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Abstract 

Underground structures can be severely damaged during strong earthquakes. Potential damage to infrastructure due to uplift 

increases in liquefied soils. Several models can be used to simulate soil liquefaction. This study presents a new numerical 

method to estimate the overall response of shallow-buried tunnels and to interpret the liquefaction mechanism in saturated 

sand around the structure under seismic action. The new method stems from the energy-based concept that can be used to 

compute the excess pore water pressure (𝑟𝑢) and turn it into external forces that would cause the uplift of the underground 

structure. This study uses a comparative numerical study of implementing the computer code, FLAC on the seismic 

performance of underground structures using this energy-based approach procedure to estimate pore pressure built-up and 

evaluate the underground structures' uplift. Moreover, the proposed pore water pressure model is validated against well-

documented laboratory data. Also, several study parameters have been considered to investigate the seismic behavior of 

tunnels. 
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1. INTRODUCTION 

Geotechnical structures buried near the ground surface have a wide range of applications, from small-scale 

pipelines such as means of gas transmission, telecommunications, water supply, and sewerage pipelines, to large-

scale infrastructures including tunnels for various transportation systems. These structures are becoming more 

and more prevalent in the modern world because of the decreasing availability of ground space due to the fast-

growing population [1]. In other words, underground infrastructures, serving for transport (e.g., highway tunnels 

and subway metro), utility (e.g., gas and water pipelines) and storage purposes (e.g., fuel storage and water tanks) 

have been a widespread alternative to what in redeveloping urban spaces to ease land congestion pressures. 

However, in the event of an earthquake, the functionality of these structures could be put at risk especially when 

they were constructed in potentially liquefied soils [2]. The uplift phenomenon of buried structures has been 

abundantly reported following several earthquakes. Many other earthquakes (e.g., the 2004 Niigata Chuetsu, the 

2007 Noto Hanto, and the 2007 Niigata Chuetsu-oki) caused serious damage to buried structures in the form of 

uplifting manholes and settlement of pavement above backfill soil for pipes [3]. For example, during the 2004 

earthquake in Niigata-ken Chuetsu, Japan, more than 1400 manholes were uplifted causing serious lifeline 

problems. The Haiti 2010 Earthquake resulted in severe destruction of essential systems (e.g., transportation and 
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lifeline systems) leading to a 60% loss of the nation’s infrastructure [4]. Also, substantial damage to buildings 

and underground structures has been reported after the magnitude 7.1 earthquake and its aftershocks in 

Christchurch's central city and eastern suburbs [5].  

 

 

Fig. 1. Petrol tank uplift - Christchurch Earthquake [6]. 

 

Fig. 2. Uplift of a manhole – Tohoku Earthquake [7]. 

 

Fig. 3. Uplifted sewage tank - 2010 Chile Earthquake [8]. 

Some examples of underground structures uplift during major earthquakes are shown in Fig. 1. The figure 

shows some liquefaction effects on infrastructure (i.e., uplift of the petrol tank) at the Christchurch site [6]. Also, 

Fig. 2 shows the uplift of a manhole at West Takanosu, Shiraishi City, which uplifted to 1.15 m. Since the ground 

subsided along the sewage line, fill at the construction of the sewage line is supposed to have liquefied [7].  In 

the 2010 Maule Earthquake, in Chile, the uplifting of the underground structures (manholes and underground 
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tanks) was reported, and the underground tank in San Pedrodel Valle was uplifted by approximately 1.2 m, as 

shown in Fig. 3 [8]. 

Different methods could represent the soil liquefaction process that is has become popular among practicing 

engineers. Beginning the screening criteria method which can determine the possibility of liquefaction occurring. 

Then empirical methods and simplified methods which used to evaluate soil liquefaction potential. These 

methods use deterministic relations to develop bounds or boundary curves to imply the occurrence of liquefaction 

and the safety against. Moreover, with the complexity of the problems, various analytical and numerical methods 

have been developed to estimate liquefaction induced by earthquakes [9]. These methods are divided into three 

main estimation approaches to evaluate the soil liquefaction: (1) stress-based procedures, (2) strain-based 

procedures, and (3) energy-based procedures [10]. The models used will be summarized in the following. 

In this paper, the study focused on the built-up pore water pressure and underground structure uplift due to 

soil liquefaction. The underground structure is a rectangular tunnel with shallow embedment depth. It is therefore 

important to understand both the seismic behavior of such tunnels and the uplift suffered by the tunnel sections 

under multiple earthquake motions, in soils of various stiffness, with different soil thickness and water table level, 

and with several structure depths. 

2. CONSTITUTIVE MODEL 

Several models have been developed an empirical, closed-form solution to calculate excess pore-water 

pressure ratio (𝑟𝑢 ) which is considered to the initial effective confining stress. Some examples of these 

constitutive models are based on the stresses list below. 

2.1. Energy-based model 

 

Fig. 4. Dissipated energy per unit volume of soil [13]. 

The energy-based approach generally uses the energy dissipated in the soil during cyclic loading to predict 

the change in the pore-water pressure developed in the soil [11]. Although energy-based methods have been 

successfully applied to laboratory data and field case studies [12], these methods have not been widely adopted 

in numerical modeling. Karray et al [13] used the energy-based approach to compute ru from the stress-strain 

hysteresis relationship as: 

𝑟𝑢 = 𝛼 (
𝑊𝑠
0.5

𝑎𝑥
)
𝛽

  (1) 

where 𝑊𝑠 is the energy dissipated per unit volume of soil divided by the initial effective confining pressure which 

can be determined by integrating area bound by stress-strain hysteresis loops (Fig. 4), 𝑎𝑥 is a variable parameter 
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depend on soil type, 𝛼, and 𝛽 are constant parameter depends on soil properties and can be determined from 

experimental tests using cyclic loading tests such as the TxSS and Triaxial simple shear tests. 

3. NUMERICAL MODELING 

In this study, the finite difference (FD) computer code, FLAC has been implemented to simulate the seismic 

behavior of underground structures buried in liquefiable soils. Two soil constitutive models have been considered 

in this study; namely the energy-based model and the Finn model to simulate the build-up of pore water pressure. 

Ottawa sand is used in this study as a soil bed. Its coefficient of permeability and the void ratio was determined 

from typical laboratory tests and were found to 1x10-5 m/s and 0.44, respectively. The dynamic characteristics of 

Ottawa sand were obtained from triaxial simple shear test (TxSS) results. 

The FD analyses were performed in two stages. In the first stage (static analysis), the in-situ stresses were 

initialized in the soil due to the own weight of the soil. The boundary between the soil deposit and the bedrock 

was assumed to be fixed in both horizontal and vertical directions and acted as the bottom boundary of the 

analyzed domain. However, the lateral boundaries are assumed to be fixed in horizontal directions only. The 

ground surface was assumed to be flat and free of loadings. As an extreme case, the underground water level is 

assumed to locate at the ground surface also, in the other cases is assumed to be under the ground surface.  During 

the second stage of analysis (dynamic analysis), quiet (viscous) conditions are used to reduce wave reflections at 

model boundaries. Besides, the free field (FF) conditions are considered. 

Hysteretic damping allows strain-dependent modulus and damping functions to be incorporated directly into 

the FLAC simulation. When using simple models, the choice is between Rayleigh damping constitutive and 

hysteretic damping. From some general comparisons between the two approaches, enabling a choice to be made. 

In general, hysteretic damping is more realistic than Rayleigh damping, and it entails no reduction in time-step. 

The hysteretic damping formulation is not a complete model, but it is used as a supplement to one of the built-in 

nonlinear models, and not as a primary way to simulate yielding. Rayleigh damping is not necessary when 

hysteretic damping is in operation, however, it was used (at low levels = 0.2%) to remove high-frequency noise. 

In this paper, uniform velocities and earthquake accelerations were used as input motion [14]. 

4. VALIDATION OF THE MODEL  

TABLE 1. CHARACTERISTICS OF THE TESTED SOILS  

Properties  Hostun sand Ottawa sand 

crit (°) 33 30 

D10 (mm) 0.209 0.22 

D50 (mm) 0.335 0.4 

emin 0.555 0.5 

emax 1.01 0.82 

Gs 2.65 2.67 

 

Before applying the numerical model, the constitutive model was validated with previous experimental and 

numerical models. Chian et al. [15] carried out numerical modeling accompanied by centrifuge experiments with 

underground structure (circular tunnel) to study the increase of pore water pressure. The centrifuge experiments 

were created using a window box. The numerical modeling was performed adopting the Wang soil model using 

the computer code FLAC2D. The Wang model is a nonlinear, fully coupled bounding surface plasticity 

constitutive model for sand [16]. Hostun sand of relative density (45%) was used in the physical and numerical 

models. The material properties of the sand used during the tests are described in Table 1. In the current analysis, 

the structure is assumed to be an elastic material with Young modulus and the Poisson ratio of 25e9 Pa and 0.25. 

The dimensions of the zone elements were selected to be equal to 0.5x0.5 m. A sin wave acceleration with 

amplitude = 2.2 m/s2 and frequency = 0.7 5Hz was applied as a seismic load. The groundwater table was assumed 

at the ground surface. 
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Fig. 5. The cross-sectional view of the tunnel model built by FLAC. 

 

 

Fig. 6. The cross-sectional view of the model built by FLAC3D. 

In the current analyses, 2D (FLAC) and 3D (FLAC3D) were conducted. The general meshing and layouts of 

these two models are shown, respectively in Figs. 5 and 6. The soil was simulated as an elastic model and the 

structure was simulated by linear structure element. From Fig. 7, it can be observed that the excess pore water 

pressure ratio is very close to the previous experimental results in both 2D and 3D numerical analyses at both 

depths in question (7.5 and 16 m). 
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Fig. 7. Excess pore pressure ratio time history at the model base (16m depth). 

5. NUMERICAL RESULTS  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. The cross-sectional view of shallow tunnel model built by FLAC. 

In this section, two-dimensional analyses of the sallow tunnel seismic behavior are performed by 

implementing the same FLAC model using the new constitutive soil model as shown in Fig. 8. The considered 

model consists of a sand layer of 60 m in width and from 5.0 to 20.0 m in depth. The tunnel is a rectangular 

structure of 3.75 widths and 2.75m depth, is buried in the sand layer at a depth from 0.0 to 3.0 m from the ground 

surface. The water table level is assumed to be located from the ground surface to 3m depth. Ottawa sand is used 

as the soil bed in the numerical models. The shear wave velocity of the used sand is various from 150 to 300 m/s. 

The material properties of Ottawa sand are presented in Table 1. The structure is assumed to be elastic material 

with Young modulus and the Poisson ratio of 25 GPa and 0.25 [17-18].  

The dimension of the zone elements was selected at 0.25x0.25 m around the structure then the mesh size 

gradually increases whenever it goes outside. The peak ground acceleration (PGA) of the 2011 Great Japan 

earthquake has been chosen as a coefficient for expressing the intensity of the earthquake. The values of peak ground 

acceleration range from 0.125 g to 0.5 g. 

5.1. Change the peak ground acceleration of the input earthquake 

In this part, four different seismic loads were used to study the effect of the seismic loading amplitude on the 

behavior of the underground structure. The maximum acceleration (Amax) at the base of the model was selected 

to express the intensity of the earthquake. The motions used in this study were obtained from the 1988 Saguenay 

earthquake by modifying the amplitude of the accelerogram with values of Amax varying from 0.125g to 0.5g.  

 

60 m 

1
0

 m
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Fig. 9. Excess pore pressure time history under the tunnel with different PGA. 

Fig. 9 shows the variation of the excess pore pressure at a depth of 4 meters from the surface of the deposit 

(below the underground structure). According to this figure, it can be seen that the excess pore pressure rises with 

increasing Peak Ground Acceleration (PGA) of the applied earthquake, which is represented by the maximum 

acceleration. The results show that earthquakes with a PGA of 0.25, 0.375, and 0.5 g induced local liquefaction 

of the soil below the structure unlike the other motion with a PGA of 0.125 where there was no liquefaction. We 

can also notice that earthquakes of 0.25, 0.375, and 0.5g generate relatively the same pore pressures at a depth of 

4 m. 

 

Fig. 10. Tunnel uplift displacement time history with different PGA. 

Fig.  10 shows the variation of the tunnel uplift displacement due to an increase in earthquake PGA. According 

to this figure, numerical analyzes show an almost direct correlation between the PGA of the earthquake and the 

uplift of the structure. For example, an acceleration of 0.5 g produces an uplift of 18 cm at the end of the 

earthquake while an earthquake of 0.25 g produces 6 cm of uplift. While there is not uplift occurring in case of 

an earthquake of 0.125 g. 
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5.2. Change the soil layer depth 

 

Fig. 11. Excess pore pressure time history under tunnel with different soil thickness. 

In this part, the effect of the soil deposit thickness was examined on the tunnel seismic behavior. The level of 

the burial of the underground structure was still the same. The thickness of the deposit varies from 5.0 m to 25.0 

m. Fig. 11 shows the variation of the excess pore pressure below the bottom of the tunnel at a depth of 4 m. 

According to this figure, the excess pore water pressure increases significantly up to about 6 seconds to reach an 

approximately constant value. Besides, the excess pore pressure faster increases with increasing deposit thickness 

but reaches similar values later. While, at thicknesses less than 10 m, the pore pressure increases less rapidly, and 

no complete liquefaction had occurred. 

 

Fig. 12. Tunnel uplift history with different soil thickness. 

Fig. 12 shows the variation in the uplift of the underground structure. According to this figure, the uplift of 

the structure increases with the increase in the thickness of the soil deposit. However, in the case of five-meter 

soil layer thickness, there is no tunnel uplift occurred. 
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5.3. Change the structure depth. 

In this step, four different depths of the underground tunnel were chosen to study the influence of the burial 

depth. The upper level of the underground structure was chosen as the study variable. The upper level of the 

tunnel varies from 0.0 m to 3.0 m from the ground surface. 

 

 

Fig. 13. Excess pore pressure time history under tunnel with different tunnel depths. 

Fig.  13 shows the variation of the pore pressure at a point located under the bottom of the buried structure. 

According to this figure, the excess pore pressure increases significantly to reach an approximately constant 

value. In addition, it can be seen that the excess pore pressure increases with the increasing burial depth of the 

underground structure. This is related to the increase in the effective stress of the soil below the structure because 

the deeper the structure, the higher the stress. 

 

 

Fig. 14. Tunnel uplifts displacement time history with different burial depths. 

Fig. 14 shows the variation in the vertical displacement of the buried tunnel. According to this figure, it can 

be seen that the uplift of the buried structure increased with the approach of the underground structure to the 

ground surface. Although the pressure of the pore water under the structure decreases each time the buried 

structure is shallower, the uplift of the buried structure increases due to the less weight of soil above it. 
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5.4. Different soil stiffness 

In this study, four sandy soils with different stiffness (from loose to dense) were used to study the influence 

of shear resistance of foundation soils on the seismic behavior of the underground tunnel. The shear wave velocity 

of the soil (vs) was chosen as a parameter to express the shear stiffness of the soil. Indeed, the speed of the shear 

waves is directly related to the shear modulus (𝐺𝑚𝑎𝑥 = 𝛾∗v𝑠
2). The values of the shear wave velocity used vary 

between 150 m/s to 300 m/s by increasing 50 m/s every once. 

 

 

Fig. 15. Excess pore pressure time history under the tunnel for different soil stiffness. 

Fig. 15 shows the variation of the excess pore pressure at an element immediately below the underground 

structure (4m depth). According to this figure, the excess pore pressure increases significantly to reach an 

approximately constant value. In addition, it can be seen that the pore pressures increase with the decrease in the 

stiffness of the soil, which is represented in this case by the speed of the shear wave (Vs). 

  

 

Fig. 16. Tunnel uplifts displacement time history with different soil stiffness. 

Fig.  16 shows the variation in the tunnel uplift. According to this figure, the numerical analyzes reveal that 

the generation of pore pressure induced a lifting of the structure. Thus, it is possible to see that the uplift of the 

underground structure increases with the decrease in the rigidity of the soil (Gmax). Also, the movements do not 
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stop at the end of the analysis since the excess pore pressure in the soils is not yet dissipated. This means that one 

should expect larger displacements than those observed at the end of the seismic event. 

5.5. Different groundwater level 

In this part of the study, the groundwater level at four different depths was chosen to study its effect on the 

behavior of the underground structure. The underground tunnel burial depth is the same in all cases. The 

groundwater level varies from 0.0 m to 4.0 m above the ground surface. 

 

 

Fig. 17. Excess pore pressure time history under the tunnel at different groundwater levels 

Fig.  17 shows the variation of the pore pressure under the underground structure at a depth of 4.0 m. According 

to this figure, the pore pressure increases slowly at the start of the earthquake, due to the low value of the seismic 

load, then more rapidly around 5.0 to 8.0 seconds depending on the level of the water table. However, the pore 

pressure reached practically the same value for the four cases examined at the end of the earthquake. 

 

Fig. 18. Tunnel uplifts displacement time history with different groundwater levels. 
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Fig.  18 shows the variation in the uplift of the underground structure. According to this figure , it can be seen 

that the uplift is low at the start of the earthquake due to the low value of the seismic load and then increases with 

increasing acceleration. However, the final uplift decreases with an increasing depth of the groundwater table. It 

is important to note that the uplift of the underground structure is practically zero if the level of the water table 

is located under the tunnel base. 

6. CONCLUSION 

In order to examine the applicability/performance of the energy-based model in studying the seismic behavior 

of underground structures in liquefaction soils, a set of dynamic simulations on liquefied sand samples have been 

conducted using the energy-based model and previous experimental and numerical models. The experimental 

data is then used to calibrate the energy-based concept following the work of Chain et al. [15] for pore pressure 

generation modeling. As a part of this study, ground response analyses of a tunnel are done using the computer 

code, FLAC adopting the energy-based model. 

1. Soil liquefaction is one of the most important reasons that lead to the failure of the tunnel.  

2. Energy-based model is very similar to experimental results. This similarity confirms the accuracy and 

reliability of the energy-based model adopted in FLAC. 

3. The underground tunnel starts to uplift when the soil is fully liquefied. 

4. The rise of the groundwater level, the low structure buried depth, small soil shear wave velocity, large soil 

layer thickness, and increase earthquake PGA led to an increase in the possibility of liquefaction 

occurrence, therefore, the tunnel can float. 
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