

Egyptian Journal of Chemistry

http://ejchem.journals.ekb.eg/

Synthesis, Spectral and Biological Studies of New 2-amino-3-cyanopyridine Derivatives and Their Transition Metals Complexes S. M. Alazawi*, A. M. Rasheed, S. M. Al-Bay, A. H. Abed

Chemistry Department, College of Science, Mustansiriyah University, Baghdad, Iraq

Abstract

In this study, new substituted 2-amino-3-cyanopyridine derivatives were synthesized in excellent yields by reacting chalcone derivatives with malanonitrile in the presence of ammonium acetate, and new complexes with these ligands were synthesized and characterized by elemental analysis, UV, IR, Mass, and NMR (1H, 13C) spectroscopy, and had the general formula: $[ML_2(H_2O)_2]Cl_2$ where M= Co(II), Ni(II) and Cu(II), $[ML_2(H_2O)Cl]Cl_2$ where M= Cr (III). On the basis of analytical data and IR studies, a 1:2 metal to ligand stoichiometry has been suggested to these coordination complexes. All of these studies suggest that the ligand acted as a bi-dentate ligand when it coordinates with metal ions, and that the prepared complexes had an octahedral geometry coordinated by both the nitrogen of (cyano group) and (amino group). The ligand and its complexes were tested for antimicrobial activity against gram negative (*Pseudonomous aeruginosa*) and gram positive (*Bacillus subtitis*) bacteria. All of these complexes have been shown to be more antibacterial than their respective ligands.

Keywords: Chalcone, Cyanopyridine, malanonitrile, Transition metals complexes, Biological activity. Electron withdrawing, Antibactrial effectrive.

1. Introduction

Pyridine component have been interested by the researcher in the last decayed due to their wide series application in medicinal chemistry [1-3], they also exhibit antibacterial [4], antifungal [5] antimitotic [6-7] and antidepressant [8]. Some pyridine derivatives such as 2-amino-3-cyano-4,6-diaryl pyridine possess variety type of application as nonlinear optical material [9], electrical material [10] and fluorescent liquid crystal [11]. In addition, these compounds are important for preparing a wide range of heterocyclic compounds such as cyanopyridine [12]. 2-amino-3cyanopyridine one of the most important derivatives among of these pyridine compound. In general, the compounds containing 2-amio-3-cyanopyridine moiety were used as a drug due to their pharmacological activities such as antitumor, anticancer, anti-inflammatory and used as IKK-ß inhibitor [13-14]. Different methods were used to synthesis 3-cyanopyridine derivatives were described in literature [15]. However, these methods that used to synthesis these compounds gave a low yield and impurities [16-17]. So, new route was suggested to prepare 2-amio-3-cyanopyridine derivatives by adding substituents electron with drawing group and donating group and investigated the effect of these groups in increase or decrease the reaction time and yield also a limited synthesized of their complexes. In this present work, two steps were used to prepare 2amino-3-cyanopyridine derivatives first step to synthesis α , β -unsaturated ketone and then mixed with malononitrile to yield the title compounds which are used to synthesis a large number of their complexes with transition metals as shown in Scheme 1.

2. Experimental

All the starting material and reagent were supplied with the highest purity and used as supplied by either Merck or Fluka. To measure the melting points for all prepared compounds, the Gallen Kamp melting point was used. On the shimadzu-8300 spectrophotometer, FTIR spectra were reported in the range of (4000-

*Corresponding author e-mail: <u>SMAlazawi@gmail.com</u> .

Receive Date: 29 December 2020, Revise Date: 12 March 2021, Accept Date: 14 March 2021 DOI: 10.21608/EJCHEM.2021.55730.3173

^{©2021} National Information and Documentation Center (NIDOC)

400) Cm⁻¹. Electronic spectra of ligand and its complexes were measured by using the UV-1650 PC shimadzu spectrophotometer at 25C ° in the solution of 10-3 M DMF. An EM measurement was reported on the W.T.W. conductivity meter using DMF as a solvent and a concentration of 10-3 M at room Elemental C.H.N. analysis temperature. was performed using the normal addition method of the Shimadzu A.A-670 spectrometer. Magnetic susceptibility measurements were measured by Sherwood scientists at 25C° as a solid state using the Couy magnetic susceptibility balance. Mass spectra were recorded on Shimadzu GCMS-QP5050A Spectrometer by using direct injection probe. 1H, 13C NMR spectra were measured in DMSO-d6 using the Bruker Spectrophotometer (300 MHz). Chemical shifts were reported in ppm downfield from tetramethylsilane (TMS).

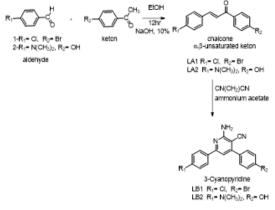
2.1 Synthesis of an organic ligand

General procedure for preparation: (E)-1-(4-bromophenyl)-3-(4-chlorophenyl)prop-2-en-1-one LA1[5-16]

A mixture of aldehyde derivatives (0.01 mole) and ketone derivatives (0.013 mole) in 25ml ethanol was refluxed for 12h. in the presence of NaOH (10%, 2 ml). The volume of reaction mixture was condensed to half volume and after that the solution poured into the ice-cold water (25 ml). The precipitate was formed and then collected by filtration and washing with cold ethanol and recrystallization from methanol to produce a pale yellow product with title LA1:1H NMR, 8.4(d, 1H, J = 7.7Hz, CH=-ph-cl), 8.03 (d, 2H, J = 6.8Hz, Hortho-phBr), 7.8 (d,2H, J= 6.5Hz, Hpara-phBr), 7.65 (d, 2H, J= 7.62Hz, Hortho-phCl), 7.54(d, 2H, J = 7.7Hz, Hpara-phCl); 13C NMR, (188, 146, 120, 137, 134, 133, 132, 130, 129, 128). MS: m/z 321 [M]+

Synthesis of (E)-3-(4-(dimethylamino)phenyl)-1-(4hydroxyphenyl)prop-2-en-1-one LA2

This ligand prepared by following the same procedure that used to prepare LA1. A Light yellow product was obtained with excellent yield 90%. 1H NMR, 9.7 (s, 1H, -OH), 8.07(d, 1H, J = 7.8Hz, =HC-ph), 8.04 (d, 2H, J = 6.5Hz, Hotho-phOH), 7.65 (d, 1H, J = 7.8Hz, HC=), 7.56 (d, 2H, J = 6.7Hz, Hortho-phNCH3), 7.01(d, 2H, J= 6.05Hz, Hpara-phOH), 6.85 (d, 2H, J = 6.45Hz, Hpara-phNCH3), 2.4 (s, 6H, (CH3)2N); 13C NMR (190, 165, 151, 146, 133, 131, 129, 125, 121, 117, 112, 42); MS: m/z 268 [M+H]+.


General procedure for synthesis: 2-amino-4-(4bromophenyl)-6-(4-chlorophenyl)nicotinonitrile LB1[1]

Egypt. J. Chem. 64, No. 6 (2021)

A mixture of derivatives of Chalcone (0.002 mole) and malononitrile (0.0024 mole) and ammonium acetate (1.23 g, 0.016 mole) was dissolved in 25ml ethanol and then refluxed for 12h. Thin layer chromatography (TLC) was used to monitoring the reaction and confirmed that all starting material converted to the product. The reaction mixture was cooled and poured into the ice cold water (50 ml) and then HCl dil. solution was added to the reaction mixture to adjacent the pH. The precipitate was collected after filtration to give yellow product with title LB1 as a powder with yield 90% and melting point is (164 °C); 1H NMR, 8.34 (d, 2H, J = 6.7Hz, Hortho-phCl), 8.02 (s, 1H, H-py), 7.62 (d, 2H, J= 7.70Hz, Hpara-phCl), 7.55 (d, 2H, J= 6.43Hz, HparaphBr), 7.50 (d, 2H, J = 6.87Hz, Hortho-phBr), 6.70 (s, 2H, NH2); 13C NMR: 162, 156, 155, 137, 133, 129, 124, 122, 114, 133, 86); MS: m/z 383 [M]+.

Synthesis of 2-amino-6-(4-(dimethylamino)phenyl)-4-(4-hydroxyphenyl)nicotinonitrileLB2

This ligand prepared by following the same procedure that used to prepare LB1. A reddish brown product was obtained with yield 85% Scheme 1. 1H NMR, 9.70 (s, 1H, OH), 8.6 (s, 1H, H-py), 7.9 (d, 2H, J = 6.06Hz, Hortho-phNCH3), 7.6(d, 2H, J = 5.7Hz, Hortho-phOH), 6.9 (d, 2H, J = 7.2Hz, Hpara-phNCH3), 6.3 (d, 2H, J = 7.6Hz, Hpara-phOH), 6.8 (s, 2H, NH2), 2.4 (s, 6H, (CH3)2; 13C NMR: 165, 160, 158, 155, 153, 132, 131, 128, 117, 116, 112, 87, 43; MS: m/z 331[M+H]+.

Scheme 1. Synthesis of LA, 2 and LB1, 2

2.2 Synthesis of metal complexes (LB1, 2-M) *A general procedure*

A solution of metal ions salts ($CrCl_3.6H_2O$, CoCl_2.6H_2O, NiCl.6H_2O and CuCl_2.2H_2O) (0.01 mole) in ethanol was added to the hot solution of ligand (LB1 or LB2) (0.02 mole). Reaction mixture was refluxed for 2hr. The product was separation by filtration and washed with cold methanol for several times. The physical properties of new complexes were shown in Table 1, 2:

Compound	Color	M.P .C°	Mwt g/mol	Element al anlysis tal	l Analysis Found(cal.)		Metal M% Found(cal.)	M:L	Suggested formula
				C%	H%	N%			
LA1	Pale vellow	160	321.6	56.02 (55.97)	3.13 (3.1)				C ₁₅ H ₁₀ BrClO
LB1	Light brown	164	384.6	56.20 (56.15)	2.88 (2.85)	10.92 (10.90)			$C_{18}H_{11}BrClN_3$
Cr-LB1	green	88	945.7	45.82 (45.6)	2.35 (2.53)	8.78 (8.88)	5.15 (5.49)	1:2	[Cr(C ₁₈ H ₁₁ BrClN ₃) ₂] 2OCl]Cl ₂
Co-LB1	green	130	935.1	46.34 (46.19)	2.59 (2.78)	9.21 (8.98)	6.27 (6.30)	1:2	$[Co(C_{18}H_{11}BrClN_3)]$ H ₂ O) ₂]Cl ₂
Ni-LB1	Light brown	106	934.8	46.35 (46.21)	2.59 (2.78)	9.04 (8.98)	6.21 (6.27)	1:2	$[Ni(C_{18}H_{11}BrClN_3)_2]$ 2O)2]Cl2
Cu-LB1	brown	125	939.7	46.15 (45.97)	2.58 (2.76)	8.90 (8.93)	6.71 (6.76)	1:2	$[Cu(C_{18}H_{11}BrClN_3)]$ $H_2O)_2[Cl_2]$

	Table 2. Physical properties of ligand LB2 and its complexes								
Compound	color	M.P	Mwt	Elemental analysis %			Metal M%		Suggested formula
Compound	color	.C°	g/mol	C%	H%	N%	Found (cal.)	M:L	
LA2	Light yellow	158- 160	267	76.38 (76.31)	6.41 (6.35)	5.31 (5.23)			C ₁₇ H ₁₇ NO ₂
LB2	Reddish brown	155	330	72.78 (72.72)	5.50 (5.45)	16.87 (16.96)			$C_{20}H_{18}N_4O$
Cr-LB2	Dark green	175	836.5	57.53 (57.38)	4.35 (4.54)	13.36 (13.41)	6.18 (6.21)	1:2	$[Cr(C_{20}H_{18}N_4O)_2(H_2O)Cl]C \\ l_2$
Co-LB2	Greenish brown	300 d*	825.9	58.26 (58.11)	4.68 (4.84)	13.51 (13.56)	7.18 (7.13)	1:2	$[Co(C_{20}H_{18}N_4O)_2(H_2O)_2]Cl$
Ni-LB2	Light brown	325 d*	825.6	58.28 (58.13)	4.65 (4.84)	13.48 (13.56)	7.21 (7.10)	1:2	$[Ni(C_{20}H_{18}N_4O)_2(H_2O)_2]Cl_2$
Cu-LB2	brown	183	830.5	57.94 (57.79)	4.62 (4.81)	13.51 (13.48)	7.62 (7.65)	1:2	$[Cu(C_{20}H_{18}N_4O)_2(H_2O)_2]Cl$

2. 3. Biological Study

In the current study, the agar well diffusion method was employed to examine the biological effect of investigated compound using two types of bacteria including Escherichia coli and Bacillus subtilis. In order to prepare stock solutions, testing compounds were dissolved in DMSO solvent. The first step in this process was to inoculate the agar medium with microorganisms. Then 20 μ l of test solution (sample) was dispensed into well using a micropipette. The 96 well-plate was incubated at 30 °C for 72 hours. During this time, the sample was diffused. following the incubation period, OD measurements of microbial growth rate were achieved or the microbial growth rate was measured [18].

3. Results and Discussion

In this study, new complexes were prepared by using transition metals with new derivative ligands contain pyridine moiety bearing different groups, electron with drawing (LB1) and donating group (LB2) by cyclization of Chalcone with malanonitrile under basic condition according to procedure reported in the literature [1] to form new substituted according to

the molar ratio. The structure of all ligands and its metal complexes were characterization by using Elemental analysis, IR, UV, 1H NMR and MS.

The electronic study of ligand LB1, LB2 and its complexes was carried out in ethanol which exhibited two main absorption characteristics for all complexes. The first band is assigned to the spin allowed intraligand π - π * transition of the coordinated ligand. It is generally observed at higher energies between (260-300) nm, the second broad band is metal to ligand charge transfer (MLCT) bands cyanopyridine and its metal complexes appearing between (350-450) nm and d-d transition which observed at 500-600 nm as shown inTable 3, 4. These new complexes were synthesis by mixing (2:1) ligand to metal with excellent yield.

according to literature [19].The electronic spectra of new prepared Cr(III) complex with LB1 showed three bands at 40816, 29585 and 23310 cmrespectively assigned to $4A2g \rightarrow 4T12g$ (F), $4A2g \rightarrow 4T1g$ (F) and $4A2g \rightarrow 4T1g$ (P) respectively Figure 1.The magnetic moment for Cr(III) complexes was 3.50 B.M. UV/visible spectra results and magnetic moment are confirmed that the structure around Cr(III) ion has the octahedral structure which is similar to related complexes [20].

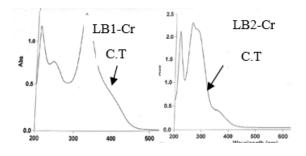


Fig.1. UV spectra of LB1-Cr and LB2-Cr

In addition the molar conductivity was also indicated that complex was ionic as shown in Table 4 and the same transitions were exhibited for other complex with ligand LB2 [18, 20]. Ni(II) complexes show three band refer to ${}^{3}A_{2}g \rightarrow {}^{3}T_{2}g(F)$, ${}^{3}A_{2}g \rightarrow {}^{3}T_{1}g(F)$ and ${}^{3}A_{2}g \rightarrow {}^{3}T_{1}g(F)$ as shown in Table 3, 4. Which confirmed that the structure around Ni(II) ion is octahedral [19].

While Co(II) complexes exhibited three bands at 40160, 28169 and 15243 cm⁻¹ which are attributed to the ${}^{4}T_{1}g \rightarrow {}^{4}T_{2}g(F)$, ${}^{4}T_{1}g \rightarrow {}^{4}A_{2}g(F)$ and ${}^{4}T_{1}g \rightarrow {}^{4}T_{1}g(P)$ respectively and indicated that the structure around Co(II) is octahedral, also the magnetic moment value was (4.23 B.M) confirmed that geometry for Co(III) complex is octahedral, 11764cm⁻¹ respectively attributed to the ${}^{2}Eg \rightarrow {}^{2}T_{2}g$ which indicated that the structure is octahedral around Cu(II) complexes. The value of magnetic susceptibility for all prepared complexes is consent with literature related to the same metals [21,22].

While Cu(II) complexes with LB1and LB2 exhibited one band at 135501 and while, the elemental analysis and molar ratio shows that all metals coordination with ligand as a ratio 1:2. This result is agreement with molar conductance values which indicated that all complexes are electrolyte. Moreover, IR spectrum of ligand LA1,2 showed band at 1658 cm⁻¹ assign to (C=O) group which disappeared in ligand LB1,2 and new band was observed at 2220 cm-1 indicate to the (C=N) group [1] and shifted to lower frequencies in all complexes due to coordinate with metal ions, two bands at 3465, 3362 cm⁻¹ in LB1 and 3315-3330 cm⁻¹ in IR spectra of LB2. were attributed to NH₂ stretching vibration, these bands were shifted to higher frequencies as a result to coordination with metal ions (Table 5) [23] as shown in Figure 2, 3. A broad band was observed at in IR spectra for all complexes which are assigned to coordinate water molecule with metal ions. The new bands in the IR spectra for all metal complexes were observed in 520-540 cm⁻¹ and 435-485 cm⁻¹ the region are assigned to v(M-N) and v(M-O), respectively [24]

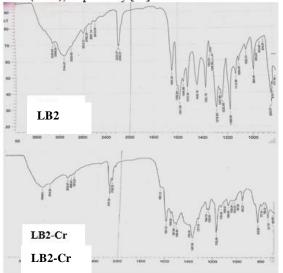


Fig. 3 The FTIR Spectrum of the ligand (LB2) and LB2-Cr

¹H NMR spectrum also confirmed the structure of ligand LA1 which exhibited doublet signal at 8.1 ppm assigned to proton of the α -olefin group and a doublet signal at 8.03 ppm attributed to the protons of aromatic ring close to ketone group. While ¹³C NMR spectrum of LA1, LA2 show that carbon of carbonyl group was observed at 189.7ppm. LA2 ligand shows a new two singlet signals at 9.7 ppm assigned to the proton of hydroxyl group and 2.4 ppm corresponded to the protons of alkyl group and rest of the protons are nearly similar to the LA1. A singlet signal at 8.6 ppm was observed in ¹H NMR spectrum of LB1 which attributed to the proton of pyridine ring also a doublet signal at 8.43 ppm indicated to the proton of aromatic phenyl ring (ph-Br), while a doublet signal with two integral were observed at 7.8 ppm assigned to the protons of phenyl ring (ph-Cl) in ligand LB1and LB2.

In addition, ¹H NMR spectrum of LB2 is different to LB1 by showing peak at 2.4 ppm which attributed to alky group. Mass spectrum of LB1 showed main peak at 383 m/z indicate to $[M]^+$ and revealed the molecular formula ($C_{18}H_{11}BrClN_3$) while the mass spectrum of LB2 exhibited peak at 331 m/z assign to [M+H]⁺ and suggested the molecular formula (C₂₀H₁₈N₄O), NMR spectroscopy along with mass spectrometry confirmed that the LB1 and LB2 were formed.¹H NMR spectrum of complexes show the similar signals to the ligand with shift to down field. According to the literature reported that water molecules prefer to coordinate with metal ions as trans-octahedral cationic complexes due to this geometry is more stable than *cis* isomer and also the stabilization of the *cis* or *trans* geometry is driven by steric factors [25], as a result it suggests that the

Egypt. J. Chem. 64, No. 6 (2021)

structure configuration for ligand and their metals complexes as shown below:

Biological activities

The antibacterial study of the new complexes against gram positive bacteria such as (*Bacillus subtilis*) and gram negative bacteria such as (*E. coli*) was carried out in DMSO. The data was demonstrated that the ligand bearing electron withdrawing group LB1 and corresponding complexes exhibit higher active against to the both types of bacteria than the ligand substituted donating group LB2. Also, it was found that the metal ions complexes exhibit more toxic Compared to the corresponding ligand as shown in Table (7). The activity of these complexes are agreement with literature [26]

Table3. Electronic spectrum,	Conductance and Magnetic moment (B.M) in (DMF) for LB1 and its Metal complexes	
		1

Compound	λ_{max} nm	Bands cm ⁻¹	Transition	Molar Cond. µ.cm ⁻¹	µ _{eff} B.M	Suggested structure
$C_{18}H_{11}BrClN_3$	208 338	48076 29585	$\pi \rightarrow \pi^*$ $n \rightarrow \pi^*$		Bill	
[Cr(C ₁₈ H ₁₁ BrClN ₃) ₂ H ₂ OCl]Cl ₂	245 338 429	40816 29585 23310	${}^{4}A_{2}g \rightarrow {}^{4}T_{2}g(F)$ ${}^{4}A_{2}g \rightarrow {}^{4}T_{1}g(F)$ ${}^{4}A_{2}g \rightarrow {}^{4}T_{1}g(P)$	65.1	3.50	octahedral
[Co(C18H11BrClN3)2H2O)2]Cl2	249 355 656	40160 28169 15243	$\label{eq:target} \begin{array}{c} {}^{4}T_{1}g {\rightarrow} T_{2}g(F) \\ {}^{4}T_{1}g {\rightarrow} {}^{4}A_{2}g(F) \\ {}^{4}T_{1}g {\rightarrow} {}^{4}T_{1}g(P) \end{array}$	75.4	4.22	octahedral
[Ni(C18H11BrClN3)2H2O)2]Cl2	251 334 354	39840 29761 28248	${}^{3}A_{2}g \rightarrow {}^{3}T_{2}g(F)$ ${}^{3}A_{2}g \rightarrow {}^{3}T_{1}g(F)$ ${}^{3}A_{2}g \rightarrow {}^{3}T_{1}g(P)$	67.3	2.85	octahedral
$[Cu(C_{18}H_{11}BrClN_3)_2H_2O)_2]Cl_2$	738	135501	$^{2}\text{Eg} \rightarrow ^{2}\text{T}_{2}\text{g}$	70.5	1.74	octahedral
Table 4. Electronic spectrum,	Conductar	nce and Mag	netic moment (B.M)) in (DMF) for LB2 as	nd its Meta	al complexes
Compound	λ_{\max} nm	Bands cm ⁻¹	Transition	Molar Cond. μ .cm ⁻¹	µ _{eff} B.M	Suggested structure
C ₂₀ H ₁₈ N ₄ O	215 341	46511 29325	$\pi \rightarrow \pi^*$ $n \rightarrow \pi^*$			_
$[Cr(C_{20}H_{18}N_4O)_2(H_2O)Cl]Cl_2$	245 330 435	40816 30303 22988	${}^{4}A_{2}g \rightarrow {}^{4}T_{2}g(F)$ ${}^{4}A_{2}g \rightarrow {}^{4}T_{1}g(F)$ ${}^{4}A_{2}g \rightarrow {}^{4}T_{1}g(P)$	63.2	3.78	octahedral
$[Co(C_{20}H_{18}N_4O)_2(H_2O)_2]Cl_2$	240 360 650	41666 27777 15384	${}^{4}T_{1}g \rightarrow {}^{4}T_{2}g(F)$ ${}^{4}T_{1}g \rightarrow {}^{4}A_{2}g(F)$ ${}^{4}T_{1}g \rightarrow {}^{4}T_{1}g(P)$	72.3	4.23	octahedral
$[Ni(C_{20}H_{18}N_4O)_2(H_2O)_2]Cl_2$	260 345 370	38461 28985 27027	${}^{3}A_{2}g \rightarrow {}^{3}T_{2}g(F)$ ${}^{3}A_{2}g \rightarrow {}^{3}T_{1}g(F)$ ${}^{3}A_{2}g \rightarrow {}^{3}T_{1}g(P)$	70.2	2.79	octahedral
$[Cu(C_{20}H_{18}N_4O)_2(H_2O)_2]Cl_2$	850	11764	$^{2}Eg \rightarrow ^{2}T_{2}g$	74.7	1.78	octahedral

Table 5.	IR-spectrum	of ligand	LB1and its	complexes

Compound	UNH2	UC≡N.	M-N	M-O	UH2O
C ₂₀ H ₁₈ N ₄ O	3335, 3144	2222	_	_	_

Egypt. J. Chem. 64, No. 6 (2021)

$[Cr(C_{20}H_{18}N_4O)_2(H_2O)Cl]Cl_2$	3338, 3210	2187	532	480	3335
$[Co(C_{20}H_{18}N_4O)_2(H_2O)_2]Cl_2$	3338, 3228	2183	530	480	3338
$[Ni(C_{20}H_{18}N_4O)_2(H_2O)_2]Cl_2 \\ [Cu(C_{20}H_{18}N_4O)_2(H_2O)_2]Cl_2 \\$	3360, 3220 3346, 3219	2183 2187	530 535	435 475	3350 3346

Table 6	ID an a atmains	ofligand	ID2 and	ita Can	
Table 0.	IR-spectrum	or figanu	LD2 and	i ns con	ipiexes

Compound	UNH2	UC≡N.	M-N	M-O	UH2O
C ₁₈ H ₁₁ BrClN ₃	3460, 3262	2208	_	_	_
$[Cr(C_{18}H_{11}BrClN_3)_2H_2OCl]Cl_2$	3465, 3264	2212	530	435	3317
[Co(C18H11BrClN3)2H2O)2]Cl2	3480, 3240	2211	528	475	3315
[Ni(C ₁₈ H ₁₁ BrClN ₃) ₂ H ₂ O) ₂]Cl ₂	3466, 3217	2211	535	475	3333
$[Cu(C_{18}H_{11}BrClN_3)_2H_2O)_2]Cl_2$	3465, 3240	2212	540	440	3308

Table7. Antibacterial activity of ligand LB1, LB2 and its complexes					
Compound	Bacillus subtilis	E.Coli			
DMSO	0	0			
C ₁₈ H ₁₁ BrClN ₃ (LB1)	20	10			
$[Cr(C_{18}H_{11}BrClN_3)_2H_2OCl]Cl_2$	30	12			
[Co(C ₁₈ H ₁₁ BrClN ₃) ₂ H ₂ O) ₂]Cl ₂	25	14			
[Ni(C ₁₈ H ₁₁ BrClN ₃) ₂ H ₂ O) ₂]Cl ₂	22	12			
[Cu(C ₁₈ H ₁₁ BrClN ₃) ₂ H ₂ O) ₂]Cl ₂	28	15			
C ₂₀ H ₁₈ N ₄ O (LB2)	14	8			
[Cr(C ₂₀ H ₁₈ N ₄ O) ₂ (H ₂ O)Cl]Cl ₂	21	10			
$[Co(C_{20}H_{18}N_4O)_2(H_2O)_2]Cl_2$	23	10			
[Ni(C ₂₀ H ₁₈ N ₄ O) ₂ (H ₂ O) ₂]Cl ₂	20	12			
[Cu(C ₂₀ H ₁₈ N ₄ O) ₂ (H ₂ O) ₂]Cl ₂	24	14			

4. Conclusion

In conclusion new complexes were synthesis and characterized by spectroscopic and analytical method. All ligand and their corresponding complexes were tested against two types of bacteria and all were showed high antibacterial activity. The complexes bearing ligand subtitled electron withdrawing were exhibited higher activity than the other complexes. So this can be promising as antibacterial agent.

5. Acknowledgment

Great thanks from the authors to the Department of Chemistry, College of Science, Mustansiriyah University for providing facilities and laboratories.

6. References

- R. Gupta, A. Jain, M. Jain, and R. Joshi, "One pot' synthesis of 2-amino-3-cyano-4,6diarylpyridines under ultrasonic irradiation and grindstone technology," *Bull. Korean Chem. Soc.*, vol. 31, no. 11, pp. 3180–3182, 2010.
- [2] E. C. Constable *et al.*, "Development of supramolecular structure through alkylation

Egypt. J. Chem. 64, No. 6 (2021)

of pendant pyridyl functionality," J. Chem. Soc. Dalt. Trans., no. 13, pp. 2219–2228, 2000.

- [3] G. W. V Cave, A. J. Hallett, W. Errington, and J. P. Rourke, "Inter-versus Intramolecular C- H Activation: Synthesis and Characterization of a Novel Platinum-Carbene Complex," *Angew. Chemie Int. Ed.*, vol. 37, no. 23, pp. 3270–3272, 1998.
- [4] P. M. Gurubasavaraja Swamy and Y. S. Agasimundin, "Synthesis and antimicrobial activity of some novel chalcones containing 3-hydroxy benzofuran," *Acta Pharm. Sci.*, vol. 50, no. 3, pp. 197–202, 2008.
- [5] S. Samshuddin, B. Narayana, B. K. Sarojini, H. S. Yathirajan, and R. Raghavendra, "Synthesis, characterization and biological evaluation of functionalized derivatives of versatile synthon 4,4'-difluoro chalcone," *Der Pharma Chem.*, vol. 4, no. 4, pp. 1445– 1457, 2012.
- [6] H.-K. Fun, C. Kumar, P. Patrao, A. M. A. Khader, and B. Kalluraya, "2-Amino-6-methyl-5-{5-[(naphthalen-2-yloxy) methyl]-1, 3, 4-oxadiazol-2-ylsulfanyl}-4-(3-nitrophenyl) pyridine-3-carbonitrile," *Acta Crystallogr. Sect. E Struct. Reports Online*, vol. 69, no. 4, pp. 0491–0492, 2013.

- [7] Y. Riadi, R. Mamouni, S. Routier, G. Guillaumet, and S. Lazar, "Ecofriendly synthesis of 3-cyanopyridine derivatives by multi-component reaction catalyzed by animal bone meal," *Environ. Chem. Lett.*, vol. 12, no. 4, pp. 523–527, 2014.
- [8] C. Gachet *et al.*, "Purinoceptors on blood platelets: further pharmacological and clinical evidence to suggest the presence of two ADP receptors," *Br. J. Haematol.*, vol. 91, no. 2, pp. 434–444, 1995.
- [9] H. Wang, R. Helgeson, B. Ma, and F. Wudl, "Synthesis and optical properties of crossconjugated bis (dimethylaminophenyl) pyridylvinylene derivatives," *J. Org. Chem.*, vol. 65, no. 18, pp. 5862–5867, 2000.
- [10] T. Kanbara, T. Kushida, N. Saito, I. Kuwajima, K. Kubota, and T. Yamamoto, "Preparation and properties of highly electron-accepting poly (pyrimidine-2, 5diyl)," *Chem. Lett.*, vol. 21, no. 4, pp. 583– 586, 1992.
- [11] E. A. A. Motaal and M. A. Salem, "Design, synthesis and anticancer activity of new 3cyano-2 (1 H) -pyridone and 3cyanopyridine-2- (1 H) -thione Derivatives," 2015.
- [12] O. S. Mohamed, E. A. Al-Taifi, T. I. El-Emary, and E. A. G. Bakhite, "Studies on the synthesis of some new cyanopyridine-thione and thieno[2,3-b]pyridine derivatives," *Phosphorus, Sulfur Silicon Relat. Elem.*, vol. 182, no. 5, pp. 1061–1082, 2007.
- [13] T. Murata *et al.*, "Synthesis and structure– activity relationships of novel IKK- β inhibitors. Part 2: improvement of in vitro activity," *Bioorg. Med. Chem. Lett.*, vol. 14, no. 15, pp. 4013–4017, 2004.
- [14] D. Janis, R. A.; Silver, P. J.; Triggle, "Drug action and cellular calcium regulation," J. Adv. Drug Res., vol. 16, p. 309, 1987.
- [15] D. V Tyndall, T. Al Nakib, and M. J. Meegan, "A novel synthetic route to phenylsubstituted pyridines synthesis of [1] benzopyrano [4, 3-b] pyridines,[1] benzothiopyrano [4, 3-b] bpyridines and pyrido [3, 2-b][1, 4] benzothiazines (1azaphenothiazines)," *Tetrahedron Lett.*, vol. 29, no. 22, pp. 2703–2706, 1988.
- [16] C. L. Cave, G. W. V.; Raston, "Efficient synthesis of pyridines via a sequential solventless aldol condensation and Michael addition," *J. Chem. Soc.*, no. 21, p. 3258, 2001.
- [17] M. S. Cheng, R. S. Li, and G. Kenyon, "A Solid Phase Synthesis of Chalcones by

Claisen-Schmidt Condensations," vol. 11, no. 10, pp. 851–854, 2000.

- [18] S. A. Osman, H. A. A. Yosef, T. S. Hafez, A. A. El-Sawy, H. A. Mousa, and A. S. Hassan, "Synthesis and antibacterial activity of some novel chalcones, pyrazoline and 3cyanopyridine derivatives based on khellinone as well as Ni(II), Co(II) and Zn(II) complexes," *Aust. J. Basic Appl. Sci.*, vol. 6, no. 3, pp. 852–863, 2012.
- [19] D. Sutton, "Electronic spectra of Transition Metal complexes," J. Electrochem. Soc., vol. 116, no. 8, p. 310C, 1969.
- [20] B. F. A. Tagreed M. Musa, Anaam M.Rasheed, Sinan M.Al-Bayati, Wessal M. Khamis, "synthesis, characterized and structral studies of Co(+3), Ni(+2) Cu9+2) and Cd(+2) complexes of hydrazone schiff base ligands pyrimidine derivative," *J. Eng. Appl.*, vol. 14, no. 8, pp. 2418–2430, 2019.
- [21] A. B. P. Lever, "Inorganic electronic spectroscopy," *Stud. Phys. Theor. Chem.*, vol. 33, 1984.
- [22] B. Evranos Aksöz and R. Ertan, "Chemical and structural properties of chalcones I," *Fabad J. Pharm. Sci.*, vol. 36, no. 4, pp. 223– 242, 2011.
- [23] H. M. Abdel, S. M. Gomha, A. A. El Sayed, Y. N. Mabkhot, A. Alsayari, and A. Bin Muhsinah, "Facile synthesis and antiproliferative activity of new 3 cyanopyridines," *BMC Chem.*, pp. 1–10, 2019.
- [24] L. H. Abdel-Rahman, N. M. Ismail, M. Ismael, A. M. Abu-Dief, and E. A. H. Ahmed, "Synthesis, characterization, DFT calculations and biological studies of Mn(II), Fe(II), Co(II) and Cd(II) complexes based on a tetradentate ONNO donor Schiff base ligand," *J. Mol. Struct.*, vol. 1134, pp. 851–862, 2017:
- [25] V. A. Barrera-Guzmán, R. Ramírez-Trejo, E. O. Rodríguez-Hernández, and N. Barba-Behrens, "2D and 3D Supramolecular Structures of trans-and cis-Octahedral Coordination Compounds of Ethyl-5-methyl-4-imidazolecarboxylate with Transition Metal Ions," *J. Mex. Chem. Soc.*, vol. 56, no. 1, pp. 51–57, 2012.
- [26] B. S. Holla, P. M. Akberali, and M. K. Shivananda, "Studies on arylfuran derivatives: Part X. Synthesis and antibacterial properties of arylfuryl-Δ2pyrazolines," *Farm.*, vol. 55, no. 4, pp. 256– 263, 2000.

تحضير ودراسة طيفية وبايوجية لمشتقات 2- أمينو -3-سيانو بريدين ومعقداتها مع العناصر الانتقالية

سراب مهدي صالح العزاوي، أنعام مجيد رشي، سنان مدحت البياتي، آسيا حميد عبيد

قسم الكيمياء، كلية العلوم، الجامعة المستنصرية

الخلاصة

تتضمن هذه الدراسة تحضير مشتقات جديده معوضه من مشتق والذي حضر عن طريق تفاعل بين 2-amino-3-cyanopyridine بوجود اسيتات الأمونيوم malanonitrile مشتقات و chalcone ليعطي نواتج ممتازة من الليكاندات المحضرة. و المعقدات الجديدة حضرت عن طريق تفاعل هذه الليكندات مع العناصر الانتقالية و تم تشخيصها بالطرق التحليل العناصر و أطياف الأشعة فوق البنفسجية UMass UV والأشعة تحت الحمراء , IR وأطياف ((IH, 13C) NMR و الأشعة تحت الحمراء , IR وأطياف ((IH, 13C) NMR), Where Cu وأطياف الأشعة فوق البنفسجية UV والأشعة تحت الحمراء , IR وأطياف ((IH, 13C) NMR), NI(II), where Cu(II) = M, وأطياف ((IH, 13C) NMR), الانتقالية و تم تشخيصها بالطرق التحليل العناصر وأطياف الأشعة فوق البنفسجية UV والأشعة تحت الحمراء , IR وأطياف ((IH, 13C) NMR) ((II), Ni(II), where Cu(II) = M, وأطياف ((IH, 20)2] ((II) = M, 2Co(II)), Ni(II), where Cu(III) = M, وأطياف ((IH, 20)2] ((II) = M), وأطياف ((II) = M), (II), where Cu(III) = M, وأطياف ((II) = M), (II), Ni(II), where Cu(III) = M, وأطياف ((II) = 20), (II)] ((II) = (II), Ni(II)), where Cu(III) = M, وأطياف ((II) = 20), (II)] ((II) = 20), (II) ((II), Ni(II)), where Cu(III) = M, وأطياف ((II) = 20), (II)] ((II), Ni(II), where Cu(III) = M, وزن الفلز كليكاند ثنائي وأيضا وجد ان المعقدات المحضرة لها شكل ثماني وأسطوح من خلال ار تباطه عن طريق ذرة الكاربون في مجموعة السيانو وذره النتروجين في مجموعة الأمين. الفعالية المصاد للبكتريا فقد درست (Bacillus subtitis) ((II) حضر عالي من اليكذريا الموجب ((II) حضر عالي حضر عالي من اليكذريا الموجب ((II) حضر عالي من اليكذريا مدرست (Bacillus subtitis)) ((II) مدر وعين من اليكذريا الموجب ((II) حضر عالي من اليكذريا مدرست (اليكذريا مدرست (Bacillus subtitis)) من اليكذريا مع مع أورنا الكل من اليكذريا الموجب (الموجب (البكتريا الموجب (البكتريا مدرست (Bacillus subtitis)) ((II) مدر مداني ما اليكذريا (II) مدرست (II) مدرست (Bacillus مع أور من مدرست (Bacillus subtitis)) ((II) مدرست (Bacillus subtitis)) ((II) مدرست والمحدريا من ليكذريا مداليكذريا مدرست (Bacillus subtitis)) ((II) مدرست (II) مدرست (II) مدرست (II) مدالي مدالي مدالي مدالي مدالي مدالي من ليكن من اليكنويا مدالي مدالي مدالي مالما مالي الكنويا مع مد

Egypt. J. Chem. 64, No. 6 (2021)