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Abstract  

 Background: Radioactive sources and fixed or mobile X-ray equipment are used for both process 

and quality control in the metallurgical and fertilizer industries. Workers in the nuclear industry are a 

suitable sector of the populace for the direct estimation of radiation effects at low doses as they are 

typically monitored and restricted to effective doses of 100 mSv every 5 years. A dose-related 

increased mortality from circulatory diseases has been observed in some studies of nuclear industry 

workers, but it is unclear whether this reflects a real effect of radiation exposure or a spurious one. 

The aim of the present study was to detect the circulating endothelial progenitor cells (EPCs) in the 

peripheral blood and the frequency of micronuclei (FMN) among industrial radiographers 

occupationally exposed to ionizing radiation at the Steamer’s Welding Company and EL Nasr 

Company for the manufacture of Fertilizers and Chemicals in Suez and Talkha, Egypt.  

Material and Methods: Venous blood samples were obtained from 30 industrial radiographers 

exposed to x-rays during industrial procedures vs. 20 persons not exposed to ionizing radiation as 

control subjects. Blood samples were assayed for total and differential blood counts  and cell 

phenotype of circulating EPCs, whose surface markers were identified as CD34, CD133 and kinase 

domain receptor (KDR), frequency of chromosomal aberrations (FCA), apoptosis percentage in 

circulating lymphocytes together with plasma stromal cell derived factor-1α (SDF-1α) and vascular 

endothelial growth factor (VEGF). 

 Results: The results of this study revealed a significant increase in FCA with respect to total number 

of dicentrics (0.09 ± 0.03 vs. 0.0005 ± 0.0001) and rings (0.01 ± 0.0012 vs. 0) together with apoptosis 

percentage (7.3 ± 2.8 % vs. 2.4 ± 1.5 %) among industrial radiographers compared to control subjects 

respectively, indicating radiation exposure among such workers. Also a significant increase was 

observed in plasma SDF-1α (2750 ± 370 vs. 2270 ± 430 pg/ml), VEGF (157.9 ± 16.9 vs. 137.5 ± 12.6 

pg/ml) among industrial radiographers compared to control subjects. Percentage of circulating 

mononuclear cells expressing CD34 (53 ± 3.9 vs. 54.2 ± 10.6/ 105 mononuclear cells), CD133 (82.4 ± 

4.8 vs. 54.2 ± 10.6/ 105 mononuclear cells) and KDR (48.7 ± 12.5 vs. 43.5 ± 8.2/ 105 mononuclear 

cells) was significantly higher among industrial radiographers compared to control subjects.  

Conclusion: It is concluded that the industrial radiographers have increased numbers of circulating 

EPCs and increased levels of SDF-1 and VEGF, which denotes an increased capacity for tissue repair. 

Keywords:  Endothelial progenitor cells, apoptosis, stromal derived factor-1α, Industrial 

Radiographers, Ionizing radiation. 

 

Introduction 
Industrial radiography is the process 

of using either gamma-emitting radionuclide 

sources or X-ray machines to examine the 

safety of industrial materials. Industrial 

radiographers are among the radiation workers 

who receive the highest individual 

occupational radiation doses (1, 2). Those 

workers who are at risk for repeated radiation 

exposure, are typically monitored and 

restricted to effective doses of 100 mSv every 

5 years (i.e., 20 mSv per year), with a 

maximum of 50 mSv allowed in any given  

 

 

year (3, 4). Although a causative link has long 

been established between exposure to ionizing  

radiation and the risk of mortality from many 

forms of cancer (5), there has been emerging 

evidence of excess risk of cardiovascular 

disease at much lower radiation doses (6) that 

occur a long time after radiation exposure (7, 8) 

and in various occupationally-exposed groups 
(9-11), although not in all (12).   

 

Atherosclerosis is the most common 

pathological process that leads to coronary 

heart disease and stroke. It is a disease of large 
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and medium sized arteries that is characterized 

by the formation of atherosclerotic plaques 

consisting of necrotic cores, calcified regions, 

accumulated modified lipids, inflamed smooth 

muscle cells (SMCs), endothelial cells (ECs), 

leukocytes, and foam cells (13). Though 

previously initiation of atherosclerosis was 

attributed mainly to lipid accumulation within 

the arterial walls, it is now widely accepted 

that inflammation plays a vital role in the 

initiation and progression of the disease (14-17). 

Elevated levels of the pro-inflammatory 

cytokines IL-6, CRP, TNF-α and INF-γ and 

also increased levels of the anti-inflammatory 

cytokine IL-10, have been observed in the 

Japanese atomic bomb survivors (18, 19). 

 
Recent studies have identified 

populations of multipotent progenitor cells (20) 

and immature hematopoietic endothelial cells 

from adult stem cells called endothelial 

progenitor cells (EPCs) that circulate in 

peripheral blood (21). EPCs counteract ongoing 

risk factor-induced endothelial cell injury, and 

in response to acute hypoxia are mobilized 

from bone marrow to peripheral blood and 

participate in endothelial cell repair, 

regeneration and also in tissue 

neovascularization (22). Experimental and 

human studies have shown that EPCs 

participate in neovascularization processes in 

ischemic organs (22, 23). Increased 

cardiovascular risk factors and the presence of 

atherosclerosis are associated with dysfunction 

and reduced numbers of EPCs (24, 25). 

Moreover, a low number of EPCs is an 

independent risk factor for future 

cardiovascular events (26, 27). Recruitment of 

EPCs from remote locations such as the bone 

marrow into ischemic areas is promoted by the 

chemokine Stromal derived factor-1α (SDF-

1α) (28, 29), which has been shown to be up 
regulated in many damaged tissues as part of 

the injury response (30) and subsequently 

contributes to ischemic neovascularization in 

vivo by augmenting EPC recruitment to 

ischemic sites (31).  

 

No study has investigated EPCs nor 

SDF-1 α in the blood of radiation exposed 

workers. Thus, the aim of the present study 

was to investigate EPCs and plasma SDF-1 α 

in the peripheral blood of workers exposed to 

radiation, in order to determine if such cells 

are mobilized due to radiation exposure. 

Concurrently, the frequency of occurrence of 

micronuclei (MNs) in dividing cells, which 

originate from chromosome breaks or whole 

chromosomes that fail to engage with the 

mitotic spindle when the cell divides (32) has 

recently been endorsed by the International 

Atomic Energy Agency as one of the main 

cytogenetic methods for assessing 

chromosome damage after radiation accidents 

and as a biological dosimeter of radiation 

exposure (33-36). Since DNA aberration is 

considered to be the main initiating event by 

which radiation damage to cells results in 

development of cancer and hereditary disease, 

the present study will also assess the effects of 

chronic low-dose X-ray radiation exposure on 

the MN frequency in the subjects participating 
in this study. 

 

Subjects and Methods 

Venous blood samples were obtained 

from 30 industrial radiographers belonging to 

the study group going to the medical clinic of 

the National centre for radiation research and 

technology. They included 12 technicians 

working at the Steamer's Welding factory who 

were exposed to x-ray irradiation and 18 

technicians working at El Nasr Company for 

the production of fertilizers who were exposed 

to 1921r sources and to natural 32P used in the 

preparation of these fertilizers. Exposure doses 

were indicated by radiation protection 

personnel to be within the normal permissible 

limits. The mean age was 44.5 ± 5.2 and the 

period of occupational exposure was 17.32 ± 

5.7 years. All participants were subjected to 

medical examination and underwent routine 

hematological tests and biochemical 

investigations to evaluate their state of health. 

No deviations in the basic laboratory tests, no 

infections during the last three months before 

the study and no acute or chronic diseases 
were found. Their socioeconomic statuses 

were similar. Subjects who showed any 

deviation from normal blood counts and 

biochemical standard values were previously 

segregated from the study. The study 

population included non-smoking subjects 

who had not contracted an infection during the 

last 3 months and had no medical complaints 

or clinical symptoms. 

 

The control subjects included 20 

healthy non-smoking males not exposed to 

ionizing radiation whose mean ages were 43.8 
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± 4.5. Control subjects enlisted for this study 

also had not contracted any infection during 

the preceding 3 months and had no medical 

complaints or clinical symptoms. Their routine 

laboratory tests were normal. 

 

The Frequency of Chromosomal 

Aberrations (CA): 

Two separate cultures from each 

sample were set up by mixing 0.3 ml of whole 

blood with 4.7 ml of RPMI 1640 medium; 

cultures were incubated at 37°C  and 5 % CO2  

for 72 hours and colchicine was added (6 

μg/ml) 3 hours before the termination of 

culture. Cells were then harvested and fixed 

according to the standard method used in the 

laboratory (37). For each sample, 100 
metaphase cells were examined using an 

optical microscope (magnification ×400) (38).  

 

Quantification of VEGF and SDF-1α: 

The plasma levels of SDF-1α and 

VEGF were measured using the sandwich 

ELISA technique according to the instructions 

of the manufacturer (R&D Systems). 

Absorbance at 450 nm was determined by an 

automated ELISA reader (Dynatech MR5000). 

The results were expressed in pg/ml. 

 

Flow Cytometry for Circulating Progenitor 

Cells: 

To quantify EPCs in circulation, 

peripheral mononuclear cells were first 

isolated from the EDTA blood samples by 

Ficoll density-gradient centrifugation 

(Biochrom AG- Germany). The isolated cells 

were labeled with the R-phycoenythrin (PE)-

conjugated CD133 antibody (MACS Milteny 

Biotech), Fluorescein isothiocyanate (FITC)-

conjugated CD34 (MACS Milteny Biotech), 

and allophycocyanin (APC)-conjugated KDR 

(R&D systems). The stained cells were 

washed with PBS/BSA and then circulating 

EPC numbers were determined by 

fluorescence-activated cell sorting (FACS) 

analysis (39-40). Data expressed the number of 

EPCs per 105 mononuclear cells. 

 

Apoptosis assessment:  

For the evaluation of apoptosis, 

lymphocytes were isolated using Histopaque-
1077 solution, fixed with 70% ethanol for 1 

hour and inspected by the fluorescent 

microscope after being incubated for 15 

minutes at 37oC with 10-µg RNA-ase enzyme 

and stained with 10 µg propidium iodide and 

fluorescein diacetate (41). 

 

Results  

Results of this study showed an 

increase in the total percentage of all types and 

frequencies of chromosomal aberrations, 

including dicentrics, rings, gaps, acentrics, 

chromosome and chromatid breaks among 

both groups of industrial radiographers when 

compared to the control subjects (table 1 & 

figures 1& 2).  

 

 

Table 1: Cytogenetic Analysis of the Frequency of Chromosomal Aberrations. 

 
Subjects Chromosome 

Breaks  

Chromatid  

Breaks 

Acentrics Dicentrics Rings Gaps Total 

Aberrations  

Controls 

(n=20) 

0.015 0.016 0.004 0.0005 0.00 0.015 0.050 

Fertilizers 

manufacture 

workers (n=18) 

0.033 0.038 0.078 0.077 0.0026 0.057 0.286 

Steamer’s 

welding factory 

workers (n=12) 

0.28 0.034 0.047 0.0137 0.0075 0.065 0.195 

Total 0.328 0.088 0.129 0.09 0.01 0.137 0.531 

*Each value represents the frequency of chromosomal aberrations per 100 cells examined among workers 

exposed to radiation and the control group. 
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Fig (1): The frequency of chromosomal aberrations (expressed as number of aberrations per 

100 cells) among workers exposed to radiation and the control group. 

 

 

 
Fig (2): A metaphase spread of a lymphocyte from blood of an industrial radiographer 

showing a dicentric chromosomal aberration. 
Stromal cell derived factor-1α (2750 ± 370 vs. 2270 ± 430), VEGF (157.9 ± 16.9 vs. 137.5 ± 12.6) and 

apoptosis percentage (14.3 ± 4.8 vs. 2.4 ± 1.5) were significantly higher among industrial radiographers 

compared to the control subjects (table 2). 

 

Table 2:  Plasma SDF-1α, VEGF and apoptosis percentage among industrial radiographers 

compared to control subjects. 

 

 

 

  

 

 
*Each   value represents mean ± standard deviation (SD). 

A significant increase in cells expressing CD 34 (53 ± 3.9 vs. 48 ± 4.5 cells/105 mononuclear cells), 

CD 133 (82.4  ± 4.8 vs. 54.2 ± 10.6 cells/105 mononuclear cells) and KDR cell numbers (48.7 ± 12.5vs. 43.5 ± 

8.2 cells/105 mononuclear cells) was observed in industrial workers compared to the control subjects (table 3). 

 SDF-1 α  

(pg/ml) 

VEGF 

(pg/ml) 

Apoptosis % 

Cases (n=30) 2750 ± 370 157.9 ±  16.9 7.3 ± 2.8 % 

Control Subjects (n=20) 2270 ± 430 137.5 ± 12.6 2.4 ± 1.5 % 

P value p<0.05 p<0.001 p<0.0001 
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Table 3:   Endothelial progenitor cell surface markers per 105 mononuclear cells in the blood of 

industrial radiographers compared to the control subjects. 

 

 

 

 

 
*Each value represents mean ± standard deviation (SD). 

 

Discussion 
 

Workers in the nuclear industry are a 

suitable sector of the populace for the direct 

estimation of radiation effects at low doses: 

they form large, relatively stable populations 

with relatively well-measured and well-
recorded external radiation doses. Large 

studies of combined cohorts of nuclear 

workers have previously reported no radiation-

related excess in mortality from non-cancer 

diseases in these study groups (42, 43). A dose-

related increase in mortality from circulatory 

diseases has been observed in some studies of 

nuclear industry workers (43, 44) but it is unclear 

whether this reflects a real effect of radiation 

exposure or a spurious one (45). Exposure to 

low dose ionizing radiation, which has been 

shown to induce apoptosis in macrovascular 

and microvascular human endothelial cells (46) 

and also infra-red treated peripheral blood 

mononuclear cells (PBMCs) interfere with 

endothelial cell viability and proliferative 

repair capacity (47). Hence, this study was 

aimed at measuring the levels of some of the 

markers (recently implicated to be linked to 

atherosclerosis) among the industrial 

radiographers included in the study. These 

markers included circulating EPCs, VEGF and 

SDF-1 α, which have recently been established 

as specific and sensitive markers of 

endothelial activation and damage in a variety 

of vascular disorders (48, 49).  

 
One of the limits of this study was the 

unavailability of physical dosimetry. 
Therefore, biological dosimetry was 

performed with the aim of individual dose 

assessment (50).  Biological dosimetry is based 

on the analysis of chromosomal aberrations on 

the hypothesis that dicentrics and rings are 

indicators of radiation exposure (51). This study 

revealed that the technicians working with 

fertilizers exhibited the highest levels of 
frequency of chromosomal aberrations, where 

total FCA was 0.286 (range 0.02-0.29);  

 

 

 

dicentrics were 0.077 (range 0.00-0.1) and 

rings were 0.0026 (range 0.002- 0.005). 

Steamer's Welding industry workers showed 

lower values, where total FCA was 0.195 

(range 0.03- 0.20), dicentrics were 0.0137 

(range 0.00- 0.014) and rings were 0.075 

(range 0.00-0.1). This showed that a greater 

effect of hazardous radiation exposure was 

demonstrated in the fertilizer industry workers 

compared to the welding industry workers. 

The cytogenetic study based on the frequency 

of chromosomal aberrations also revealed a 

significant increase in FCA in each of the two 

groups compared to that showed by the control 

subjects where dicentrics were 0.00051 (range 

0.00- 0.001), rings were 0 and total FCA was 

0.05 (range 0.00-0.06). This confirms what 

was previously reported by several authors (52-

54), who found a significant incidence of 

aberrations in workers exposed even to 

permissible limits of ionizing radiation. 

Results of the present study show a significant 

increase in the frequency of chromosomal 

aberrations among industrial radiographers 

compared to the control subjects. Several 

previous in vivo studies indicated that chronic 

low doses of ionizing radiation can lead to 

significant somatic DNA damage among 

industrial radiographers as measured using the 

CBMN assay (35, 56 and 57).  

 

A significant increase in the apoptosis 

percentage in circulating lymphocytes was 
observed among both groups of industrial 

radiographers compared to the control 

subjects. In vitro studies have indicated that 

radiation-induced apoptosis in human 

lymphocytes has the kinetics, sensitivity, and 

reproducibility to be a potential biological 

dosimeter (65, 66). A study by Ilyenko et al (58) 

performed on 83 peripheral blood samples 

from the Chornobyl clean-up workers, found 

shorter telemorase lengths in their peripheral 
blood lymphocytes compared to healthy 

 CD34 CD133 KDR 

Cases (n=30) 53 ±3.9 82.4  ± 4.8 48.7 ± 12.5 

Control  Subjects (n=20) 48 ± 4.5 54.2 ± 10.6 43.5 ± 8.2 

P value p<0.0001 p<0.0001 p<0.01 
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controls and this was associated with a higher 

susceptibility to apoptosis in these workers. 

Stromal cell derived factor-1α in this 

study was significantly higher amongst 

industrial radiographers compared to the 

control subjects. SDF-1 α is considered as a 

part of host defense processes that protect 

stem cells from DNA-damaging agents 

including ionizing radiation (59). Radiation has 

been shown to induce a dose-dependent 

increase in pro-angiogenic CXC and CXCR4 

chemokines. In contrast, angiostatic 

chemokines and apoptosis were induced at 

higher (20 Gy) radiation doses (60). SDF-1 α 

has been shown to be secreted by stromal and 

endothelial cells of many organs, suggesting 
that it is a pivotal regulator of trafficking of 

various types of stem cells in the body 

necessary for organ/tissue regeneration (60). It 

is suggested that SDF-1 α may be secreted by 

hematopoietic stem/progenitor cells and be 

involved in autocrine/paracrine regulation of 

their development and survival (62). However 

because a strong correlation exists between 

inflammation and tumor 

progression/metastasis, inflammation-driven 

expression of SDF-1 α may also play an 

important role in dissemination/metastasis of 

cancer stem cells (61). 

 

Endothelial progenitor cells in this 

study were significantly higher among 

industrial radiographers compared to control 

subjects. Animal studies have shown that  

infra-red irradiation increases stem cell active 

mobilization factors as it activates a novel 

pathway stimulating EC migration directly 

through the expression of SDF-1 α 

independent of HIF-1α induction (62). It is 

hypothesized that infra-red irradiation 

improves mast cell migration into ischemic 

tissue and that mast cells express VEGF 

mRNA (63). Also overexpression of SDF1 α in 
the peripheral circulation results in the 

mobilization of progenitor and precursor 
hematopoietic cells with an increased 

repopulating capacity (64). Taking into 

consideration the latter information and the 

results of the present study that show 

increased plasma levels of SDF-1 α, there is 

no doubt that those EPCs are subsequently 

significantly increased. 

 

In conclusion, the present work has 

showed that occupational exposure to 

radiation, well within permissible levels, 

leaves a genetic mark on the somatic DNA of 

industrial radiographers.  On the other hand, 

exposure to ionizing radiation stimulates 

regenerative processes as indicated by the 

increase in EPCs, VEGF and SDF-1 α. The 

laborers who work as industrial radiographers 

should carefully follow radiation protection 

procedures and should minimize radiation 

exposure to avoid possible mutagenic effects. 

Routine biochemical and hematological 

investigations (including biological dosimetry) 

as well as nutritional status monitoring (that 

includes a high protein diet to improve tissue 

regeneration and antioxidants) ought to be 

carried out on a regular basis to detect as early 

as possible any adverse effects of ionizing 
radiation on the biological systems of the 

body. Workers affected by ionizing radiation 

should stay away from work for a specified 

period and should be monitored for any 

cardiovascular, acid base balance or nervous 

system reflexes disturbances. They should be 

given suitable treatment by the physicians 

following up their progress. 
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