm. Data presented in Table (3) show also that. Azospirillum brasilense (AB) strain was more effective and suitable strain for inoculation to the four sudan grass varieties as compared with Azotobacter chroococcum (AC) strain. Similar trends were obtained by Hassan (1994); Rawat & Hazra (1998); Nassar et al (2000); Ramamurthy (2002) and Patidar and Mali (2004).

Regarding number of leaves/plant, (Table 3) results show that Piper variety had the highest values of number of leaves at the recommended dose of mineral nitrogen fertilizer and mixture of biofertilizers with salinity of irrigation water 3700ppm at the two cuts. While, Hybrid102 variety recorded the highest values of number of leaves with applying the recommended nitrogen fertilizer at the first cut without significant differences. The lowest values were detected for Giza2 variety with salinity of irrigation water 3700ppm at the nitrogen control treatment at the two cuts. Piper variety took the same trend with adding recommended dose of mineral nitrogen fertilizer and mixture of biofertilizers under salinity of irrigation water 9200 ppm at the two cuts. Similar results were obtained by Hassan (1994); Karwasra & Dahiya (1997) and Nassar et al (2000).

Concerning leaf area, data presented in Table (3) show that the lowest values were detected for Hybrid102 variety under treatment without nitrogen fertilization with water salinity 9200ppm. On the other hand, the highest values were recorded by Is3214 variety with the recommended dose of mineral nitrogen fertilizer followed by mixture of biofertilizers at salinity of irrigation water 3700ppm in the two cuts. These results agree those obtained by Saffa et al (1993) and Patidar & Mali (2004). Hybrid102 and Is3214 varieties had the lowest values for fresh and dry weight of stem+sheaths under treatment without nitrogen fertilization when irrigated with saline water 3700ppm in the two cuts (Table 4). Meantime, the highest values were recorded by Piper variety with salinity of irrigation water 3700ppm at the recommended dose of mineral nitrogen fertilizer treatment followed by mixture of biofertilizers in the two cuts. On the other hand, the highest values were recorded by Piper variety when irrigated with saline water 9200ppm with adding recommended dose of mineral

nitrogen fertilizer followed by fertilizing with mixture of biofertilizers at the two cuts for fresh weight of stem+sheaths characters. Regarding dry weight of stem+sheaths, (Table 4) Piper variety fertilized with the recommended dose of mineral nitrogen fertilizer followed by mixture of biofertilizers had the highest values under salinity of irrigation water 9200ppm at the two cuts. Similar results were found by **Karwasra & Dahiya** (1997) and Nassar *et al* (2000).

Mean-time Piper variety had the highest values of leaves/stem ratio under

Arab Univ. J. Agric. Sci., Ain Shams Univ., Cairo, 13(3), 755-769, 2005

Table 3. Effects of Salinity x N fertilizers x Varieties interaction on some growth characters of four Sudan grass varieties at Ras Sudr over two growing seasons (2001 and 2002).

Salinity										
of water										
irrigation	Ν	Varieties	Plant h	eight	No. of		Stem d	iameter	No	. of
3700	IN	varieties	(cn	(cm)		tillers/plant		m)	leaves/plant	
ppm										
	Recommend		1 st cut	2nd cut	1 st cut	1 st cut	2nd cut	2nd cut	1 st cut	2nd cut
	60 kg N/fed.		1 Cut			1 cut	2 cut	2 cui	1 cut	2 cut
		Giza2	145.50 b	171.00 c	6.73 g	5.88 i	11.10 ab	11.91 ab	11.21 c	10.59 bc
		Piper	167.60 a	184.50 a	11.77 d	10.78 cd	10.25 bc	10.62 ef	13.66 a	12.54 a
		Hybrid 102	132.60 d	129.40 h	13.39 c	12.34 b	11.40 ab	11.98 ab	12.52 b	11.56 ab
		Is 3214	117.40 gh	139.80 f	16.58 a	13.66 a	11.77 a	12.12 a	11.42 c	10.61 bc
	Control (zero N)	Giza2	33.74 u	25.54 q	2.20 mn	1.83 lm	4.68 hi	4.41 pq	5.97 lm	5.78 lm
		Piper	32.04 u	25.31 q	2.18 mn	1.47 lm	4.45 ij	3.88 rs	6.52 jk	6.39 jk
		Hybrid 102	27.89 v	25.99 q	3.35 jk	2.401	4.89 hi	4.35 qr	6.40 jk	6.33 kl
		Is 3214	24.99vw	23.00 r	2.43 lm	1.1 no	5.35 hi	5.44 no	6.58 jk	6.50 ij
	Azotobacter	Giza2	110.20 i	128.10 h	4.11 ij	3.61 k	9.42 de	9.79 hi	9.12 fg	8.42 ef
		Piper	121.40 f	134.90 g	7.51 g	6.82 h	8.51 ef	9.05 jk	9.17 fg	8.58 ef
		Hybrid 102	105.50 j	111.70 ј	8.72 f	7.48 gh	9.43 de	9.87 gh	9.95 de	9.52 cd
		Is 3214	101.30 k	109.90 j	9.74 e	8.16 fg	10.23 bc	10.81 de	9.01 fg	8.46 ef
	Azospirillum	Giza2	126.00 e	148.30 e	4.77 i	4.11 jk	10.41 bc	10.85 cd	9.50 fg	8.75 ef
		Piper	145.50 b	149.00 e	9.31 ef	8.52 f	9.34 de	9.67 ij	11.44 c	10.63 bc
		Hybrid 102	114.60 h	124.90 i	11.10 d	10.07 de	10.49 bc	11.01 bc	10.88 cd	10.20 cd
		Is 3214	107.40 ij	122.00 i	11.76 d	10.29 de	10.75 ab	11.13 ab	9.16 fg	8.52 ef
	Mixture	Giza2	138.50 c	166.00 d	5.75 h	4.91 j	10.62 ab	11.05 ab	10.61 cd	9.36 de
		Piper	164.40 a	176.90 b	10.77 d	9.85 e	9.68 cd	10.02 fg	13.56 a	12.40 a
		Hybrid 102	121.00 f	134.60 g	12.89 c	11.25 c	11.14 ab	11.49 ab	11.64 bc	10.65 bc
		Is 3214	118.20 fg	135.30 g	14.43 b	12.39 b	11.39 ab	11.87 ab	11.15 c	10.38 cd
Salinity										
of water	Recommend									
irrigation 9200	60 kg N/fed.	Giza2	65.52 m	47.19 m	3.36 jk	1.86 lm	6.53 g	6.71 m	8.32 gh	7.55 gh
ppm										
		Piper	81.851	62.53 k	2.57 kl	1.95 lm	8.46 ef	8.93 kl	9.61 ef	8.94 e
		Hybrid 102	59.29 n	40.88 n	3.21 jk	2.24 lm	5.34 hi	5.56 no	8.07 hi	7.48 gh
		Is 3214	43.70 qr	36.73 o	3.66 jk	2.24 lm	4.64 ij	5.04 op	7.81 i	7.41 gh
	Control (zero N)	Giza2	23.34 w	14.82 t	1.43 qr	1.12 no	2.48 m	2.27 t	5.38 m	5.34 no
		Piper	25.92 vw	21.51 s	1.29 r	0.911 op	3.69 kl	3.67 s	5.56 m	5.47 no

1- Desert Research Center, Matariya, Cairo, Egypt

2- Department of Agronomy, Faculty of Agriculture, Ain Shams University, Shoubra El-Kheima, Cairo, Egypt.

Azospirillum	Giza2	53.78 o	37.36 o	2.77 kl	1.90 lm	5.34 hi	5.83 mn	7.24 ij	6.67 ij
	Piper	64.70 m	50.43 1	2.06 no	1.40 mn	6.48 g	6.40 mn	8.34 gh	7.65 fg
	Hybrid 102	47.42 p	35.88 o	2.21 mn	1.57 lm	3.82 jk	4.11 qr	7.53 ij	6.90 ij
	Is 3214	37.29 t	29.82 p	1.84 no	1.19 no	3.64 kl	4.11 qr	6.32 kl	5.82 lm
Mixture	Giza2	62.52 mn	43.18 n	2.98 kl	2.26 lm	5.83 gh	6.32 mn	8.13 hi	7.43 gh
	Piper	81.141	61.79 k	2.37 lm	1.79 lm	7.79 f	8.241	9.16 fg	8.40 ef
	Hybrid 102	53.06 o	44.10 m	2.65 kl	1.86 lm	4.75 hi	5.09 op	8.18 hi	7.42 gh
	Is 3214	41.17 rs	34.53 o	2.07 no	1.68 lm	4.58 ij	4.94 op	7.24 ij	6.69 ij

Abdel-Rahman; El-Shouny; Ashoub; Abdel-Gawad and Abd El-Maaboud

Table 5	. Com.									
Salinity										
of water					Stem +	sheaths	Stem +	sheaths		
irrigation	Ν	Varieties	Leaf are	ea (cm ²)		weight	Dry w		Leaves / s	tem ratio
3700		, uneres	Loui uit			lant)	(g/p	•		
ppm					(6/P	,	(5/P	,		
	Recommend		1 st cut	2nd cut	1 st cut	1 st cut	2nd cut	2nd cut	1 st cut	2nd cut
	60 kg N/fed.		1 cut	2 cut	1 cut	1 cut	2 cut	2 Cut	1 cut	2 cut
		Giza2	239.60 g	259.30 f	217.66 c	227.00 c	80.59 de	96.15 b	16.45 c	18.57 c
		Piper	269.40 e	276.60 e	243.80 a	256.80 a	97.50 a	108.6 a	20.64 a	23.51 a
		Hybrid 102	343.20 c	349.20 c	204.40 d	213.90 e	89.57 b	89.51 c	11.69 ef	13.52 f
		Is 3214	449.30 a	455.60 a	186.50 g	194.70 g	81.46 de	81.87 e	10.65 fg	11.54 g
	Control	Giza2	81.28 u	75.38 r	53.14 x	48.33 t	20.44 qr	20.30	6.34 mn	6.49 kl
	(zero N)	Gizaz								
		Piper	73.08 w	63.38 u	47.28 y	42.47 u	21.19 qr	17.30 st	6.55 lm	6.55 kl
		Hybrid 102	64.57 y	60.15 v	39.45 z	34.83 v	16.95 st	13.98 tu	6.42 mn	5.60 no
		Is 3214	75.32 v	64.96 t	39.26 z	35.40 v	17.78 st	13.55	5.96 no	5.71 mn
		18 5214						uv		
	Azotobacter	Giza2	170.61	175.60 k	166.30 j	169.70 i	61.84 i	69.21	9.55 gh	10.53 h
	Azotobacter	Gizaz						gh		
		Distant	190.60 k	201.20 j	176.00 i	180.20 h	74.21	76.76 f	12.42 e	14.63 e
		Piper					gh			
		Hybrid 102	220.80 i	211.70 i	146.301	152.60 k	64.97 i	66.56 h	7.72 jk	8.64 j
		1- 2214	249.70 f	253.80 f	131.90	138.401	56.45 j	58.78 i	6.59 lm	6.70 k
		Is 3214			m					
	Azospirillum	Giza2	211.40 ј	220.10 h	182.80 g	192.60 g	76.84 fg	81.41 e	11.52 ef	13.64 f
		Piper	222.00 i	227.10 h	199.10 e	223.10 d	82.87 cd	95.12 b	14.70 d	18.52 c
		Hybrid 102	270.00 e	275.80 e	160.60 k	168.90 i	71.58 h	71.63 g	8.77 hi	10.56 h
		Is 3214	327.70 d	331.90 d	146.801	160.50 j	64.14 i	67.35 h	8.65 ij	9.53 i
	Mixture	Giza2	232.90 h	243.70 g	205.20 d	220.90 d	82.35 cd	90.73 c	14.69 d	17.51 d
		Piper	254.50 f	253.20 f	230.70 b	250.10 b	89.21 b	95.6 b	18.67 b	22.54 b
		Hybrid 102	327.20 d	338.30 d	194.30 f	206.20 f	85.63 c	85.81 d	11.60 ef	13.49 f
		Is 3214	428.20 b	436.80 b	180.50 h	191.60 g	77.63 ef	79.67 ef	9.88 gh	11.52 g
Salinity			122.70 p	113.2 op	101.20 p	77.64 o	42.181	31.54 kl	7.48 kl	6.56 kl
of water			1	1	1					
irrigation	Recommend	Giza2								
9200	60 kg N/fed.									
ppm										
11		Piper	131.70 n	130.7 lm	127.10 n	99.17 m	54.49 jk	40.81 j	8.72 hi	8.59 j
			119.30 q	105.4 p	82.51 r	67.05 p	32.35	28.59	6.72 lm	6.42 kl
		Hybrid 102		100. i p	52.011	57.00 P	no	lm	2	5. 12 M
			147.90 m	138.01	74.36 t	57.96 r	29.68	25.00	6.49 lm	6.35 kl
		Is 3214	,.) o m	120.01	,	57.501	op	op	,	5.50 m
	Control		62.49 y	59.04	36.72 z	31.62 v	15.53 t	12.48	4.69 rs	3.52 q
	(zero N)	Giza2	5 <u>=</u> .17 j	VW	JU.12 L	51.52 1	10.00 0	uv		0.02 Y
I	(2010 14)			v vv				uv		

Table 3. Cont.

Arab Univ. J. Agric. Sci., 13(3), 2005

10

			stu	2	33.18 v	17.50 50	13.73 tu	4.55 rs	3.59 q
Н	ybrid 102	54.46 z	49.51 w	32.99 z	27.16 w	11.59 u	11.24 uv	4.42 st	3.08 qr
	Is 3214	57.98 z	52.31 w	30.89 z	24.39 w	11.80 u	10.63 v	3.93 t	2.63 r
Azotobacter	Giza2	79.18 v	71.84 rst	70.66 u	53.65 s	30.48 no	20.91 qr	4.85 qr	4.54 p
	Piper	86.03 u	80.36 r	91.15 q	63.08 q	32.62 no	25.63 no	5.51 op	4.63 p
Н	ybrid 102	74.85 w	69.00 stu	48.57 y	35.17 v	19.68 qr	14.84 tu	4.63 rs	3.72 q
	Is 3214	101.30 t	92.19 q	44.49 y	35.33 v	18.55 rs	14.71 tu	4.50 st	3.59 q
Azospirillum	Giza2	100.40 t	90.84 q	79.66 r	67.32 p	34.42	27.70	5.80 no	5.56 o
Azospiimum	Gizaz					mn	mn		
	Piper	111.00 s	105.7 p	103.10 p	78.09 o	43.421	34.11 k	6.54 lm	6.18 kl
Н	ybrid 102	85.53 u	77.46 rs	61.03 w	46.75 t	22.56 qr	19.91 rs	5.35 pq	4.70 p
	Is 3214	116.70 r	106.3 p	55.21 x	45.54 t	23.41 q	19.38 rs	5.52 op	4.54 p
Mixture	Giza2	113.90 r	108.2 p	94.10 q	74.30 o	36.68 m	30.80 kl	6.99 lm	6.60 k
	Piper	127.70 o	119.8 no	121.90 o	92.03 n	52.14 k	38.22 j	8.53 ij	8.13 j
Н	ybrid 102	103.50 t	94.16 q	76.68 s	62.84 q	27.73 p	22.22 pq	6.64 lm	5.74 lm
	Is 3214	135.50 n	127.3 mn	68.43 v	55.34 r	29.38 op	24.22 op	6.35 mn	5.61 no

Abdel-Rahman; El-Shouny; Ashoub; Abdel-Gawad and Abd El-Maaboud

Table 4. Effects of Salinity x N fertilizers x Varieties interaction on yield, carbohydratepercentage of four sudan grass varieties at Ras Sudr over 2001 and 2002 growingseasons.

Salinity										
of water irrigation 3700 ppm	Ν	Varieties		age yield fed.	Dry f yield k	0	Carbohydrate in stems (%)		Carbohydrate in leaves (%)	
			1st cut	2nd cut	1 st cut	2nd cut	1 st cut	2nd cut	1 st cut	2nd cut
	Recommend 60 kg N/fed.	Giza2	5367 b	6053 b	2003 b	2056 b	36.73 bc	35.69 cd	40.83 gh	36.58 de
	-	Piper	5694 a	6594 a	2109 a	2309 a	41.01 a	40.36 a	46.75 a	41.63 b
		Hybrid 102	3380 d	5060 c	1340 e	1654 c	37.92 b	37.31 bc	47.52 a	43.47 a
		Is 3214	3303 d	4373 d	1181 fg	1415 de	36.44 bc	35.10 de	41.80 ef	39.59 c
	Control (zero N)	Giza2	341.9 no	291.1pq	133.2 q	110.2 kl	28.75 pq	27.63 st	34.98 no	31.45 kl
		Piper	525.3mn	521.5mn	200.4pq	192.5 kl	33.74 ef	32.73 ij	36.19 m	32.41 jk
		Hybrid 102	333.4 no	423.4 no	124.8 qr	156.6 kl	29.94 no	28.90 qr	33.46 pq	28.49 no
		Is 3214	326.1 no	397.4 op	115.8 qr	132.7 kl	28.80 pq	27.70 rs	37.501	34.59 fg
	Azotobacter	Giza2	1244 hi	2561 h	422.2mn	995.4gh	31.98 ij	31.17mn	37.59 kl	32.53 jk
		Piper	1557 fg	2621 g	571.0 jk	1085 fg	36.28 bc	35.24 cd	41.35 fg	34.60 fg
		Hybrid 102	1205 hi	2354 hi	465.8lm	878.3 hi	34.02 ef	33.22 hi	42.11 ef	34.93 fg
		Is 3214	1317 gh	2533 hi	495.5 kl	923.7 hi	33.24 fg	32.40 jk	38.38 jk	33.41 hi
	Azospirillum	Giza2	3324 d	3310 f	1212 fg	1218 ef	33.88 ef	32.95 ij	39.05 ij	33.79 gh
		Piper	3467 d	4392 d	1279 ef	1495 de	37.87 b	36.85 cd	43.11 cd	35.53 ef
		Hybrid 102	2170 e	3408 f	796.9 h	1214 ef	36.71 bc	36.12 cd	43.85 c	37.26 d
		Is 3214	2008 e	3217 f	752.7 hi	1271 ef	36.05 bc	35.20 cd	39.46 i	35.69 ef
	Mixture	Giza2	4663 c	5274 c	1604 d	1797 bc	36.49 bc	35.56 cd	40.58 h	35.56 ef
		Piper	5391 b	6216 b	1996 b	2050 b	40.18 a	39.10 ab	45.80 b	40.03 c
		Hybrid 102	3209 d	4438 d	1206 fg	1558 cd	37.48 bc	36.57 cd	47.07 a	42.57 ab
		Is 3214	3227 d	4119 e	1150 g	1341 de	36.51 bc	35.53 cd	41.69 ef	39.35 c
Salinity of water	Recommend									
irrigation 9200 ppm	60 kg N/fed.	Giza2	1430fg	1843 j	589.8 jk	715.3 ij	33.83 ef	32.85 ij	34.79 no	29.73mn
r r		Piper	1714 f	2289 i	679.4 ij	916.7 hi	37.75 b	36.95 cd	39.55 i	32.54 jk
		Hybrid 102	1494 fg	1826 j	561.6 kl	692.4 j	35.03 de	34.20 fg	42.66 de	35.44 ef
		Is 3214	978.5 ij	1058 k	348.6 no	392.3 k	34.04 ef	33.38 hi	35.70mn	29.42 no

Arab Univ. J. Agric. Sci., 13(3), 2005

12

Control (zero N)	Giza2	104.3 o	94.50 q	40.53 s	38.11	26.88 rs	25.71 uv	30.71 u	24.72 rs
	Piper	124.8 o	109.9 q	55.79 rs	40.81	27.83 qr	26.93 tu	29.65 v	24.44 rs
	Hybrid 102	99.13 o	93.25 q	40.35 s	38.421	27.03 qr	25.90 uv	31.62 st	23.69 s
	Is 3214	96.99 o	97.77 q	42.46 s	39.51	25.85 s	24.90 v	30.99 tu	24.42 rs
Azotobacter	Giza2	497.6mn	603.8mn	173.5 po	235.8 kl	30.74 lm	29.70 ор	31.48 tu	25.12 r
	Piper	632.3lm	693.5lm	234.0 ор	260.0 kl	31.96 ij	31.24mn	32.51 qr	26.45 p
	Hybrid 102	405.0 no	478.6mn	144.4 qr	165.5 kl	30.09mn	29.24 pq	36.47 m	28.73 no
	Is 3214	334.1 no	345.9 ор	117.9 qr	148.1 kl	29.82 ор	28.87 qr	31.90 rs	25.24 qr
Azospirillum	Giza2	595.8lm	708.3lm	233.2 ор	284.8 kl	31.18 kl	30.07 no	32.61 qr	26.48 p
	Piper	759.0 kl	869.0 kl	280.6 op	348.4 kl	35.67 cd	34.65 ef	33.76 p	28.76 no
	Hybrid 102	505.5mn	582.8mn	192.2 pq	222.2 kl	31.85 jk	31.15mn	38.57 ij	30.83 lm
	Is 3214	432.4 n	489.9mn	167.1 pq	177.7 kl	31.17 kl	30.29 no	33.41 pq	26.33 pq
Mixture	Giza2	880.3 kl	1071 k	321.7 no	405.7 k	32.75 gh	31.69 lm	34.14 op	28.36 o
	Piper	1430 fg	1950 j	575.5 jk	730.1 ij	37.10 bc	36.11 cd	37.75 kl	32.65 ij
	Hybrid 102	945.6 jk	923.5 kl	349.6 no	333.8 kl	34.73 de	33.96 gh	41.84 ef	35.72 ef
	Is 3214	748.3 kl	922.0 kl	286.2 ор	348.0 kl	32.63 hi	32.00 kl	35.68mn	29.64mn

salinity of irrigation water of 3700ppm with the recommended dose of mineral nitrogen fertilizer followed by mixture of biofertilizers at the two cuts (Table 3). Whereas, the lowest values were recorded by Is3214 variety with using salinity of irrigation water 9200ppm under treatment without nitrogen fertilization. Similar results were obtained by Hassan (1994) and Nassar et al (2000). Data in Table (4) demonstrated that the high values of fresh and dry weight of forage yield/fed., were recorded by Piper variety under salinity of irrigation water of 3700ppm at the recommended dose of mineral nitrogen fertilizer, followed by mixture of biofertilizers of the same variety at the two cuts. Meantime, Piper variety had the maximum mean values of fresh and dry weight of forage vield/fed., at the recommended dose of mineral nitrogen fertilizer followed by mixture of biofertilizers with adding saline water 9200ppm of the same variety at the two cuts. The minimum values of fresh and dry weight of forage yield/fed., were obtained by Is3214, Hybrid102, Giza2 and Piper varieties under treatment without nitrogen fertilization at salinity of irrigation water 9200ppm in both cuts. Such results confirm those of Patel et al (1992): Barik et al (1998): Panwar et al (1999) and Kaoud & El-Fieshawy (1990), who indicated that sorghum is a moderately salt tolerant plant. The N, P, Ca⁺⁺ and K⁺ concentrations were decreased while Na⁺ and Mg⁺⁺ increased with increasing salt levels.

2. Effect of irrigation water salinity and nitrogen fertilizers on some chemical components

The average values of total carbohydrates, protein, proline, fibers and ash percentages are shown in Tables (4 and 5). Data show that, high level of salinity (9200ppm) decreased the mean values of all these chemical contents except of proline percentage in leaves at first cut whereas, insignificant increase in such chemical components has been recorded by decreasing the level of salinity from (9200 to 3700 ppm). On the other hand, proline percentage in leaves increased by increasing the salinity of irrigation water from (3700 to 9200 ppm), similar results were mentioned by Hassan (1994) and Nassar et al (2000) who indicated that proline helps in osmoregulation and protects the cells against salinity stress. The highest mean values of total carbohydrates percentages in stem was found in Piper variety at the recommended dose of mineral nitrogen fertilizer followed by treatment mixture of biofertilizers on salinity of irrigation water (3700ppm). Hybrid102 had the highest mean values of total carbohydrates percentages in leaves with adding the recommended dose of mineral nitrogen fertilizer and mixture of biofertilizers at the two cuts and Piper variety at the recommended dose of mineral nitrogen fertilizer in the first cut. However Is3214 variety had the lowest significant values of total carbohydrates percentages in stems and leaves under

¹⁻ Desert Research Center, Matariya, Cairo, Egypt

²⁻ Department of Agronomy, Faculty of Agriculture, Ain Shams University, Shoubra El-Kheima, Cairo, Egypt.

treatment without nitrogen fertilizer on salinity of irrigation water (9200ppm) in the both cuts, as shown in Table (4). These results are in harmony with those obtained by **Mustafa & Shaheen (1984); Abbas** *et al* (1993); **Hassan (1994);**

Nassar *et al* (2000) and Ram & Bhagwan (2003).

Data in Table (5) show that the protein and fiber percentages in leaves and stems of the four sudan grass varieties significantly differed in there response to

Arab Univ. J. Agric. Sci., Ain Shams Univ., Cairo, 13(3), 755-769, 2005

of water irrigation 3700 ppm	Ν	Varieties	Protein in leaves%	Prote in stem			ber ves (%)	Pro in leaves	
ppm			1 st cut	2nd cut	1 st cut	2nd cut	1 st cut	2nd cut	1 st cut
	Recommend 60 kg N/fed.	Giza2	12.06 ab	12.41 ab	6.85 ab	7.09 ab	23.55 bc	22.72 bc	1.873 h
		Piper	12.56 a	12.92 a	7.49 a	7.59 a	26.10 a	25.72 a	2.259 de
		Hybrid 102	11.30 bc	11.60 bc	6.38 bc	6.52 bc	22.42 cd	21.99 cd	1.126 mn
		Is 3214	10.21 d	10.51 d	6.44 bc	6.59 bc	20.67 de	20.34 de	1.224 lm
	Control (zero N)	Giza2	9.10 ef	9.44 ef	3.51 kl	3.64 op	16.80 mn	16.72 lm	0.428
		Piper	8.20 gh	8.52 gh	3.77 kl	3.91 no		17.99 jk	0.502
		Hybrid 102	7.30 ij	7.58 hi	3.01 op	3.10 rs	16.97 mn	16.61 mn	0.346
		Is 3214	6.27 mn	6.50 lm	3.42 mn	3.48 pq	15.11 ор	14.64 op	0.350
	Azotobacter	Giza2	9.22 e	9.72de	5.20 fg	5.36 gh	18.93 hi	18.49 ij	0.793
		Piper	9.26 e	9.51 ef	5.46 ef	5.56 fg	20.30 fg	19.96 ef	1.118 mn
		Hybrid 102	8.30 fg	8.54 gh	4.53 hi	4.72 jk	19.39 fg	19.04 gh	0.559 qr
		Is 3214	7.34 hi	7.62 hi	4.46 ij	4.59 kl	17.91 kl	17.55 kl	0.763
	Azospirillum	Giza2	10.21 d	10.55 d	6.15 cd	6.31 bc	20.08 fg	19.67 fg	1.138 1
		Piper	10.24 d	10.53 d	5.87 cd	6.01 de	21.08 de	20.75 de	1.3851
		Hybrid 102	9.29 e	9.49 ef	5.91	6.02	20.93	20.60	0.878
					cd 5.61	de	de 19 72	de 19 46	no 0 855

Table 5. Effects of Salinity x N fertilizers x Varieties interaction on some chemical properties of four Sudan grass varieties at Ras Sudr over 2001 and 2002 growing seasons.

1- Desert Research Center, Matariya, Cairo, Egypt

2- Department of Agronomy, Faculty of Agriculture, Ain Shams University, Shoubra El-Kheima, Cairo, Egypt.

	•					
Hybrid 102 10.23	d 10.49 d	6.78 ab	6.87 ab	23.02 bc	22.66 bc	1.083 mn
Is 3214 9.29	e 9.50 ef	6.51 bc	6.69 ab	20.62 de	20.28 de	0.996 mn
Salinity of water irrigation Recommend g200 60 kg N/fed. Giza2 9.29 ppm	e 9.35 fg	6.42 bc	6.57 bc	20.61 de	20.21 de	2.790 c
Piper 10.14	d 10.33 de	6.88 ab	6.99 ab	22.18 cd	21.74 cd	3.371 a
Hybrid 102 8.17 g	sh 8.35 hi	5.18 fg	5.24 hi	20.92 de	20.61 de	2.619 c
Is 3214 8.14 I	ni 8.39 hi	4.46 ij	4.51 lm	20.24 fg	19.87 ef	2.229 de
Control (zero N) Giza2 6.22	n 6.38 n	2.94 op	3.00 st	15.05 ор	14.56 ор	1.400 kl
Piper 7.07 h	kl 7.31 kl	3.64 kl	3.84 no	16.98 mn	16.63 mn	1.463 kl
Hybrid 102 4.16	p 4.34 p	2.27 pq	2.36 bc	16.26 no	15.94 no	1.210 lm
Is 3214 4.04	p 4.26 p	1.96 q	2.05 u	14.38 p	13.93 p	1.080 mn
Azotobacter Giza2 6.30 n	nn 6.57 lm	3.96 jk	4.08 mn	17.61 lm	17.22 kl	1.612 jk
Piper 7.15 j	k 7.37 jk	4.36 ij	4.40 lm	20.09 fg	19.75 fg	1.798 hi
Hybrid 102 5.21	o 5.45 o	3.09 no	3.16 qr	18.87 ij	18.99 gh	1.638 ij
Is 3214 5.21	o 5.40 o	2.98 op	3.07 rs	17.93 kl	17.57 kl	1.460 kl
Azospirillum Giza2 7.20 j	k 7.38 jk	4.42 ij	4.49 lm	19.12 gh	18.43 ij	1.983 gh
Piper 8.21 g	sh 8.37 hi	4.92 gh	5.04 ij	20.35 ef	19.99 ef	2.392 d
Hybrid 102 6.36 h	m 6.58 lm	3.46 lm	3.56 op	19.88 fg	19.55 fg	1.999 fg
Is 3214 6.23 f	n 6.43 mn	3.26 no	3.37 qr	19.07 gh	18.65 hi	1.808 hi
Mixture Giza2 8.08 h	ni 8.29 hi	5.59 de	5.69 ef	20.07 fg	19.71 fg	2.327 de
Piper 9.17 e	ef 9.37 fg	6.33 bc	6.46 bc	21.27 de	20.97 de	3.045 b
Hybrid 102 7.21 j	k 7.45 ij	4.46 ij	4.57 kl	20.80 de	20.43 de	2.347 de

Arab Univ. J. Agric. Sci., 13(3), 2005

11. 5 0			7.12 jk	7.33 kl	4.09 jk	4.16 2 mn	0.04 19.5 fg fg	2.124
able 5. C	Cont.							
Salinity of water irrigation 3700 ppm	N	Varieties	Fiber in stems (%)		Ash in leaves (%)		Ash in stems (%)	
			1 st cut	2nd cut	1 st cut	2nd cut	1 st cut	2nd cut
	Recommend 60 kg N/fed.	Giza2	27.98 de	27.62 bc	10.81 bc	11.37 bc	13.85bc	12.65 b
		Piper	30.96 a	30.42 a	12.32 a	12.78 a	15.27 a	14.09 a
		Hybrid 102	29.17 ab	28.43 ab	10.08 cd	10.55 de	13.05 d	11.64 cd
		Is 3214	27.72 ef	27.34 cd	8.45 f	8.85 f	11.35fg	10.32 ef
	Control (zero N)	Giza2	18.82 q	18.49 p	7.33 g	7.72 hi	9.74 ij	8.42 ij
		Piper	21.44 no	21.04mn	8.13 fg	8.57 fg	10.80gh	9.58 fg
		Hybrid 102 Is 3214	18.88 q 19.45 pq	18.42 p 18.85 op	5.95 kl 4.50 r	6.42 lm 4.96 rs	8.87 kl 7.47 no	7.37 kl 6.24
	Azotobacter	Giza2	23.89 kl	23.41 jk	8.43 f	8.83 f	11.32fg	no 9.92 fg
	Azotobacter	Piper	26.28 gh	25.83 ef	9.60 de	10.20 de	12.70de	11.15 de
		Hybrid 102	22.73 mn	22.25 lm	7.29 gh	7.81 gh	10.32hi	8.95 gh
		Is 3214	22.74 mn	22.35 kl	6.04 kl	6.51 lm	9.00 jk	7.95 jk
	Azospirillum	Giza2	25.84 hi	25.40 fg	9.45 e	9.92 e	11.91ef	10.43 ef
		Piper	28.52 cd	28.04 bc	10.07 cd	10.55 de	13.01d	11.61 cd
		Hybrid 102	26.35 gh	25.97 ef	8.13 fg	8.61 fg	11.12fg	9.62 fg
		Is 3214	25.29 ij	24.89 hi	6.96 ij	7.44 ij	9.94 i	8.63 hi
	Mixture	Giza2	27.69 ef	27.15 cd	10.42 cd	10.83 cd	13.22cd	11.81 bc
		Piper	30.65 ab	30.25 a	11.33 b	11.79 b	14.17 b	12.47 bc
		Hybrid 102	29.41 ab	28.48 ab	9.61 de	10.07 de	12.55de	11.20 de
		Is 3214	26.69 fg	26.20 de	8.08 fg	8.53 fg	11.03gh	9.68 fg

Abdel-Rahman; El-Shouny; Ashoub; Abdel-Gawad and Abd El-Maaboud

Arab Univ. J. Agric. Sci., 13(3), 2005

18

Salinity of water irrigation 9200 ppm	Recommend 60 kg N/fed.	Giza2	26.10 gh	25.51 fg	7.21 hi	7.67 ij	8.91 kl	7.63 jk
ppin		Piper	30.10 ab	29.65 ab	7.54 gh	8.03 fg	9.04 jk	8.07 ij
		Hybrid 102	29.99 ab	29.03 ab	6.78 ij	7.26 ij	8.27 kl	7.67 jk
		Is 3214	29.38 ab	28.03 bc	6.69 ij	7.14 ij	8.13 lm	7.19 kl
	Control (zero N)	Giza2	17.78 q	17.21 p	3.46 u	3.90 u	4.91 v	4.02 t
		Piper	18.67 hi	18.15 p	4.03 tu	4.44 tu	5.49 uv	4.55 st
		Hybrid 102	17.97 q	17.40 p	5.02 pq	5.46 pq	6.44 rs	5.44 pq
		Is 3214	17.88 q	17.18 p	4.42 st	4.84 st	5.81 tu	4.90 rs
	Azotobacter	Giza2	21.12 ор	20.51 no	5.07 op	5.48 pq	6.48 rs	5.25 qr
		Piper	25.57 ij	25.05 hi	5.35 no	5.85 op	6.88 qr	5.65 pq
		Hybrid 102	24.76ij	24.27 hi	5.21 no	5.71 op	6.67 qr	5.69 pq
		Is 3214	23.23 lm	22.54 kl	4.77 qr	5.21 qr	6.21 st	5.26 qr
	Azospirillum	Giza2	24.31 jk	23.82 ij	5.88 lm	6.24 mn	7.26 po	6.13 op
		Piper	27.71 ef	27.20 cd	5.52 no	6.04 no	7.07 pq	6.07 op
		Hybrid 102	28.32 cd	27.82 bc	5.96 kl	6.38 lm	7.39 op	6.47 mn
		Is 3214	26.01 gh	25.41 fg	5.68 mn	6.11 mn	7.14 pq	6.18 op
	Mixture	Giza2	25.76 q	25.27 gh	6.86 ij	7.45 jk	8.47 kl	7.25 kl
		Piper	29.81 ab	29.24 ab	7.06 ij	7.50 ij	8.52 kl	7.30 kl
		Hybrid 102	29.66 ab	28.94 ab	6.44 jk	6.85 kl	7.83mn	6.83 lm
		Is 3214	28.71 bc	28.18 bc	6.49 jk	6.94 jk	7.88mn	7.23 kl

nitrogen form. Giza2 and Piper varieties fertilized with the recommended dose of mineral nitrogen gave the highest mean values of protein percentage in leaves and stems at the two cuts. Whereas, Piper and Hybrid102 varieties with mixture of biofertilizers had the highest mean values of protein percentage in leaves and stems at the second cut. On the other hand Hybrid102 and Is3214 varieties had the lowest mean values of protein percentage in leaves and stems under no nitrogen fertilization. Concerning fiber percentages. Piper variety gave the highest mean values of fiber percentages in leaves followed by Giza2 after treatment with the recommended dose of mineral nitrogen. Whereas, Piper and Hybrid102 with the mixture of biofertilizers recorded the highest mean values of fibers percentages in leaves under salinity of irrigation water (3700 ppm). On the other hand, Is3214 variety had the lowest mean values under the treatment without nitrogen fertilization at salinity of irrigation water (9200ppm). It is clear from results presented in Table (5) that Piper and Hybrid102 varieties gave the highest mean values of fibers percentages in stems with adding the recommended dose of mineral nitrogen followed by the mixture of biofertilizers treatment under salinity of irrigation water (3700ppm). While Giza2 and Is3214 varieties gave the lowest mean values of fiber percentages in stems under no nitrogen fertilization under saline water (9200 ppm). Similar results were

obtained by **Panwar** *et al* (1999); **Parasuraman** *et al* (2000) and Patidar & Mali (2004).

Data in Table (5) show that Piper variety gave the highest mean values of ash percentages in leaves and stems followed by Giza2 on the recommended dose of mineral nitrogen fertilizer and Piper on the mixture of biofertilizers under saline water 3700ppm in the both cuts. Whereas, Giza2 had the lowest mean values of ash percentages in leaves and stems followed by Piper under treatment without nitrogen fertilization of irrigation water 9200ppm. Patel et al (1975); Patel & Rajagopal (2003) and Ramesh & Sammi (2004) demonstrated that chemical composition of leaves in addition to familiar dilution effects and ion competition revealed increased accumulation of Ca, Na, and Cl related to high level of P supply at high salinity conditions only.

REFERENCES

A.O.A.C., Association of Official Analytical Chemists, (1990). *Methods* of Analysis, 15th Ed., pp. 1045-1106. Washington D.C.,USA. Abbas, M.T.; A. Rammah; M. Monib; E.H. Ghanem; M.A.M. Eid; M.F.Z. Emara and N.A. Hegazi (1993). International Symposium N2-Fixation, pp. 485-487. Cairo. Univ. Press, Egypt. Barik, A.K.; A.K. Mukherjee and B.K. Mandal (1998). Growth and yield of

¹⁻ Desert Research Center, Matariya, Cairo, Egypt

²⁻ Department of Agronomy, Faculty of Agriculture, Ain Shams University, Shoubra El-Kheima, Cairo, Egypt.

sorghum (Sorghum bicolor) and groundnut (Arachis hypogaea) grown as sole and intercrops under different nitrogen regimes. Indian J. of Agron., 43(1): 27-32.

Bates, L.S.; R.P. Waldren and I.D.

Teare (1973). Rapid determination of free proline for water stress studies. *Plant and Soil.* 39: 205-207.

Datta, K.S.; A. Kumar; S.K. Varma and R. Angrish (1996). Studies on salt tolerance of three tropical forage crops on the basis of mineral ion uptake. *Forage*

Res., 22 (2&3): 129-138. Dahiya, O.S.; B.S. Dahiya; R.C. Punia and C. Ram (1997). Respiration rate as a measure of seedling establishment in forage sorghum (Sorghum bicolor (1.) Moench). Forage Res., 23(3&4):149-152. Desale, J.S.; R.M. Babar; S.H. Pathan and R.L. Bhilare (1999). Effect of biofertilizers with various nitrogen levels on green forage yield of sorghum. Forage Res., 24 (4): 195-198.

Duncan, **D.B.** (1955). Multiple range and multiple "F" tests. *Biometrics*, *pp. 1-42*.

Francois, L.E.; T. Donovan and E.V. Maas. (1984). Salinity effects on seed yield, growth and germination of grain sorghum. *Agron. J.*, 76: 742-754.

Hassan, S.A. (1994). Studies on Some Sorghum Mutation Types Induced by Gamma-ray and Ethylamine Treatments under Stress Conditions. pp. 22-23 & 53-59. Ph.D. Thesis Moshtohor, Egypt.

Kaoud, E.E. and M.A.B. El-Fieshawy (1990). Influence of soil salinity on growth and mineral composition of sorghum (*sorghum bicolor*, L.). Egypt. J. Appi. Sci., 5 (2): 256-271.

Karwasra, R.S. and D.R. Dahiya (1997). Performance of forage sorghum (Sorghum bicolor) varieties under

nitrogen fertilization. Forage Res., 23 (1&2): 121-123.

Karwasra, R.S.; R.S. Kadian and D.R. Dahiya (1996). Effect of varieties and nitrogen on yield and yield attributes in forage sorghum. *Forage Res.*, 22 (2&3): 203-206.

Kramer, P.J. (1969). Plant and Soil Water Relationships: A Modern Synthesis. pp. 102-168. McGraw-Hill Book, Co., Inc., New York.

Kumar, A.; K.S. Datta; J. Gorham; R.G. Wyn Jones and P.A. Hollington (1991): Influence of salinity levels at two growing stages on the performance of three tropical forge crops. J. Indian Soc. Coastal Agric. Res., 9: 493-502.

Mustafa, S.M.I. and N. Shaheen (1984). Physiological and physiochemical evaluations of four sorghum cultivars. J. Agric. Res. Tanta Univ., 10 (1): 1-11.

Nassar, Z.M.; M.N. Nour El-Dein and A.A. El-Houssini (2000). Effect of moisture stress and presoaking with IAA on forage yield of *Sorghum bicolor* (L.) Moench grown in salt affected soils at Wadi-Sudr. *Annals Agric. Sci., Ain Shams Univ., Cairo, 45 (1): 201-214.* Panwar, V.S.; Tewatin, B.S. and Lodhi, G.P. (1999). Chemical composition and in vitro dry matter digestibility of some varieties of Sorghum fodder harvested at different stages. *Forage Res., 24(4): 209-211.*

Parasuraman, P.; P. Duraisamy and A.K. Mani (2000). Effect of organic, inorganic and bio-fertilizers on soil fertility under double-cropping system in rainfed red soils. *Indian J. of Agron.*, 45 (2): 242-247.

Patel, P.M.; A. Wallace and E.F. Wallihan (1975). Influence of salinity and N-P fertility levels on mineral

Abdel-Rahman; El-Shouny; Ashoub; Abdel-Gawad and Abd El-Maaboud

content and growth of sorghum in sand culture. *Agron. J.*, 67: 622-625.

Patel, P.C.; J.R. Patel and A.C. Sadhu (1992). Response of forage sorghum (*Sorghum bicolor*) to biofertilizer and nitrogen levels. *Indian J. Agron.*, *37* (3): 466-469.

Patel, J.R. and S.J. Rajagopal (2003). Nitrogen management for production of sorghum (*Sorghum bicolor*) and cowpea (*Vigna unguiculata*) forage under intercropping system. *Indian J. Agron.*, 48 (1): 43-37.

Patidar, M. and A.L. Mali (2004).

Effect of farmyard manure, fertility levels and boi-fertilizers on growth, yield and quality of sorghum (*Sorghum bicolor*). *Indian J. Agron.*, 49 (2): 117-120.

Peach, K. and M. V. Tracey (1956). Modern Methods of Plant Analysis. Vol. 1, pp. 13-19, Springer Verlag Berlin.

Ramamurthy, V. (2002). Effect of nitrogen and *Azospirillum* inoculation on growth and green forage yield of *Pennisetum* trispecific hybrid. *Indian J*.

Agron., 47 (4): 566-570.

Ram, S.N. and Bhagwan Singh (2003). Physiological growth parameters, forage yield and nitrogen uptake of sorghum (*Sorghum bicolor*) as influenced with legume intercropping, harvesting time and nitrogen level. *Indian J. Agron.*, 48 (1): 38-41.

Ramesh, P. and K.R. Sammi (2004).

Productivity and nutrient-use efficiency of soybean (*Glycin max*) and sorghum (*Sorghum bicolor*) intercropping at different levels of nitrogen in rainfed deep vertisols. *Indian J. Agron.*, 49 (1): 31-33. Rawat, C.R. and C.R. Hazra (1998). Effect of nitrogen and *Azotobacter* on forage yield of oats. *Forage Res.*, 23 (3&4): 241-243.

Saffa, M. Ismaeil; Om Mohamed A. Khafagi and Samya M. Sohsah (1993). Effect of some seed hardening treatments on germination, growth and yield of Sudan grass grown under saline conditions. *Desert Inst. Bull.*, 43 (2): 221-242.

Smith, D.; G. M. Paulsen and C. A. Roguse (1964). Extraction of total available carbohydrates from grass and legume tissues. *Plant Physiol.*, *39: 960-962*.

Steel, R. G. D. and J. H. Torrie (1980). *Principles and Procedures of Statistics,* 2nd Ed. 633 pp., McGraw-Hill Book Co., Inc., New York.

Subba Rao, N.S.; K.V.R. Tilak and M.L. Kumari (1979). Effect of biofertilizers with various nitrogen levels on root growth and forage yield of sorghum. *Curr. Sci.*, 48: 133-134.

-755 ، (3) تر واق لا ، سمشن ي ع قعم الجة ي عارز لنا و حب ل لق اس ار دايل بر عل ت اعم اج ل دا حت ا فل جم 13 ، 755 ، 769 ، 2005

22

2 سارت و حبه ط ح مب حب ال اده ي رج ا 2000 يمس و مل ال مح ن ي سبون ج ردس ة حول م ن ي و ت سري شا ت قس ار دل 2000 (ن و ي ل م/ءز ج 2000 ، 3700) ي رل اه اي م ي ي ي جورت ي في لمستل ان مت ال ماع مة سمخو ن م في لمستل قما ي و ت سمث ال في ي دعمل ا ن م في لم ي و ي سرت ال من ال م ي د عمل ا ن م خال ل و ص ح مل او من ل اي (ن ي ن شال ا ن م جروس ل ال) ادوس افتل ي ش خ ان ص

فان ص ألياق اجيل يون بن ص في لوفت -2 فل عل الوص حم) من غل ان زول قف صري ف ديم س تنفيل اض إجك نو (رض خ أل ا 60) مبي ص و مليان في تم في اجو رتي ن م جك ديم س تنفيل يون ادف ي جو رتي ن م جك رتك اب وت و ز ألوام طي ل خ ي و ي ح ل ا

لوصح لمتي تشخط استن ا مطيل ليم يف و امي ع يف يون عص قن كان جن أاتن ا تر مطأ -1 يرض خل لو من للا اف س نم لك فان ص ألف اجل اوض غل لو ص حمل او يو تستم اي زهر بت خم اع عب رالم جروس لا مي روى لم اعز جولم ين وي لم اعز ج

¹⁻ Desert Research Center, Matariya, Cairo, Egypt

²⁻ Department of Agronomy, Faculty of Agriculture, Ain Shams University, Shoubra El-Kheima, Cairo, Egypt.

Arab Univ. J. Agric. Sci., Ain Shams Univ., Cairo, 13(3), 755-769, 2005

خداي ت چل و رب ل انمق ار و أل لي و ت ح مخداي ز ـ 4
ع ل ا 3700 نمي ر ل ا ه اي مة حول ي و ت سم
مسف ن ق و ل ا ي ف ن و ي ل م / ء ز ج 9200
مسف ن ق م ي ق ي ل ع لي ف ن ص ل ق ق ح
ن ق ي و ن ع م م ي ق ي ل ع لي ف ن ص ل ق ق ح
ت خ ي ل و ر ب ل انم ق ار و أل لي و ت ح م
ر ي ل ا ف و ر ظ / ٤
ر ي ل م ي ر ل ا ف و ر م / ٤
ر ي ي ل م / ٤
ر ي ي ل م / ٤
ر ي ي ل م / ٤
ر ي ي ل م / ٤
ر ي ي ل م / ٤
ر ي ي ل م / ٤
ر ي ي ل م / ٤
ر ي ي ل م / ٤

ىفطص لي عامس دم حيل ع **دم يك ت** مال ادب عي زوف دم مر مظم د.ا

¹⁻ Desert Research Center, Matariya, Cairo, Egypt

²⁻ Department of Agronomy, Faculty of Agriculture, Ain Shams University, Shoubra El-Kheima, Cairo, Egypt.