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This work presents a review on solution methods and analysis of nanoplates 

structures with different boundary conditions and load cases, under some effects 

such as magnetic field and the effect of other parameters on the vibration and 

analysis. Moreover, it represents a review about the theories that are used to study 

these nanoplates structures such; the nonlocal elasticity theory by Eringen which is 

introduced to take into consideration the small scale effect of such nano-structure. 

The equation of motion of the nanoplate is derived then it used to study this type of 

nano-structures. Nanoplates are used in a lot of branches of life and in different 

applications because of the high and excellent mechanical, thermal and electrical 

properties of these nanoplates. Applications of nanoplate structure are also 

introduced to show the importance of studying and getting a solution of such 

nanoplates. Also, some parametric studies are discussed to show the effect of the 

studied parameters on the dynamic behaviour and analysis of these nanoplates.   

 

 

1. Introduction 

Nanotechnology has recently become one of the 

most attractive areas in research because of its using 

and development in the different branches of life. As 

a reason of the widely progress and development at 

the area of the nanotechnology, nanoplates like 

another nanostructure has been used in a lot of 

applications of nano or micro electro mechanical 

systems and because of this reason it was very 

important for researchers to study this type of nano 

structures. The extensive property such as electrical, 

mechanical and thermal properties [1, 2] of the 

materials that is used in the manufacture of the 

nanoplates made this type of nanostructure very 

important. Nanoplates such as graphene sheet would 

be one of the eminent new materials for the next 

generation of nano devices Fig. (1). This graphene 

sheets are used in the manufacture of a lot of nano-

devices like sensors and memory devices [3] (Fig. 

(2)) and there are a lot of another applications like 

nano-sheet resonator [4], mass sensors [5] and gas 

sensors [6]. Studying of such type of small scale 

structures, understanding the performance and 

experiments on the nano scale level is a difficult and 

expensive duty. This is the reason why many 

researchers made their studies and researches on the 

development of theoretical models. The using of 

nanoplates in a lot of work fields made the 

understanding of dynamic behavior, structure and 

vibration of these nanoplates an important issue. 

Therefore, this point of study has become a subject of 

interest in recent studies because it is very important 

for manufacture and design of such that devices.  
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Fig. 1. Nano devices. (a) A graphene touch panel 

showing flexibility [1]. (b) A graphene touch screen 

panel connected to a computer with control software 

[1]. 

 

 

 

Fig .2. Sensor and Memory device. 

 

2. Small size challenge 

As a reason of the very small size effect of such type 

of structure, the atomic simulation and laboratory 

experiments methods are very difficult, time and 

money consuming to study this type of nano-

structures with these methods. So that, at 1972 

Eringen [7] introduced the first form of nonlocal 

model taking into consideration the very small scale 

size effect and intermolecular cohesive forces to 

study such nanostructures. 

2. 1Nonlocal elasticity theory (integral)  

As it mentioned before the big challenge is to 

take into account the small scale affect so Eringen [7] 

successed to overcome this point. At this study the 

stress at any reference point of the domain depends 

on the strain field at all points of the domain. 

Experimental investigations on phonon dispersion 

and lattice dynamics have defended this statement. 

This theory introduced the relationship of stress and 

strain for a homogeneous elastic solid according to: 

 

xx D  *                                                                 (1) 
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where  (|    |) is the kernel function or nonlocal 

modulus whose argument is the Euclidean 

distance(|    |),       is the elastic modulus tensor, 

D is the elastic modulus,     is the nonlocal stress 

tensor and     is the nonlocal strain tensor. 

2.2Nonlocal continuum theory (differential)  

After the previous form of integral model, an 

equation in differential equivalent form of Eringen’s 

nonlocal elasticity theory was presented to simplify 

the previous integral form of the nonlocal model and 

that was according to [8].  At this part of study the 

kernel function or nonlocal modulus at the previous 

integral model equation is satisfied and the 

differential equation can be obtained with the 

differential operator that is given by (  
(   )

   ) .Therefore, the integral nonlocal form 

equation can be simplified to: 

 

 Eae  *))(1( 2
0                                                   (3) 

 

where (a) is an internal characteristic length (lattice 

parameter, granular size, or molecular diameters) and 

(  ) is a material constant for adjusting the model in 

matching some reliable results by experiments or 

other models. 

 

3. Displacements and strains 

According to the Kirchhoff plate theory [9], the 

displacements of any point of the nanoplate can be 

expressed in terms of the middle surface 
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displacement components. The displacement field is 

given by: 

x
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where    ,     and    are the middle surface 

displacement component in the x, y, z directions 

respectively. 

 

The strains which are related to the previous 

three displacement equations can be computed using 

either the nonlinear strain-displacement relations or 

the linear strain-displacement relations. Then, the 

strain components of any arbitrary point in the 

nanoplate are expressed as the following: 
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After substituting by the form of displacement that is 

given by Kirchhoff plate theory, the previous 

equations of strains will be in the form of: 
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where (         
 
     

 
   ) are the membrane strains 

and (        
 
     

 
    ) are the bending strains which 

are known as the curvatures. 

4. Equation of motion 

The study of the analysis of any structure and 

understanding its behavior cannot be done without 

reaching to the equation of motion that describes the 

construction of this structure. The equation of motion 

that describes this type of structure is derived in 

detail in [9]; the equation of motion is derived using 

the principle of virtual work displacements. The 

dynamic formulation of the principle of virtual work 

is: 
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where  (  )  ,  (  )  and (  )  represent the virtual 

strain energy, the virtual work done by the applied 

forces and the virtual kinetic energy respectively. 

Substituting by (  ) virtual strain energy, 

(  )virtual work done by applied forces  and  (  ) 
virtual kinetic energy into the dynamic principle 

virtual work equation and making simplification we 

will get a simplified form to the equation of motion 

by equaling the coefficient of virtual strain 

energy (  ) , virtual work done by applied 

forces  (  ) , and the virtual kinetic energy (  )  to 

zero; we get the following form: 
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where quantities (           ) are the in-plane force 

resultants, and (            ) are the moment 

resultants, and (      ) are the mass moments of 

inertia.               

5. Solution methods and analysis 

The solution methods and analysis [9] that is 

used to get the solutions of the nanoplates with 

different boundary conditions of the edges are Navier 

method, Levy method, Ritz method and the analytical 

method. The Navier solution method [10, 11] can be 

used for any rectangular nanoplates with a simply 

supported ends for all edges. The Levy solution [12] 

can be used for any rectangular nanoplates with a 

simply supported any two opposite edges and the 

other two edges having one of any possible 

combination of boundary conditions: simple support, 

free or fixed support. The Ritz method [13] can be 

used to get approximate solutions for any different 

boundary conditions, as long as this method can find 

a suitable approximation functions for the problem. 

The analytical solution is one of the most popular 

methods to get an exact solution for such that 

nanostructure [14, 15].  

6. Medium which nanoplates embedded in 

The modeling of the medium which nanoplates 

embedded in it or the foundation which nanoplates 

are resisting on it; is very important issue. So that, it 

is very important to show the different types of this 

medium.  

6.1Elastic medium  

The elastic medium can be modeled as Winkler 

foundation [16]. The Winkler model consists of a 

group of infinite set of springs connected with the 

nanoplate in parallel and shear layer stiffness Fig. (3). 

the spring stiffness is depicted (K1) and shear layer 

stiffness (K2). 

6.2 Viscoelastic medium  

The viscoelastic medium can be modeled as 

Kelvin–Voigt foundation [10]. The Kelvin–Voigt 

model consists of a group of infinite springs which 

represent the stiffness and dashpots which represent 

the damping coefficient connected with the 
nanoplate in parallel Fig. (4). The damping 

coefficient and the spring stiffness are depicted as (C) 

and (K) respectively. 

 

Fig. 3. Nanoplate resting on elastic foundation [16]. 

 

 

Fig. 4. Nanoplate resting on viscoelastic foundation 

[10].  

7. Vibration and dynamic analysis of nanoplates 

The using of nanoplates in a lot of work fields 

made the understanding of dynamic behavior, 

structure and vibration of these nanoplates a normal 

issue. Therefore, this point of study has become a 

subject of research and interest in recent studies 

because it is very important for manufacture of such 

devices and for optimization and effective design. 

7.1 Free vibration 

Malekzadeh et al. [17] investigated the free 

vibration of an orthotropic straight-sided quadrilateral 

nanoplate. This study was based on two main 

theories, the nonlocal elasticity theory to take the 

small scale size into consideration and the first order 

shear deformation theory (FSDT). The results of this 

study showed that, the quadrilateral nanoplates were 

influenced by the small scale size effect more than 

the rectangular nanoplates with the same thickness 
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for the two types. Also, the results showed that the 

high order frequencies were influenced by the 

nonlocal parameter greater than the lower ones and 

this occurs by increasing the thickness ratio. Also, by 

increasing the nonlocal parameter the frequency 

decreases for all type of boundary conditions.  

Ansari et al. [18] investigated the free vibration 

of single layer graphene sheets (SLGSs). This study 

was based on the generalized differential quadrature 

method and the nonlocal elasticity theory was used to 

take the small scale effect into account. The 

frequencies solutions were introduced for two types 

of supports ends of the single layer graphene sheets; 

the simple and clamped support and this solutions 

based on the generalized differential quadrature 

method. The molecular dynamic simulation was 

made for this type of nanoplates and the results were 

with good agreement with the results introduced by 

the previous method with different boundary 

conditions. The results showed that the nonlocal 

parameter values were not dependent on any variable 

in the geometry of the nanoplate. 

Pouresmaeeli et al. [10] investigated the free 

vibration analysis of an orthotropic viscoelastic 

nanoplates resting on viscoelastic foundation with 

simply supported ends. This study was based on the 

Classical Laminated plate Theory (CLPT) and the 

nonlocal elasticity theory. The Navier solution 

method was used to get the frequency of the simply 

supported nanoplates. The results showed that the 

frequency was influenced by the damping coefficient 

of the surrounding medium, damping coefficient of 

the nanoplate, stiffness of the surrounding medium 

and aspect ratio. The frequency is increasing by 

decreasing of damping coefficient of surrounding 

medium and structural damping but the frequency 

increases by increasing the stiffness of the foundation 

and the aspect ratio. 

Karlicic et al. [19] studied the free vibration of 

an orthotropic viscoelastic nanoplates consisting of 

multi nanoplate system resting on viscoelastic 

surrounding medium. This study was based on the 

Kirchhoff plate Theory and the nonlocal elasticity 

theory. The exact natural frequencies were derived 

and introduced for the simply supported nanoplates 

with a different number of these nanoplates. The 

results showed that by increasing the nonlocal 

parameter the frequency decreases as a result of the 

decreasing of stiffness and rigidity. Also, by 

increasing the number of the nanoplates in system, 

the frequency decreases. 

Li et al. [20] introduced solutions   of the free 

vibration of rectangular thin plates with all edges 

free. This study is based on the Hamiltonian system 

and this based on the symplectic super-position 

method. This work can be used as a benchmark for 

the future work. The exact solution of the deflection 

of such plates was given and the results were with a 

good agreement with the results from the finite 

element method.  

7.2 Forced vibration 

Abbas Assadi [21] studied the forced vibration 

of rectangular nanoplates using an analytical method 

with taking into consideration the surface properties 

and effects such as surface stresses, surface mass 

density and surface elasticity. This study was based 

on the Kirchhoff plate theory and the results were in 

a good agreement with the results obtained from 

experiment. The results for the forced vibration study 

showed that there was an ellipse region on the 

nanoplate’s surfaces at which if any point load is 

applied on any point of this region, there will no 

effects of the surface properties on the response of 

the nanoplates. Also, the previous ellipse region has a 

major and a minor axis which the length of these axis 

equal to half of the nanoplates edges length in the 

direction which is parallel to these axis. The effect of 

surface properties decreases by increasing the 

excitation frequency and will have no effect at the 

resonance excitation.    

Hashemi et al [22] investigated the forced 

vibration of a rectangular isotropic viscoelastic single 

layer grapheme sheets resting on a viscoelastic 

foundation by using an analytical method. The 

Navier solution method was used in this study to get 

the response and the dynamic deflection of the 

simply supported nanoplates with a distributed load.  

The viscoelastic foundation or surrounding medium 

of the nanoplate was modelled as Kelvin-Voigt 

model. This study was based on the classical 

laminated plate theory and the nonlocal elasticity 

theory. The results showed that by increasing the 

nonlocal parameter, the dynamic deflection and the 

natural frequency of the system increase and this 

occur because the stiffness and rigidity of the 

nanoplate decreases. Also, by increasing the nonlocal 

parameter and decreasing applied load area, the 

higher resonant frequency moves to left. The 

dynamic deflection changes with the location and 

area of the applied distributed load. The results 

showed that the maximum deflection increases by 

increasing the area of the dynamic load and when the 

applied load moves away from the ends of the 

nanoplates. By increasing the surrounding medium 

32



Atef Eraky, et. al / Analysis and vibration of rectangular nanoplate - An Overview 

 

 

 

stiffness, the dynamic deflection decreases and the 

natural frequency increases. 

Rahbar and Rostami [23] studied the forced 

vibration of rectangular orthotropic plates with 

different arbitrary types of boundary conditions and 

the plates were subjected to a non-uniform distributed 

dynamic load by using a semi analytical solution. The 

dynamic displacement and bending moments were 

determined and introduced at this paper. This study 

was based on the Extended Kantorovich Method. At 

this method the partial differential equations were 

reduced to ordinary differential equations which will 

be easy to use these equations. The results obtained 

from this method were in a good agreement with the 

results in the previous studies.  

T. Aksencer and M. Aydogdu [12] investigated 

the forced vibration and buckling of an isotropic 

rectangular single layer grapheme sheets. This study 

was based on the Classical Laminated plate Theory 

(CLPT) and the nonlocal elasticity theory. The 

Navier solution method was used in this study to 

solve the nanoplates with simply supported ends and 

the Levy solution method was used to solve the 

nanoplates with two opposite ends simply supported 

and the other two ends with any type of support. The 

results of this study showed that the nonlocal 

parameter should be taken into consideration for any 

nanoplate with length or width less than 30 nm. As a 

reason of the small scale effect, the nonlocal dynamic 

deflection was larger than the classical dynamic 

deflection at which the nonlocal parameter equal to 

zero. Also, the results showed that the clamped 

supported ends of nanoplates were more sensitive to 

nonlocal parameter effect than the simply supported 

ends. The frequency decreases by increasing the 

nanoplate’s aspect ratio. By increasing the half wave 

numbers, the effect of the nonlocality on vibration 

increases. The buckling of the nanoplate increases by 

decreasing the nonlocal parameter. At the larger 

length of nanoplates, the buckling load ratio becomes 

constant and the effect of nonlocality is lost. The 

amplitude coefficient of the vibration is introduced 

also at this study.  

Junhai et al [14] studied the forced vibration of a 

rectangular viscoelastic orthotropic nanoplate which 

was embedded in viscoelastic surrounding medium 

with a completely free ends. The viscoelastic 

foundation was modelled using Kelvin-Voigt 

foundation. This study was based on the nonlocal 

elasticity theory by Eringen to take into consideration 

the small scale effect and the D`Alembert`s principle 

was used also. The exact solution for this type of 

nanoplate was introduced by using an analytical 

method and this method was the Hamiltonian-based 

method and by using a superposition of some 

boundary conditions. At this analytical method the 

vibration of this nanoplate was introduced by using a 

new total unknown vector which was reduced after 

that to an eigen-problem in symplectic space. The 

molecular dynamic simulation was used and the 

results were in a good agreement with the results 

from this method. The results showed that, by 

increasing the nonlocal parameter, the resonant 

frequency increases except the first resonant 

frequency is not effect by the nonlocal parameter. 

Also, by increasing the modulus ratio, the resonant 

frequency increases. Besides, the resonant frequency 

increases by increasing the stiffness of the 

viscoelastic foundation and with the decreasing of the 

damping coefficient of the viscoelastic foundation. 

Atanasov et al [24] studied the forced vibration 

of simply supported rectangular elastic orthotropic 

double layered nanoplates with the effect of the in-

plane Lorentz magnetic force and the exact solution 

of this vibration was introduced by using Bernoulli-

Fourier method. The elastic foundation was modeled 

using the Winkler foundation. This study was based 

on the Kirchhoff plate theory and the nonlocal 

elasticity theory by Eringen. The results showed that, 

with neglecting the nonlocal parameter coefficient 

and the magnetic force, the amplitude of the response 

becomes lower for the orthotropic nanoplates than the 

isotropic nanoplates. It was noticed from this study 

that the dynamic response of the nanoplates increases 

by decreasing the magnetic force and the nonlocal 

parameter. Also, the dynamic response of the 

nanoplate increases by increasing the external 

excitation and this phenomenon occurs with the 

lower value of the nonlocal parameter coefficient but 

with a larger value of the nonlocal parameter 

coefficient, the dynamic response decreases by the 

increasing of the external excitation.     

Majid et al [25] studied the nonlinear vibration 

of a rectangular single layer grapheme sheets resting 

on viscoelastic foundation which was modelled as 

Kelvin-Voigt medium and taken into account for this 

study the thermo magnetic force and the effect of the 

multi frequency excitation. The exact solution of this 

forced vibration behaviour was obtained by using the 

multiple time scales method and the Galerkin 

principle which transformed the partial differential 

equations of motion to the ordinary equations. The 

results were in a good agreement with the results of 

the other literatures. The results showed that, the 

frequency response of any nanoplate especially single 
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layer grapheme sheets decreases by increasing the 

coefficient of Visco-paster and Winkler and the 

resonance behaviour was affected by the combination 

of the force amplitude. Also, with the long periods of 

time of the frequency excitation made the nonlinear 

dynamic behaviour was complex and no one can 

predict it. It is noticed that, by increasing the force 

amplitude, the frequency response increases. By 

increasing the damping coefficient, the frequency 

response decreases and this because the damping 

coefficient makes the system to be hard. The nonlocal 

parameter coefficient effect on the dynamic response 

at the nonlinear vibration counter to the effect on the 

dynamic response at linear vibration.  

Liu and Chen [26] studied the vibration response 

of the finite periodic single layer graphene sheets 

with different boundary conditions by using the wave 

method. This study was based on the nonlocal 

Mindlin plate theory. The results obtained from the 

molecular dynamic simulation (MD) were agreed 

well with the results obtained from the current wave 

method. The results obtained from this study showed 

that, at the region of the high periodic number, the 

displacement response was smaller than those at the 

low periodic number and the shear strain response 

was much more at the region of the low periodic 

number than the region of the high periodic number. 

For the nanoplates with two edges were simply 

supported and the other two edges were free ends and 

with different width, the increasing of nanoplates 

width leads to a decrease in the first band gap 

bandwidth and also at this case, the shear strain 

response and displacement response increasing. It 

was noticed that, the boundary supports were affected 

on the first order gap bandwidths of the periodic 

nanoplates and the boundary constrains were affected 

on the high order gab bandwidths of the periodic 

nanoplates. The band gap bandwidths of the shear 

strains response and the displacements response of 

the periodic nanoplates were affected by the 

thickness of the nanoplates and all bandwidths of the 

periodic nanoplates increased by decreasing the 

nanoplate’s thickness.      

Adhikari et al [27] investigated the transverse 

vibration of rectangular nanoplates such single layer 

grapheme sheets with simply supported boundary 

conditions for all edges of the nanoplate and studied 

the nonlocal normal modes of the nanoplates by 

introducing the mass matrix and stiffness matrix for 

these nanoplates. Also, the nonlocal functions of 

mode shapes, natural frequency and frequency 

response were derived and introduced at this study. 

The results of the natural frequency were in 

agreement with results of the finite element 

simulation. This study was based on the dynamic 

behaviour of three nonlocal systems and these 

systems are beam, rod and plate. The results of the 

three studied systems for the functions of the 

nonlocal mode shape, natural frequency and 

frequency response were with a high accuracy of all 

systems except the nonlocal rod model.  

Khaniki and Hosseini [28] studied the dynamic 

response of a simply supported viscoelastic 

orthotropic nanoplates which consist of double layers 

of the nanoplates and this study was investigated 

under the effect of a moving nanoparticles with 

different biaxial loads on each layer. The main theory 

which this study was used is the Kelvin-Voigt theory 

to take into account the coupling between the double 

layers. This study was based on D`Alembert 

principle, nonlocal elasticity theory and the Kirchhoff 

plate theory. The exact solution was introduced by 

using the Laplace and Galerkin transform methods. 

The results showed that, increasing the stiffness 

coefficient of the surrounding medium to the 

nanoplates leads to an increase in the coupling 

between the two layers of the nanoplates and this 

phenomenon leads to make the deflection or 

deformation in the first layer increases but decreases 

in the second layer. Increasing the small scale size 

effect which represented by the nonlocal parameter 

leads to an increase in the deformation of the two 

layers of nanoplates. Iincreasing the damping 

coefficient of the surrounding medium leads to a 

decrease in the deformation of the two layers of the 

nanoplates. Also, with the effect of the biaxial 

compression load, the deformation of the two layers 

incresses but with the effect of the biaxial tension 

load, the deformation of the two layers decreases. 

The results also showed that, with all angles of the 

moving of nanoparticles on surface of nanoplates, the 

nonlocal parameter increases and this leads to an 

increase in the dynamic behavior deformation of the 

two layers of nanoplates. Finally, increasing the 

radius in circular moving nanoparticles path leads to 

a decrease in the dynamic behavior deformation of 

the two layers of nanoplates.           

Jomehzadeh et al [29] investigated the dynamic 

behavior of the nonlinear response of an isotropic 

rectangular simply and clamped supported graphene 

sheet matrix subjected to sub-harmonic and harmonic 

resonance. This study was based on the Von-Karman 

principle and the nonlocal elasticity theory by 

Eringen. The exact solution was introduced by using 

the averaging method. The results from this work 

were in a good agreement with results from the 
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molecular dynamic simulation using the REBO 

potential simulation. The results showed that, the 

frequency response of the graphene sheets was one 

third of the excitation frequency. The simply 

supported graphene sheets have a nonlinear behavior 

compared to the clamped supported ones and this 

because simply supported ones have low stiffness 

than the clamped ones. At the nonlinear behavior of 

graphene sheets, the frequency and amplitude 

increase with each other and this mean that, the 

graphene sheets nanoplates are hardening system. 

The increase in the elasticity of the graphene sheet 

matrix leads to a decrease in the nonlinear dynamic 

behavior and this phenomenon has an effect on the 

simply supported graphene sheets than clamped 

supported ones.   

Nami and Janghorban [30] investigated the 

dynamic resonance of rectangular simply supported 

functionally graded nanoplates. This study was based 

on the strain gradient elasticity theory, nonlocal 

elasticity theory and the Kirchhoff plate theory. The 

results showed that, the increasing of the nonlocal 

parameter and the power law indexes leads to a move 

of the resonance position to the lower frequencies of 

the load but the power law indexes have more effect 

than the nonlocal parameter. Also, increasing the 

gradient parameter leads to move the position of the 

resonance to the higher load frequencies and by 

increasing the aspect ratio, the resonance frequency 

decreases.  

Ghorbanpour [31] studied the forced vibration 

and dynamic analysis of rectangular poly-vinyli dene 

fluoride nanoplates resting on elastic foundation with 

the effect of moving nanoparticles. The elastic 

foundation was modeled as Pasternak foundation 

model. This study was based on the classical 

laminated plate theory, Hamilton’s principle theory 

and the nonlocal elasticity theory. The exact solution 

of the dynamic deflection and vibration was 

introduced by using the Galerkin method. The results 

showed that, by increasing the mode numbers, the 

frequency ratio decreases and this is clear on curves. 

For all modes numbers, the increasing of the nonlocal 

parameter leads to a decrease in the frequency ratio 

and this because of decreasing the interaction force 

between atoms. Also, increasing the nanoparticle 

mass leads to a decrease in the frequency ratio and 

the effect of the nanoparticle mass become more at 

higher nonlocal parameter coefficient. The increase 

in the stiffness of the foundation leads to an increase 

in the natural frequency and the increasing of the 

initial stress leads to a decrease in the values of the 

frequency ratio. Besides, frequency ratio of the poly-

vinyli dene fluoride nanoplates increases by 

increasing the length of the square nanoplate and 

with applying of the positive electric potential.  

8. Conclusion 

With the widely development of nano 

technology, nanoplates have been used in a lot of 

applications and because of this reason it was very 

important for researchers to study this type of nano 

structures. This work presents an overview on 

solution methods and analysis of nanoplates 

structures. Moreover, it considers a review about the 

theories that are used to study these nanoplates. Also, 

parametric studies are discussed to show the effect of 

the studied parameters on the dynamic behaviour and 

analysis of nanoplates. A lot of results are introduced 

at this overview to facilitate access to these results. 

Some of these results showed that, vibration is 

influenced by nanoplate dimension, damping 

coefficient of the foundation and of the structure, 

stiffness of the foundation and aspect ratio. Nonlocal 

parameter should be taken into account for any 

nanoplate with length or width less than 30nm. 

Clamped supported ends of the nanoplates are more 

sensitive to nonlocal parameter than the simply 

supported ends. By increasing the magnetic force, 

dynamic response is decreasing. Finally, theories and 

results which are introduced at this study are very 

important for the next researches at this part of study. 
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