Set of Agricultural Land Evaluation in El-Dakhla Oases Soils, Egypt

Soliman, M.M.

Soils, Water and Environment. Res. Inst., Agric. Res. Center

m L-DAKHLA Oases soils are located between longitudes $28^{\rm O}$ 30 and $29^{\rm O}$ 04 East and latitudes $25^{\rm O}$ 20 and $26^{\rm O}$ 00 North, covering about 2000 km².

Physiographic mapping units, soil taxonomy, statistical size parameters, water resources quality and its suitability for irrigation and crop water requirements were performed as a set of agricultural land capability and suitability evaluation of El- Dakhla Oases soils.

Land sat ETM image (2010), digital elevation model (DEM) and 3D –GIS techniques were used in ERDAS image 9.2 software to produce the physiographic map of the studied area. The main physiographic units and its soil taxonomic; family levels could be classified as follows:

- 1- Soils of Plava:
- Typic Haplosalids, fine loamy over sandy skeletal, mixed, hyperthermic.
- b- Duric Haplosalids, sandy skeletal, mixed, hyperthermic.
- 2-Soils of Sabkha:

Lithic Gypsisalids, sandy skeletal, siliceous, hyperthermic, shallow.

3- Soils of Sand Sheets:

Calcic Haplosalids, sandy skeletal, mixed, hyperthermic, deep.

4- Soils of Peniplain:

Typic Haplosalids, clayey skeletal, hyperthermic.

- 5- Soils of Cultivated plain:
- a- Typic Torriorthents, fine loamy, mixed, hyperthermic.
- b-Typic Torriorthents, clayey over fine loamy skeletal, mixed, hyperthermic.
- c-Typic Haplosalids, coarse loamy skeletal over clayey, mixed, hyperthermic.
- d-Typic Haplosalids, fine loamy over coarse loamy, mixed, hyperthermic.

The statistical size distribution reveal that these soils have mainly poorly sorted sediments with near symmetrical to fine skewed materials and lepto kurtic to meso kurtic pattern. These parameters indicate that the studied area is formed under water or both water and wind action, forming of non- uniform parent materials.

Current suitability of the studied soils could be categorized into three suitable classes; moderately suitable (S_2) , marginally suitable

E-mail:mahmoudaldemelawi@hotmail.com : mahmoudeldemelawi@yahoo.com

_

 (S_3) and not suitable (N_1) with different intensity degree of soil limitations. By existing suitable improvement practices, the potential suitability classes assessed are two suitability classes; moderately suitable (S_2) and not suitable (N_2) .

Data revealed that current suitability for some specific crops were not suitable (N), except for some scattered areas developed on cultivated plain which are suitable for all the studied crops. On the other hand, the potential suitability classes differed according to the satisfaction conditions between different properties of soils developed on the studied physiographic units and crop water requirements. However, soils of sabkha and cultivated plain are highly suitable (S_1) for groundnut. Also, soils of peniplain and cultivated plain are highly suitable (S_1) for potato and grapes. Whereas, soils of playa, peniplain and cultivated plain are moderately suitable (S_2) for olives.

Water of wells and springs are considered the main sources for irrigation in El- Dakhla Oases soils. Data revealed that the suitability of irrigation water had $(C_1 - S_1)$ class with non restriction at west El-Mowhob and Kalamon area , while it represented $(C_4 - S_4)$ class with very high salinity levels and very high alkalinity hazard at El- Zaiate well and Bathor spring waters, indicating severe restrictions in these soils.

Data revealed that the crop water requirement values of some specific crops are considered high, due to the highness of evapotranspiration values. It represented with an average of 500, 800 and 1800 mm/s for vegetable, field and fruit crops, respectively. So, it is very important to apply suitable irrigation systems such as trickle or sprinkler, under these conditions.

Keywords: GIS, Land evaluation, Soil taxonomy, and Crop water requirements.

El- Dakhla depression is natural excavation in the middle part of the Egyptian Western Desert and has an area of about 2000 km². It is situated between latitudes 25° 20° and 26° 00° North and Longitudes 28° 30° and 29° 04° East, It is located at about 120 km west of El- Kharga Oases and about 300 km west the Nile Valley. The floor of El- Dakhla depression is bound from the north and north east by steep scarps of the Eocene limestone plateau, but gradually rises to the south where it merges with the plain of upper Cretaceous Nubian sandstone.

Geology

A number of geologists, among them Shata (1959), Said (1962), Hermina (1967), Attia (1970), Abu El- Izz (2000) and Said (2000) discussed the geological description of El- Dakhla Oases. They mentioned that the succession of its formation from the olders to the youngest, *i.e.* Cretaceous, Paleocene and Quaternary (Pleistocene and Holocene). It owes its orgin to the exposure of Nubian sediments which consist of alternation of clays, shales, sands and sandstones to erosion.

The overlying Cretaceous and Eocene formations consist essentially of limestone from the plateau which borders the Oasis from north and east, the elevation of this plateau indicates that erosion has removed about 200 m of this limestone to expose the underlying Nubian rocks. The latter group rocks contains the important water bearing horizon of which the oasis owes its existence.

Climate

According to Central Laboratory for Agriculture of Climate (CLAC 2010), the climatelogical data of El- Dakhla Oases is somewhat worm in summer and slightly cold in winter. The mean annual temperature ranges between 13.7° C and 33° C, the annual maximum temperature differs from 21.2° C to 40.6° C and the minimum from 6.2° C to 25.7° C. El- Dakhla Oases receives a very low amount of rainfall where the average rate is located between 0.1 and 1.2 mm/year. The mean annual relative humidity ranges from 28.0% to 66%. Wind velocity ranges from 5.2 Km/h in December to 19.2 Km/h in March. According to the Key of Soil Taxonomy System (USDA 2010) the soil temperature regime of the studied area could be defined as hyperthermic and soil moisture regime as torric.

Water resources

In El- Dakhla Oases there are two main sources of irrigation waters, water of springs and water of wells. Most wells of El- Dakhla Oases are deep, their sources is the Nubian Sandstone which is saturated with water originating from equatorial rainfall, water is found at varying depths, between 300 and 400 m. Some geologists think that ground water movement from Equatorial Africa to the Western Desert for about 500 years.

Material and Methods

Based on the interpretation of the remote sensing image of El- Daklla Oases, the following geomorphic aspects were distinguished:

- 1- Structural Plateau (SP)
- 2- Escarpment (ES)
- 3- Peniplain (Pe)
 - 3- 1- Cultivated area (Cu)
 - 3-2- Playa (Pe Pa)
 - 3-3- Sabkha (Pe sb)
- 4- Wind blown sand (W)
 - 4-1- Sand dunes (Wsd)
 - 4-2-Sand sheets (Wss)

Table 1 shows the geomorphic legend description of different mapping units. Figure 1 illustrates physiographic units of El- Dakhla Oases delineated on landsat, Thematic mapper hard copy (2010) produced by ERDAS imagine 9.3 image processing software. Topographic maps scale 1:100.000, produced by Egyptian General Survey Authority were used to check the delineated soil units of the study area.

TABLE 1 Physiographic legend and description of different geomorphological units.

Symbol	Geomorphological Units	Sub units	Description
(3 5)	Structural Plateau		It is located in the north and eastern sides of EL- Dakhla depression, and includes the very stony material (limestone), samly material and sand sheets. Topography of the surface is gently sloping to unfulating and occupies the more rolling slope.
ŒŊ	Escarpment		El-Dakhla Oases on the northern and western sides is bound by a precipitatous escarpment which rises some 300m above the depression floor and which makes the edge of an extensive limestone plateau. The width of this escarpment ranges between three and six kilometers. The top portion of the escarpment is a steep weel of white chalk, while below comes a more gradual slope of dark coloned clays, mark and sandstone white foot hills of considerable size
(Pe)	Peniplain		It is located between the structural platean in the north and escarpment in the souft. The surface could be classified into two sub units, namely peniplain slope and centeral peniplain flat. peniplain slope is characterized by undulating selief and almost barren, covered by gravels and stones and occupies the namow area adjacent to the escarpment foot. Central peniplain flat includes the Oases depression and extends from east to the west, it is divided into a cultivated area by as thip of barren desert.
(Pe Pa)		ькч	It is located in eastern parts of El- Dakhla Oases between the high plateaus and characterized by an almost flat sunface. The playa deposits are composed of fine site beds of brown colour intercalated with sand and gravels. They are contain amounts of sandy silt, which includes the rock fragments.

Egypt. J. Soil Sci. 56, No. 1 (2016)

TABLE 1 Cont

Description	It is located in the middle of El-Dakhla Oases and adjacent to sand dunes. The surface is almost flat and cowned with thin coust.	The cultivated area is located around Balat, Esmant, Tanida, Musara, Hindaw, Mawhoub and El-Gadida villages. These areas have been antificially modified in order to charge the landscape into terraces to suite imigated agriculture using the natural existing wells. Topography of the surface ranges between almost flat and slightly undulating.	These are located in the western and southern parts of El- Dakhla depression, low to moderately high, and dominated by recent shaped barchans dunes and occasionally with sand dunes, they reach 10 - 15 meters. Their surfaces are barren of natural regetation except in the relatively level area between them, and they are drift very slowly to the south - west direction.	These are located in the western and middle parts of El- Dakhla Oases, The surface is mainly almost flat to slightly unfulting and covered with acolian deposits. The texture is mainly coarse and fine sand with fine gravels.
Sub units	Sabidra It is beated flat and cover	Cultivated Gadida villa terraces to stranges between	Sand dunes These are lo high, and do neach 10 - 1: area between	Sand These are lo
Geomorphological Units	Peniplain			
Symbol	(Pesh)	2	(WSI)	(Wiss)

Egypt. J. Soil Sci. 56, No.1 (2016)

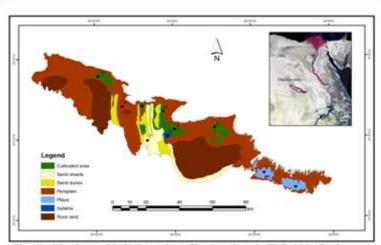


Fig. (1): Physiographic Units and profiles locations in El Dakhla Oasis.

Field work

A rapid reconnaissance soil survey was made throughout the investigated area of El- Dakhla Oases in order to identify the major landforms and gain appreciation of the broad soil patterns and landscape characteristics. The primary units were verified based on field interpretation and information gained during the reconnaissance survey. Ten soil profiles have been dug in each site to a depth of about 150 cm or to the depth of hard layers, parent material, or the water table. A detailed morphological description of soil profiles was carried out on basis outlined by FAO (2006), (Table 2). A number of 37 soil samples of the various layers have been collected for laboratory analyses. (Fig.1). Also, ten water samples representing the wells and springs were collected.

Laboratory Analyses

Physical analyses

Soil color (wet & dry) was identified with the aid of Munsell (2010). Mechanical analysis was carried out for fraction by pipette method and particle size distribution for sand fraction was determined by dry sieving USDA (2004), then the obtained data were statistically evaluated according to Folk and Ward (1957).

Chemical analyses

Electrical conductivity (EC), PH, soluble cations and anions, $CaCO_3\%$, OM%, and gypsum contents were determined according to USDA (2004). Ten water samples were subjected to chemical analyses according to USDA (2004), where soluble cations and anions, total dissolved salts (TDS) and pH were determined. Sodium adsorption ratio (SAR) was calculated using the formula :

$$SAR = \frac{Na^+}{\sqrt{\frac{Ca^{++} + Mg^{++}}{2}}}$$

Egypt. J. Soil Sci. 56, No. 1 (2016)

TABLE 2. Morphological Description of the Studied Soil Profiles.

		_	G .1				4)		1	
Profile No.	Depth (cm)	Di		colour Mo	ist	Soil texture	Soil structure	Consistence	Efferv- esce-nce	Boundary
					Pl	aya			•	
1	0-30 30-60 60-80 80-150	5YR 5YR 5YR 5YR	5/3 5/4 5/4 5/4	5YR 5YR 5YR 5YR	5/4 4/6 4/6 4/4	SCL SCL LS SL	w.c.s.ang m.c.ang b ma ma ma	soft nst npl soft nst npl soft nst npl soft nst npl	Non Non Non Non	c.s c.s c.s
2	0-10 10-50	7.5YR 7.5YR	5/4 5/3	7.5YR 7.5YR	4/4 4/3	SCL LS	w.c.s.ang w.c.s.ang	soft ns np soft ns np	w w	c.s
					Sal	okha			· ·	
5	0-10 10-40	5YR 5YR	4/6 5/4	5YR 5YR	4/4 4/4	SCL S	w.c.s.ang ma	nst npl nst npl	w w	c.s
			•		Sand	Sheet	s		•	
7	0-15 15-55 55-85 85-110	7.5YR 7.5YR 7.5YR 7.5YR 10YR	6/4 6/6 6/6 5/4 5/6	.5YR 7.5YR 7.5YR 7.5YR 10YR	5/4 5/6 5/6 4/3 4/6	S LS S S	Sg. Sg. ma. ma.	Lo n st. npl. Lo n st. npl. So. n st. npl. So. n st. npl.	w w Non Non W	c.s c.s c.s d.s
					Pen	iplain			L.	
9	0-15 15-55 55-75 75-110	10YR 10YR 10YR 10YR	6/3 5/3 4/4 5/4	5YR 5YR 5YR 5YR	5/6 4/4 4/6 4/4	SC C SC SC	w.c.ang b m.f.ang b s.f.ang b w.c.ang b	n. st. st. pl. n. st. n. st.	mod w w	c.s c.s d.s
	73 110	10110	3/4				d area	11. 3t.	**	
3	0-10 10-35 35-65 65-100	7.5YR 7.5YR 5YR 5YR	4/6 5/6 4/4 4/4	7.5YR 7.5YR 5YR 5YR	4/6 4/4 4/4 5/6	SCL SCL SCL SCL	ma ma ma ma	st pl st pl st pl st pl	mod mod mod	d.s d.s d.s
4	0-25 25-50 50-90 90-150	7.5YR 7.5YR 7.5YR 7.5YR 7.5YR	5/8 5/4 5/6 5/6	7.5YR 7.5YR 7.5YR 7.5YR	4/6 4/4 4/6 3/4	SCL SCL SCL SCL	w.c.s.ang b w.m.ang b mod.f.ang mod.f.ang	st pl st pl st pl st pl st pl	mod mod mod	d.s d.s d.s
6	0-25 25-65 65-100	10YR 10YR 10YR	5/6 5/8 5/6	10YR 10YR 10YR	4/6 4/6 4/6	SC SC	w.c.s.ang mod.m.s.ang b mod.m.s.ang b	st pl st pl	w w w	d.s c.s
8	0-15 15-45 45-70 70-100 100-120	10YR 10YR 10YR 10YR 10YR	6/6 6/4 5/4 5/6 5/4	10YR 10YR 10YR 10YR 10YR	4/6 5/4 5/3 5/4 5/3	C SL SC SCL SCL	w.c.s.ang ma ma ma ma	st pl slst slpl st pl st pl st pl	mod mod mod mod	c.s c.s d.s
10	0-15 15-35 35-50 50-70 70-100	7.5YR 7.5YR 7.5YR 7.5YR 7.5YR	5/8 5/4 5/6 5/6 5/6	7.5YR 7.5YR 7.5YR 7.5YR 7.5YR	4/6 4/4 4/6 3/4 3/4	C SC SCL SL SL	w.c.s.ang b w.m.ang b mod.f.ang ma. Ma.	st pl st pll st pl so.sl.st. so.sl.st.	mod mod mod	d.s d.s d.s

Soil Taxonomy

Based on the morphological, physical and chemical characteristics of the studied soil profiles as well as meteorological data, the studied soils were

Egypt. J. Soil Sci. 56, No.1 (2016)

classified up to the family level according to the American System of Soil Taxonomy (USDA, 2010).

Land evaluation

The soil under investigation were evaluated using the two systems namely, land capability classification of Sys *et al.* (1991) and soil suitability classification of certain crops based on the concepts outlined by Sys *et al.* (1993). The main soil parameters used in this system are climate, soil depth, texture, gravel content, CaCO₃ percent, gypsum percent, salinity (ECe), alkalinity (SAR), slope pattern and different conditions. A suitability index of 12 crops for the studied soils was done according to this system.

Crop water requirement

The crop water requirements were calculated using crop wat. program. The program determines ETo using Penmon - Monteith method, (Allen, 1998). The climatic data of El- Dakhla Oases, Climatological Normals for Egypt (2010) and Central Laboratory for Agriculture of Climate (CLAC 2010) were used.

Results and Discussion

El- Dakhla Oases soils consists mainly of five dominant physiographic units. These are, Playa, Sabkha, Cultivated plain, Sand dunes, Sand sheets and Peniplain. A breif notes about the identified physiographic units were shown in Table 2. Soil characteristics of the physiographic units could be discussed and classified according to USDA (2010) based on the data in Tables 3, 4 and 5. Some of these characteristics could be summarized in the following lines:-

TABLE 3. Particle Size Distribution, Texture class, CaCO₃ Content and OM% of the Studied Soil Profiles.

Prof.	Depth	gravels	Parti	icale size di	stribution %	⁄o	ss.	CaCO ₃	OM
No.	Cm	%	C.S	F.S	Silt	clay	Text. Class	%	%
				Playa	ì				
	0-30	37	38.15	25.22	8.12	28.51	SCL	2.83	0.003
	30-60	37	55.68	20.79	2.30	21.23	SCL	1.89	0.41
1	60-80	36	71.62	14.37	0.13	13.88	LS	1.62	0.003
	80-150	39	66.40	15.36	2.73	15.51	SL	135	0.41
2	0-10	24	40.81	17.59	6.07	30.53	SCL	2.97	0.39
2	10-50	38	56.78	32.61	0.46	10.15	LS	3.10	0.003
				Sabkh	ıa				
5	0-10	27	37.68	21.47	10.47	30.38	SCL	4.19	0.02
3	10-40	39	82.17	15.04	1.66	1.13	S	3.92	1.05
				Sand Sh	eets				
	0-15	27	68.46	27.93	1.37	2.24	S	13.50	0.28
7	15-55	25	78.76	12.97	0.43	7.84	LS	10.13	1.48
7	55-85	36	87.60	11.79	0.11	3.41	S	12.96	0.07
	85-110	37	93.68	4.68	0.45	1.19	S	11.50	0.39
				Penipla	in				
	0-15	20	32.77	25.70	2.21	39.92	SC	6.48	0.003
9	15-55	24	19.48	17.12	7.01	56.20	C	0.81	0.69
9	55-75	39	23.35	27.72	0.92	48.01	SC	1.62	0.14
	75-110	39	33.33	13.37	0.92	52.38	SC	0.95	0.34

Egypt. J. Soil Sci. 56, No. 1 (2016)

TABLE 3. Cont.

Prof.	Depth	gravels	Part	icle size di	stribution	%	Text.	CaCO ₃	OM
No.	Сm	%	C.S	F.S	Silt	Clay	Class	%	%
			(.	Plain) Cult	ivated are	a			
	0-10	40	30.94	39.57	3.47	26.03	SCL	5.67	0.48
3	10-35	4	32.45	24.43	12.49	30.63	SCL	7.02	0.48
3	35-65	7	46.0	23.15	2.91	27.94	SCL	6.34	0.28
	65-100	20	47.79	21.33	8.48	22.40	SCL	5.40	0.28
	0-25	19	30.56	44.03	0.52	24.89	SCL	6.75	0.21
4	25-50	18	18.88	45.91	2.99	32.22	SCL	6.21	0.21
4	50-90	19	45.97	27.31	1.09	25.63	SCL	6.21	0.34
	90-150	15	49.68	19.47	1.77	29.08	SCL	5.94	0.34
	0-25	36	13.44	43.76	1.93	40.87	SC	3.78	0.41
6	25-65	27	12.85	45.30	1.42	40.43	SC	1.50	0.34
	65-100	39	35.51	36.73	1.51	26.25	SCL	3.78	0.69
	0-15	39	11.41	22.54	6.75	59.30	C	11.07	0.69
	15-45	37	16.27	32.36	49.47	1.90	SL	5.13	0.14
8	45-70	25	22.06	34.7	1.65	41.59	SC	4.59	0.48
	70-100	27	17.41	47.04	1.35	34.21	SCL	5.40	0.14
	100-120	29	29.14	47.34	2.65	20.87	SCL	4.32	0.21
	0-15	12	4.74	23.44	15.72	56.10	C	4.32	0,69
	15-35	9	11.42	39.27	15.31	44.00	SC	2.56	0.14
10	35-50	29	21.16	44.62	2.30	31.92	SCL	1.75	0.003
	50-70	9	28.74	50.43	1.95	18.88	SL	1.35	0.003
	70-100	15	25.82	54.24	3.98	15.96	SL	2.30	0.50

TABLE 4. Some chemical analyses of the studied soil profiles.

e	-с					ions			Cat	ions			
profile No.	Depth Cm	pН	ECe (dS/m)	$^{\epsilon}_{=}00$	нсо.	CI	SO^{2}	Ca ² -	${ m Mg}^{2+}$	$\mathbf{Na}^{\scriptscriptstyle +}$	$\mathbf{K}^{\scriptscriptstyle +}$	Gyp. %	SAR
							Playa						
	0-30	7.78	61.13	-	7.69	2150.	377.4	641.02	1334.28	491.97	67.83	0.12	15.65
1	30-60	8.20	27.39	-	3.08	220.0	178.5	46.15	32.86	317.4	5.18	1.42	50.54
1	60-80	8.22	36.37	-	4.90	360.0	83.63	51.28	17.86	371.36	8.03	1.90	63.16
	80-150	8.29	19.04	-	3.69	88.0	160.9	46.28	37.8	163.46	5.18	1.09	25.23
2	0-10	7.64	23.22	-	2.46	301.0	42.05	135.89	22.13	184.1	3.39	0.82	20.71
	10-50	7.53	28.48	-	3.69	440.0	8.70	151.28	46.25	250.75	4.11	1.20	12.15
						S	abkha						
5	0-10	6.95	14.72	-	6.15	130.0	48.67	56.41	5.34	120.39	2.68	15.99	21.69
3	10-40	7.44	54.42	-	12.65	2930.	36049.9	256.41	317.66	38400.0	18.21	4.11	2266.8
						Sar	d Shee	ts					
	0-15	7.51	15.83	-	1.54	390.0	62.06	201.28	1.22	236.46	14.64	1.16	23.50
7	15-55	7.54	32.92	ī	2.66	420.0	281.8	394.87	91.55	803.31	11.78	0.90	13.03
/	55-85	7.65	24.49	-	2.46	308.0	170.8	256.41	67.04	149.18	8.21	0.40	11.73
	85-110	7.63	16.88		3.08	156.0	136.7	115.38	82.15	93.63	4.64	0.34	9.42
						Pe	niplain	Į					
	0-15	7.87	10.74	-	1.85	68.0	85.57	51.28	15.38	82.52	6.24	4.34	14.30
9	15-55	8.06	39.27	1	2.32	240.0	265.6	56.41	27.54	412.62	11.42	2.19	63.67
9	55-75	8.21	45.44	-	9.22	250.0	628.2	123.20	19.95	730.02	9.28	0.89	84.78
	75-110	8.22	28.21	-	4.32	176.0	276.1	66.66	61.69	323.75	4.28	3.98	40.42

Egypt. J. Soil Sci. 56, No.1 (2016)

TABLE 4. Cont.

ه	_				An	ions			Cat	ions			
profile No.	Depth Cm	μd	ECe (dS/m)	CO ⁼ 3	нсо.	CI.	SO^{2}_{-4}	Ca²-	${ m Mg}^{2_+}$	Na ⁺	$\mathbf{K}^{\scriptscriptstyle +}$	Gyp. %	SAR
					(P	lain) C	ultivat	ed area					
	0-10	7.63	4.86	-	9.23	18.0	37.11	30.76	6.28	22.75	4.55	0.10	5.29
3	10-35	7.44	9.29	-	8.46	59.0	39.13	45.51	29.8	24.50	6.78	0.35	3.99
3	35-65	7.53	3.04	-	6.46	15.0	21.26	19.23	6.70	11.43	5.36	0.09	3.18
	65-100	7.56	2.58	-	3.38	3.0	11.85	8.97	3.90	4.13	1.23	0.14	1.63
	0-25	7.71	2.82	-	4.61	16.0	6.49	10.89	1.45	13.65	1.11	0.14	5.50
4	25-50	7.96	1.44	-	3.08	8.74	12.82	1.37	4.76	0.87	19.82	0.17	0.50
4	50-90	8.30	4.34	-	3.08	14.0	43.8	44.87	8.21	10.16	1.64	0.34	1.97
	90-150	7.53	4.64	-	5.69	16.08	54.0	43.58	8.27	14.91	9.01	1.45	2.93
	0-25	7.80	1.53	-	4.61	7.0	12.73	11.54	0.82	4.11	0.87	0.18	4.48
6	25-65	7.81	0.93	-	3.99	3.0	3.03	5.13	2.28	2.16	0.45	0.13	1.125
	65-100	8.03	0.68	-	2.30	3.0	6.52	5.13	2.28	3.86	0.55	0.23	2.00
	0-15	7.95	3.68	-	1.69	12.0	73.25	37.18	6.03	41.23	2.5.0	3.33	8.87
	15-45	8.08	37.09	-	4.32	102.1	360.0	51.25	7.98	390.4	16.78	3.47	71.76
8	45-100	7.98	22.22	-	4.32	160.0	187.4	82.05	41.40	222.8	6.07	2.43	28.27
	100- 120	8.06	17.68	-	3.99	90.0	110.6	49.38	4.94	144.42	5.89	1.59	27.72
	0-15	7.97	5.17	-	2.31	14.38	53.0	338.46	1.04	26.98	3.21	1.47	60.8
	15-35	7.87	30.1	-	9.23	320.0	34.68	21.79	72.03	260.27	9.82	1.29	37.99
10	35-50	7.85	26.0	-	6.10	236.0	88.03	92.30	6.46	225.35	6.07	1.38	32.06
	5070	7.94	20.0	-	3.07	164.0	96.43	130.76	29.73	99.98	3.03	0.46	11.15
	70-100	7.83	8.52	-	1.84	64.0	35.03	38.46	32.26	38.08	1.07	0.14	6.86

 $TABLE\ 5.\ Soil\ classification\ categories\ of\ the\ studied\ profiles\ (according\ to\ USDA\ 2010).$

Order	Subor der	Great group	Sub great group	Soil Families	Profile No.
			Calcic Haplosalids	Sandy skeletal, siliceous, hyperthermic, deep	7
			Duric Haplosalids	Sandy skeletal, mixed, hyperthermic, shallow	2
				Fine loamy skeletal over Sandy skeletal, mixed, hyperthermic, deep	1
Aridisols	Salids	Haplosalids	Typic	Clayey skeletal, mixed, hyperthermic, deep	9
			Haplosalids	Coarse loamy skeletal over clayey, mixed, hyperthermic, deep	8
				Fine loamy over Coarse loamy, mixed, hyperthermic, moderately deep	10
			Lithic Gypsisalids	Sandy skeletal, siliceous, hyperthermic, shallow, lithic	5
	Fluvents	Torrifluvents	Typic Torrifluvents	Clayey over fine loamy skeletal, mixed, hyperthermic, moderately deep	6
Entisols			Typic	Fine loamy, mixed, hyperthermic,	3
	Orthents	Torriorthents	Torriorthents	deep	4

Egypt. J. Soil Sci. 56, No. 1 (2016)

1- Soils of playa

This physiographic units represented by profiles No. 1 and 2 cover an area of about 84.5 km² (20280 feddens). The analytical data show that soil texture class varied from loamy sand to sandy clay loam. CaCO₃ content is very low and ranged from 1.35 to 3.10%. Gypsum content is generally less than 1.9%. Organic matter content is extremely low, not exceeding 0.41%. Soil pH values ranged between 7.53 and 8.29 indicating that these soils are slightly to moderately alkaline. Data presented in Table 4 revealed that the studied playa soils are highly to extremely saline and characterized by different salinity levels from 19.04 to 61.13 sm¹. Sodium ions are the predominate soluble cations followed by Ca⁺⁺ and Mg⁺⁺, while K⁺ is rather low, except for the surface layer of profile No. 1. where Mg⁺⁺ exceeds Na⁺. Soluble anions are dominated by Cl⁻ followed SO₄⁻ and then HCO₃⁻. SAR varied from 12.15 to 63.16, indicating that these soils are sodic. The soils of this physiographic unit are classified as:

- 1- Typic Haplosalids, fine loamy over sand skeletal, mixed, hyperthermic (profile 1)
- 2- Duric Haplosalids, sand skeletal, mixed, hyperthermic (profile 2).

2- Soils of sabkha

This physiographic unit is represented by profile No.5. and covers an area of about 12.34 km² (2962 feddans). Data in Table 3 show that the depth of these soils is around 40 cm. It is limited by a lithic contact. Soil texture class is sandy clay loam in the surface layer changed into sand in the 10-40 cm depth. Calcium carbonate content is very low and varied within narrow limit (3.92-4.19%), while organic matter content is extremely low, not exceeding 1.05%, soil reaction ranges from 6.95 to 7.44 (neutral to slightly alkaline). Electrical conductivity (ECe) ranges from 14.72 to 54.42 dSm⁻¹ indicating that these soils are moderately saline in the surface layer and extremely saline in the deepest layer. Soluble cations follow the order Na⁺> Ca⁺⁺> Mg⁺⁺> K⁺, while soluble anions follow the order SO₄¯>Cl⁻> HCO⁻. Gypsum content varied from 4.11 to 15.99% and tends to decrease within the depth. The soils of this physiographic unit are sodic soils , where SAR values ranged from 21.69 to 2266.8. Soils of this unit are classified as Lithic Gypsisalids, sandy skeletal, siliceous, hyperthermic, shallow (profile 5).

3- Soils of sand sheets

This unit is represented by soil profile No.7 and occupied about 188.8 km² (45312 feddans). Data show that the soils of this unit are more than 100 cm depth (deep). The analytical data reveal that soil texture class is sand or loamy sand in the different layers of the representative soil profile. CaCO₃ content ranges between 10.13 and 13.5% with an irregular distribution pattern within the depth. Organic matter is extremely low and varied from 0.07 to 1.48%. Soil reaction is slightly alkaline (pH values are 7.51- 7.65). Soluble salts content ranged between 15.83 and 32.92 dSm⁻¹ showing that these soils are moderately to extremely saline. Soluble cations are dominated by Na⁺ and / or Ca⁺⁺ followed by Mg⁺⁺, while soluble K⁺ is the least abundant. On the other hand, soluble

anions are dominated by Cl⁻ followed by SO₄⁼ and HCO₃⁻. Gypsum content is very low, not exceeding 1.16%. SAR values ranged from 9.42 to 23.5. Soil characteristics of the second horizon meet the requirement of both salic and calcic horizons. Soils of this unit are classified as Calcic Haplosalids, sandy skeletal, mixed, hyperthermic, deep. (profile 7).

Soils of peniplain

This physiographic unit is represented by profile No. 9. Its area occupied about 156.4 km² (37536 feddans). The obtained data show that the soils are deep (> 100cm). The soil texture class is sandy clay in the surface and deepest layers, mean while it is clay in the subsurface layer. CaCO₃ content varies from 0.81 to 6.48%. The distribution pattern of CaCO₃ content does not portray any specific pattern within the depth. Organic matter content is very low, not exceeding 0.69%. Soil reaction is between 7.87 and 8.22 showing that these soils are strongly alkaline. Soluble salts content vary between 10.74 and 45.44 dSm⁻¹ (moderately to extremely saline). Sodium is the dominant soluble cation followed by Ca⁻⁺, Mg⁻⁺ and K⁻. SO4⁻ is the dominant soluble anion followed by Cl⁻ and HCO⁻₃. Gypsum content ranged from 0.89 to 4.34% with an irregular distribution pattern within the depth. SAR values are more than 13 indicating that the soils of peniplain are sodic soils. These soils have a salic horizon in the soil depth from 25-100 cm (Control section). Soils of this unit are classified as: Typic Haplosalids, clayey skeletal, hyperthermic (profile 9).

Soils of cultivated plain

This unit is represented by profiles No. 3, 4, 6.8 and 10 and covers an area about 933.3 km² (223992 feddans). The obtained results reveal that depth of these soils is between 95 and 150 cm. Soil texture varied from sandy loam to clay. Both representative profiles (No. 3 and 4) have the same pattern of sedimentation in all profile layers, where texture class is sandy clay loam. Calcium carbonate content ranges from 1.35 to 11.07% with an irregular distribution pattern within soil profile depth. Organic matter content is very low, 0.69%. The soil reaction ranges from 7.44 to 8.30 indicating that these soils are slightly to moderately alkaline, soluble salts content varies from 0.68 to 37.09 dSm-1 (non to extremely saline). Soluble cations are dominated with Ca⁺⁺ and / or Na⁺ followed by Mg⁺⁺ and K⁺, while soluble anions are dominated by SO₄⁼ and CI followed by HCO₃. Gypsum content varies from 0.09 to 3.47%, SAR values ranged between 1.63 and 71.76 indicating that these soils are non sodic to strongly sodic soils. The soils of this unit are classified as:

- 1- Typic Torriorthents, fine loamy, mixed, hyperthermic (profiles 3 and 4)
- 2- Typic Torriorthents, clayey over fine loamy skeletal, mixed, hyperthermic (profile 6).
- 3- Typic Haplosalids, coarse loamy skeletal over clay, mixed, hyperthermic, (profile 8).
- 4- Typic Haplosalids, fine loamy over coarse loamy, mixed, hyperthermic (profile10).

Statistical size parameters

Statistical measures (Folk and Ward, 1957) serve a guide in the explanation of the environment of deposition and agents of transportation. Data in Table 6 reveal that, the soils of playa, represented by profiles 1 and 2 have sorting values that ranged between 1.1 and 1.7 Q, indicating that the sediments are poorly sorted throughout the entire profile depths. This indictates that their sediments are transported and deposited under water action. Values of skewness indicate that all layers of the representative profiles are strong fine skewed and near symmetry in the top layer of profile 1.

These soils have a tail towards fineness. The kurtosis values ranged from 0.45 and 1.35Q, indicating that the sediments are meso kurtic, extremely lepto kurtic and platy kurtic. This leads to the suggestion that the soils are mainly formed under water action.

With regard to the soils of sabkha (profile 5), these soils constitute poorly sorted sediments in the surface layer and moderately sorted in the subsurface layer, this indicates that the surface layer is transported and deposited by water action, while the subsurface layer is transported and deposited under combined action of both water and wind. The sediments constituting profile 5 is fine and very fine skewed in the surface and subsurface layers, respectively. Graphic kurtosis indicates that the sediments constituting profile 5 is meso kurtic in the top layer and extremely leptokurtic in the subsurface layers.

Sorting values of the sand sheets showed that the sediments constituting profile 7 are well sorted in the top and deepest layers, sandwish a pair of poorly and moderately sorted in the middle layers. The well sorted sediments suggest that the surface and deepest layers are mainly transported and deposited by wind action, while poorly and moderately sorted sediments are transported and deposited by water or water and wind actions. Graphic skewness values in the sandy soils are coarse skewed in the surface layer and fine skewed in the subsurface and deepest layers, kurtosis of these sediments is extremely leptokurtic throughout the entire profile depths.

The obtained results of the peniplain soils (profile 9), show that the sorting values varied from 1.4 to 1.71 \circ indicating that the sediments of the studied soil profiles are poorly sorted sediments throughout the entire depth. This leads to suggestion that the sediments of these soils are transported and deposited by water action or weathered in situ. Values of skewness indicate that the uppermost surface layer is fine and strong fine skewed, while the deepest layer are coarse and strong coarse skewed. The kurtosis values indicate that the sediments of profile 9 are meso kurtic in the surface layer and leptok urtic in the deepest layers.

TABLE 6. Q values read from the cumulative frequency curves and grain size parameters of sand fraction in the studied soil profiles.

Prof	Depth	4	71.	36 -	02 -	31.	10-	70	200	503	Sorting	Sher	Shewiness	Ku	Kurtosis
9	ð	9	OT B	9	R B	9	108	R	7	9	class	SKi	class	Kg	class
	200 mm			6 777			N. W. 150	Paya	200000000000000000000000000000000000000		00000	2200000			2000/2000
	0:30	1	1	0.4	2.0	4.1	4.2	43	2.07	1.7	P.S	90'0	N.symm	0.48	MK
	30-60	- 6	,	- 2	80	4.0	4.0	4.4	1.60	1.67	P.S	0.62	s f.sk	0.45	Ж
	08-09	r	-		20	1.3	8.1	43	680	1.10	S'd	0.45	s f.sk	138	N.T.E.
89	89-150	ä	4		0.5	1.3	4.0	43	1.77	1.65	PS	0.76	sfsk	1.35	ELK
	01-0	î	•	10	1.4	3.9	4.1	43	183	1.88	PS	033	s f.sk	0.46	H
7	10.80	333	S	0.5	4.0	4.2	4.3	45	2.77	1.7	P.S	-0.82	s.csk	0.30	MK
				5 10000	1000	10.000.01	10000	Sabitha	2000000	0.0000	0 6000 00	20000000	Control of the Contro	20000000	S SPECIAL S
-	01-0	î	1	0.5	1.7	4.2	4.3	4.4	2.0	1.74	P.S	0.22	fsk	0.49	MK
_	10-40	- 00	,	0.00	- 2	0.3	1.1	4.1	037	60	M.S	0.33	s f.sk	5.80	ELK
							San	Sand Sheets							
989	0-15	0.1	9.0	11	18	2.5	3.0	4.1	0.7	0.25	ws	-0.12	-csk	1.83	ELK
L م	158	,	,	10	60	120	1.80	42	0.77	1.04 1.04	Sd	0.4	s f.sk	8	ELK
	258	ŝ		0.2	90	8.0	1.0	19	0.43	对 (2)	M.S	8.0	N symm	130	ELK
	85-110	2	•	0.1	0.4	0.7	0.8	12	0.40	80	W.S	0.17	fsk	0.82	ELK
							f	Peniplain.							
173	0-15	-	0	0.5	1.6	4.0	4.1	4.4	190	1.69	P.S	0.25	fsk	0.52	MK
	15.55	4	.00	0.3	12	1.7	3.0	43	1.40	1.40	P.S	0.32	s f.sk	1.36	M TH
	55.75	5	6.0	1.1	2.5	4.2	4.4	45	7.20	17.1	S'd	-0.16	c.sk	0.60	YI
L					0				000						

6 = sorting coefficient MZ = (a 16+ a 20+ a 84)3
(MZ)= mean size 61=[[a 84-a 16)/4]+ [a 95-a 5)/6.6)
(Ski)= skewness Ski=[[a 16+Q84)-2 a 50/[2(a 84-a 16)]+[(Q5+Q95)-2 a 50/[2(a 95-Q5)]
(KG)= kntosis KG= (Q95-Q5)/[2/44(Q75-2Q25)]

2.5	د
	F
2	50.0
2 2 11 11 11	. O.

Prof	Depth	4	71 -	7	02.	ř	- 62	70	24.0	Sor	Sorting	Shew	Shewinees	Ku	Kurtosis
No	Ę,	6	9	9	00.0	6	į	25.8	714	ō,	class	SKi	class	Kg	class
	. 3857787	20 W W 0	WW W	WWW W	A 40.00 II	2010	(Plain)	(Plain) Cultivated area	area	S 28 11 85 8	0.000	200000000000000000000000000000000000000	3 West 1	Wakes.	20.00
	010	5.0	8.0	60	1.8	4.0	4.1	4.3	0.23	1.40	Sd	0.35	s f.sk	05'0	MK
c	10-3	0.2	0.7	8.0	1.7	4.1	43	4.4	220	154	PS	037	sf.sk	0.52	MK
1	35-65	0.4	9.0	60	1.7	4.1	4.2	4.4	197	151	PS	037	s f.sk	0.51	MK
	65-95	0.4	9.0	0.7	1.2	3.7	4.1	4.3	197	094	SW	0.62	sf.sk	0.53	Ħ
	0.25	0.1	0.7	8.0	1.5	35	4.1	4.4	2.1	1.50	PS	0.44	sfsk	0.65	V.L.K
्र	2.50	0.4	1.0	1.2	1.7	40	4.1	4.3	227	137	PS	0.44	s f.sk	0.57	Ħ
t	06-03	740	72.0	0.2	1.1	4.0	4.1	4.3	1.73	1.67	Sd	0.47	s f.sk	94.0	PK
	90-130	-	1	243	1.5	4.0	4.2	4.4	190	1.72	PS	030	s f.sk	0.45	PK
2	0.25	6.0	1.2	1.4	4.0	42	43	4.4	3.17	1.40	PS	-0.81	s.c.sk	0.60	IK
w	25-65	0.5	1.2	13	1.6	4.0	43	4.4	237	137	Sd	0.59	sfsk	6X:0	H
G .	65100		0.5	9.0	1.5	40	4.1	4.4	203	157	PS	0.59	sfsk	0.49	MK
	0-15	1	1.2	1.5	4.1	42	43	4.4	320	1.44	PS	-0.87	s.c.sk	0.67	V.L.K
	15.45	1	1.1	1.4	3.1	35	3.7	4.1	2.63	127	PS	-0.33	s.c.sk	98.0	ELK
00	45-70		8.0	1.4	1.8	42	43	4.4	230	154	PS	031	s f.sk	25.0	V.L.K
	70-100		1.0	1.2	1.6	40	4.2	4.4	227	1.47	PS	0.45	s f.sk	0.64	V.L.K
	100-120		9.0	1.2	1.9	25	4.2	4.4	223	1.57	Sd	0.21	fsk	1.38	ELK
	0.15	1.0	1.6	1.9	4.1	43	4.4	4.5	337	123	PS	-0.38	sf.sk	65.0	Ħ
	15-35	0.5	1.2	1.3	1.8	4.1	4.2	4.4	2.40	134	PS	0.47	s f.sk	0.57	IK
9	35-30	(2)	-	1.1	1.7	4.1	4.2	4.4	197	1.72	Sd	0.21	fsk	09'0	IK
	8.8		0.4	60	1.5	20	4.0	4.3	197	155	PS	035	sf.sk	1.60	ELK
	70-100	2	0.7	1.0	1.5	19	2.6	4.2	1.60	1.11	PS	0.22	fsk	1.91	EL.K
61		3				ИS	3					KG	1+30000		
W.S=W	U.M.S= U.b.11 conted	7				ि जि	E.c.s=Extreme by course skerned	by coarse sh	ene d			V.P	V.P.K=veryphtybutic	yburtic	
M.=Mo	M. = Moderately sorted	þa				S	S.C. = strongly coarse shewed	course deep	hed			PK	P.K= Platyburti: M.K= Meso Kurti	:	
M.W.s=	M.W.s=Moderately well sorted	wall sorted	202			3	C.S= Course shewed	kewed				LK	L.K= Lepto Kurtic	l a	
VP.S=V	VP.S=Verypoorbysorted	orted				Ζě	N.S= Near symmetrical PS= Win Green	nmetrical				E.L	E.L.K= Extremely lepto burtic	ly lepto bur	Ä
						1	Po- Fire onewed	Med.							
						되	E.F.s=Strongly fine skewed	Time shere	Ð						

Egypt. J. Soil Sci. 56, No.1 (2016)

Regarding the cultivated plain soils which are represented by profiles 3, 4, 6, 8 and 10, data in Table 6 reveal that the standard deviation (sorting) values are in the range of 0.94 to 1.72 \infty, the distribution of sorting of these values is almost bimodal representing the poorly sorted sediment, except for the deepest layer of profile 3, which is moderately sorted. The poorly sorted nature of sediments suggests that the soils are mainly transported and deposited by water action. Data in Table 6 reveal that skewness values are widely different and ranged from -0.87 to 0.62 \(\sigma\) representing bimodal distribution of skewness values indicating mixing of two modal fractions, i.e., fine and coarse sand in this case. The kurtosis (KG) is distributed between values of 0.45 and 1.91 ♥ representing lepto and very leptokurtic, meso kurtic and platy kurtic. The somewhat normal distribution of (KG) values corresponds to very low-energy environment and very high modification of grain size. In conclusion, it is clear that the sediments forming the studied soils are mostly deposited under aqueous or both water and wind actions. Furthermore, the available data of the statistical size parameters reveal that the studied soil profiles are formed of non- uniform parent materials. However, the stratified condition observed in these profiles is mostly attributed to depositional variations and / or to depositional regime.

Land suitability for irrigated agriculture

a) Current land suitability

By matching between the present land properties and their rating outlined by Sys *et al.* (1991), the current suitability of the studied area was estimated. This aims to provide a method for suitability evaluation of irrigation water based on the standard physical and chemical characteristies of soil properties and their symbols used as follows: Topography (t), wetness (w), soil texture (S_1) , soil depth (S_2) , $CaCO_3$ (S_3) , gypsum (S_4) and salinity and sodicity (n).

The irrigation suitability index (Ci) is calculated as :

$$Ci = t \times \frac{w}{100} \times \frac{S1}{100} \times \frac{S2}{100} \times \frac{S3}{100} \times \frac{S4}{100} \times \frac{n}{100}$$

the order S: suitable for irrigation (Ci is more than 25).

classes S_1 : Ci is more than 75

S₂: Ci is between 50 and 75

S₃; Ci is between 25 and 50

Order N: suitable for irrigation (Ci is leas than 25) classes N_1 : with limitations which can be corrected N_2 : with limitations which cannot be corrected.

Capability index for the studied soil profiles are presented in Table 7 and Fig. 2. The obtained results reveal that estimated current land suitability sub classes are given as follows:

Egypt. J. Soil Sci. 56, No. 1 (2016)

Soils of grade (S_2) (moderately suitable)

The soils of this grade are represented by three soil profiles (3, 4 and 6) which belong to cultivated plain soils. Suitability index (Ci) values ranged from 56.97 to 72.68. These values indicate a moderately suitable class. the soils have a moderate intensity of texture.

Soils of grade (S_3) (marginally suitable)

This subclass represents the soils of playa (profile 1), peidmont soils (profile 9) and cultivated plain soils (profiles 8 and 10). Suitability index values (Ci) varied from 25.97 to 43.5. These soils are affected by moderate intensity of texture class, and moderate to severe intensity of salinity and alkalinity.

Soils of non suitable (N_1)

The soils of this grade are represented by profiles 2 (playa), 5 (sabkha) and 7 (sand sheets). These soils have suitability index values less than 25 and affected by severe to very severe texture classes; moderate to severe salinity and alkalinity, soil depth and calcium carbonate contents.

As a general, three different limitations are recognized. The dominant limitation is texture class, the minor limitations are salinity and alkalinity levels and calcium carbonate contents.

Potential land suitability

Potential suitability of the studied soils as illustrated in Table 7 and Fig. 3 indicates that the existing two orders (S) and (N) and two classes S_2 and N_2 . The detailed description of these classes is as follows:

S₂: Moderately suitable class represents soils of playa soils (profile 1), peniplain (profile 9) and cultivated plain soils (profiles 3,4,6,8 and 10). The increase in such value is due to the leaching process of salinity and reclamation of alkalinity limitations. Suitability index (Ci) of this class varies from 64.13 to 75.0. Soils of this class have a slight to moderate intensity of texture and slight intensity of calcium carbonate percent. The cost of these land improvements should be taken into account during economic analysis.

N₂: Not suitable

This suitability class represents the soils of playa (profile 2), Sabkha (profile 5) and sand sheets (profile 7). The suitability index (Ci) of this class is less than 25. soils of this class have very severe to severe intensity of texture class and slight to severe intensity of soil depth.

The application of chemical and organic fertilizers, green and organic manures and soil conditioners increase the values of capability index.

TABLE 7. Land suitability classes for the studied soil profiles.

Profile No.		graphy t)	Wet (v	ness v)	,		sical oil cteristi	ics	Alka	nity& linity n)	inc	bility dex Ci)	cla	ability ass Si)
]	Cs	Ps	Cs	Ps	S1	S2	S3	S4	Cs	Ps	Cs	Ps	Cs	Ps
							Playa							
1	100	100	100	100	75	100	95	100	40	100	28.5	71.25	S 3	S2
2	100	100	100	100	25	55	95	85	80	100	8.88	11.10	N1	N2
						S	Sabkha	a						
5	100	100	50	100	50	55	95	80	100	100	16.36	20.9	N1	N2
						Sa	nd She	ets						
7	100	100	100	100	25	90	100	100	58	100	16.98	22.5	N1	N2
						P	enipla	in						
9	90	100	100	100	75	90	95	100	45	100	25.97	64.13	S 3	S2
					(P)	lain) (Cultiva	ited ai	ea					
3	100	100	100	100	85	90	95	100	98	100	71.22	72.67	S2	S2
4	80	100	100	100	85	100	95	90	98	100	56.97	72.68	S2	S2
6	100	100	100	100	85	90	95	100	100	100	72.62	72.68	S2	S2
8	100	100	100	100	75	100	100	100	58	100	43.5	75.0	S3	S2
10	80	100	100	100	75	90	95	80	80	100	29.75	64.13	S3	S2

 $S1 = Texture, S2 = Soil \ depth \ (cm), S3 = Calcium \ carbonate \ status \ and \ S4 = Gypsum \ status.$ $N = suitable, S1 = High \ suitability, S2 = Moderate \ suitability \ and \ S3 = Limitation \ suitability.$

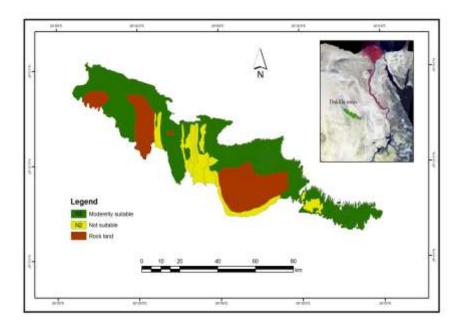


Fig. 2. Current Soil suitability of studied area.

Egypt. J. Soil Sci. 56, No. 1 (2016)

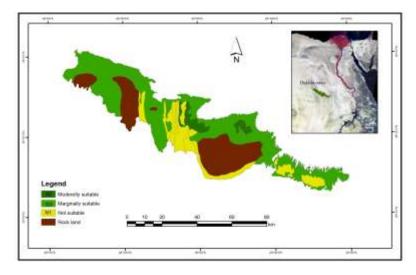


Fig. 3. Potential suitability of the studied area.

Land suitability for specific crops

Land suitability classes for several crops were predicted on the bases of matching land qualities and characteristics and crop standard requirements using the parametric land index as mentioned by Sys *et al.* (1991 and 1993). The land suitability for selected crops (field crops, vegetables and fruit trees) were investigated. The results of current and potential land suitability are shown in Table 8.

Current suitability

The results indicate that all the studied soils of playa, sabkha, sand sheet, peniplain and cultivated area (profile 8 and 10) are not suitable for all the studied crops, except for some scattered areas developed on cultivated plain (profile 3,4 and 6) for all the studied crops.

Potential suitability

- 1- Playa is moderately suitable (S_2) for olives and grapes; marginally suitable (S_3) for wheat, sunflower, groundnut, barley, tomato, potato, green pepper, citrus and palm.
- $\widehat{2}$ Sabkha is highly suitable (S_1) for groundnut, and not suitable (N_2) for the rest of crops.
- 3- Sand sheets are marginally suitable (S_3) for wheat, tomato, potato, green pepper and citrus; while being not suitable (N_2) for sunflower, groundnut, barley, onion and palm.
- 4- Peniplain is highly suitable (S_1) for potato and grapes; moderately suitable (S_2) for wheat, sunflower, groundnut and olives; marginally suitable (S_3) for barley, onion, tomato, green pepper, citrus and palm.
- 5- Cultivated plain is highly suitable (S_1) for groundnut, potato and grapes; moderately suitable (S_2) for wheat, sunflower, barley, onion, tomato, green pepper, olives and palm; marginally suitable (S_3) for grapes.

TABLE 8. Suitability classes of the studied soil profiles for specific crops.

		Field	Field crops				Vegeta	Vegetable crops	sc			Frui	Fruit crops		
пот Ч .оИ	Crop	Suita	Suitab ility index	Suitability class	billity ss	doxo	Suita	Suitability index	Suitability class	b ility ss	Crop	Suitabili index	Suitability index	Suitability class	o ility ss
		၁	ď	2	P		၁	- J	Э	ď		С	P	С	Ь
000	50 SOON 02	0011070000 - A	2517 W. 244.0 4 7 10 4	K17460	0-20-00-03	0.000	Playa	12 (250) (20 m)	Call Man	2-242.03-0	0.000	0.0000000000000000000000000000000000000	30000	3 0 236	(1) (2) (2) (3)
77	Wheat	7.48	85.0	z	S1	Orion	8.07	0.56	N	S1	Olives	19.4	100.	N	S1
	Surflower	5.05	80.7	z	S1	Tornato	5.76	72.0	z	S2	Grapes	16.2	95.0	z	S
	Groundrut	15.5	839	z	S1	Potato	12.8	950	z	S1	Citrus	5.27	65.8	z	S
	Barley	10.7	769	z	S2	G. pepper	8.64	72.0	z	S2	Palm	6.5	48.0	Z	ន
2	Wheat	3.83	212	Z	N2	Onion	5.80	34.2	z	S3	Olives	28.5	60.0	S	SZ
ij	Sunflower	3.20	160	Z	Z	Tornato	1.92	12.0	Z	NZ	Grapes	7.13	30.0	z	S
	Groundaut	4.54	21.6	Z	NZ	Potato	2.88	16.0	Z	NZ	Citrus	4.08	24.0	Z	Z
	Barley	15.3	202	N	NZ	G. pepper	18.4	36.0	Z	S3	Palm	3.60	18.0	N1	N2
	30			2	3	(9.56.)	Sab kha	ن د		28			200		50% 13
2	Wheat	1.90	10.0	Z	NZ	Onion	1.36	7.19	Ξ	ZZ	Olives	3.36	10.8	N	Z
9	Surflower	0.85	4.5	Z	ZZ	Tornato	1.72	2.30	Z	Z	Grapes	7.85	15.0	Z	Z
	Groundnut	1.96	75.0	z	S1	Potato	3.53	18.0	Z	Z	Citrus	0.39	2.06	Z	Z
	Barley	12.5	19.0	Z	NZ	G. pepper	0.75	3.71	Z	Z	Palm	235	13.1	Z	Z
						Ů.	Sand sheets	ets							
7	Wheat	2.37	25.0	Z	S3	Onion	2.43	18.0	N	ZZ	Olives	28.5	0.09	S	S2
	Sunflower	2.06	162	Z	Z	Tomato	4.32	320	z	S3	Grapes	9.8	20.0	z	S
	Groundnut	4.79	37.6	z	S3	Potato	3.41	26.7	z	S3	Citrus	4.51	25.1	z	S
	Barley	7.89	23.7	Z	Z	G. pepper	2.82	313	z	S3	Palm	3.27	16.4	Z	Z

Egypt. J. Soil Sci. 56, No. 1 (2016)

5,01	22	S	S3	S3	- WA - W	22	S	83	\$2	S1	SI	22	S2	S3	SI	S3	S2	S1	S	Z	Z	S3	S	83	S
	z	z	z	z	50000000	SZ	S	z	z	22	S	S	S	S3	S	S	S	z	z	Z	Z	z	z	z	z
	72.0	0.88	27.6	32.9	060.0000	0.09	95.0	545	65.1	80.0	76.0	53.6	51.5	0.09	95.0	47.6	66.5	76.5	95.0	8.82	13.5	48.0	76.0	37.9	8.14
2.5	8.64	14.1	3.12	4.44		0.72	68.4	16.	21.6	0.89	58.1	28.9	46.5	38.4	57.0	45.3	63.1	9.48	13.3	98.0	1.82	14.4	12.9	4.17	5.95
70	Olives	Grapes	Citrus	Palm	19228	Olives	Grapes	Citrus	Palm																
93	S	S	S	S	90 30000000	S1	S2	S	S2	22	S	S	S	S1	S	S	SI	N2	NZ	S	N2	SZ	S	S	S
	z	z	z	Z		N	S3	S	S3	S2	S2	S2	S2	S1	S2	S	S2	N	Z	z	N	z	z	z	z
_	39.6	39.7	79.5	36.8	hin	38.8	61.8	94.0	70.9	64.0	74.7	74.4	66.4	90.2	61.9	100	83.0	11.0	17.8	63.0	11.6	74.5	65.4	76.0	57.3
Penip bi	6.73	3.18	12.3	4.42	Cultivated p	17.7	48.5	37.6	38.3	915	52.1	59.5	55.1	9.96	55.7	72.0	66.4	1.76	2.85	13.3	1.35	11.9	8.11	9.12	6.87
	Onion	Tomato	Potato	G. pepper	Cub	Onion	Tomato	Potato	G. pepper	Onion	Tomato	Potato	G. pepper	Onion	Tomato	Potato	G. pepper	Onion	Tomato	Potato	G. pepper	Onion	Tomato	Potato	G. pepper
	S2	S2	22	S3		S1	S	S	S1	22	S	SI	\$2	1	S	S	S1	22	S	S	S2	S2	S	S3	S2
1 23	z	z	z	Z	- TOOLS - 10	SS	S2	S2	Z	S3	S3	S2	\$2	1	S2	S2	S2	Z	z	z	z	Z	z	z	S3
	76.9	62.1	62.0	58.3		85.0	9.89	94.0	83.3	68.0	64.6	80.0	9.99	1	72.3	100	85.0	68.0	55.0	78.4	9.99	68.4	64.6	8.0	68.0
	10.7	6.52	8.29	10.7	0.0000000000000000000000000000000000000	8.89	54.9	56.4	8.16	46.3	43.9	0.89	61.9	1	50.6	0.09	72.3	11.3	5.37	9.72	11.9	9.57	15.5	10.0	25.1
5	Wheat	Surflower	Groundhut	Barley	31.38	Wheat	Sunflower	Groundaut	Barley	Wheat	Sunflower	Groundaut	Barley	Wheat	Sunflower	Groundnut	Barley	Wheat	Surflower	Groundnut	Barley	Wheat	Sunflower	Groundaut	Barley
	6	-			200	8				4			0.0	9			8	00			2002	10			

Egypt. J. Soil Sci. 56, No.1 (2016)

Crop Water requirements

Table 9 reveals that, the crop water requirements of some selective crops, which are calculated by using climatic data and Crop Wat program. The ETo (evapotranspiration) was estimated using Penman- Monteith equation, after Allen (1998). The crop water requirements were 701.1, 921.0, 740.4, 834.3, 669.0 570.0 640.5, 2085.0, 625.2, 387.6, 1722.0, 1346.1, 373.0, 702.3, 505.2, 595.8, 645.3, 606.1, 466.4, and 602.1 mm/s. for tomato (135 day), tomato (180 day) maize grin (125 day), cotton, sorghum, egg plant, peper, banana, flax, barley, citrus 1, citrus 2, pea, peanut, lentil, cucumber, sunflower, onion/ dry, wheat and suger beet, respectively.

Data obtained reveal that consumptive use of crops is considered high, due to the highness of evaporation. It represented with an average of 500, 800 and 1800 mm/s for vegetable, field and fruit crops, respectively. So, it is very important to apply suitable irrigation systems such as trickle or sprinkler, where the soil physical properties of the studied physiographic units have good correlation with micron – relief (Zayed and Ashoub, 2000).

Evaluation of irrigation waters sources

In El- Dakhla Oases, the wells and springs are the main sources for irrigation purposes where the water of the springs that flow to the surface under hydrostatic pressure. Table 10 illustrates irrigation water classification of some ten selected springs and wells at El- Dakhla Oases according to USDA (1991), where (C₁-S₁) class represents water of West El Mowhob area, El- Kalamon and El- Mowhob village this class of can be used to irrigate most crops in most soils and there are no limiting factors. Water of class (C2-S1) represents the wells and springs of El-Zaiate village, Mut, El- Bashandy Village, and El- Mowhob. The class of water is moderately saline and non alkaline. Water of El- Zaiate well (No.10) which is classified as (C₃-S₁) has high salinity non alkalinity hazards. On the other hand, water of Bathor and El- Zaiate well (No.2) which is classified as (C_4-S_4) has very high salinity levels and very high alkalinity hazard. This water cannot be used for irrigation of the soils, due to increasing problems of salinity and sodicity in these soils. It is advised to mix the water of El- Zaiate well (No.2) and Bathor spring water with other low salinity and alkalinity values to get over these constraints.

TABLE 9. Crop water requirements for specific crops in El Dalshla Oases.

	rag'	Feb.	Mar	Apr.	May.	June	July.	Aug	ġ	ğ	Nov.	De.	W/S
ETo (mm/day)	351	33	450	5.40	627	7.01	690	6.64	596	529	454	398	
		Secretary 19	0 - ACCAMACAN	8000000	Tomato (135 day)-1	200	000		200		8 8	
KCper month	L	0.45	0.75	950	1.15	0.85							
ET crop nan/day		1.30	337	5.13	721	883					500		
ET crop per month		21.0	Lioi	153.9	2163	1788			Γ				701.1
					Omato (Comate (180 day)-2							
		0.45	690	880	1.15	1.15	0.83			10.5			
		1.30	3.11	4.75	721	8.06	5.87						
50		210	93.3	142.5	216.3	241.8	176.1			2.5	300		9210
104	213	1000000	4000000	N.	laize gra	Maize gram (125 day	4						S. September 1
KCper month		35					对 0	129	115	0.85	0.23		
ET crop mm/day	-						3.73	856	685	450	104	200	
ET crop per month							1119	2568	205.5	135.0	31.20		740.40
					ථි	Cotton							
KCper month						0.45	0.75	0.8	060	0.83	0.75	0.25	
ET crop mm/day		3	30			3.15	5.18	531	536	4.4	3.41	1.00	6,000,000,000,000
ET crop per month						576	155.4	159.3	160.8	132.0	102.3	30.0	8343
			83	200000000	Sor	Sorghum	To seems of	3000000	0.00	8		8 9	
KCper month	8	8	8 8	0.48	080	01.1	080	0.22		8 8	8	8	
ET crop nan/day		8		259	502	166	5.52	1.46		8 8	500	3	200700700000000000000000000000000000000
ET crop per month	8	(41)	1000	77.7	130.6	231.3	165.6	43.8			600		6690
					Egg	Eggplant							
K Cper month		0.45	0.75	1.02	1.04	LZ'0	103			5	POS.	33	
ET crop nun/day		1.71	338	551	6.52	68:1							
ET crop per month		S13	101.4	165.3	195.6	128	00	3		8 8	18	18	503
	800	0.0000000000000000000000000000000000000	17000000000	8 40 22 23 24 2	Pe	Papper							Patrat Salas
K Cper month			020	080	1.15	1.08							
ET crop nun/day	3	53	225	432	721	151							50/00/00/03
ET crop per month			67.5	129.6	216.3	1722							540.5

Egypt. J. Soil Sci. 56, No.1 (2016)

	M.M.		
. Transaction	SOLIMIAN,		
ં	л		

Months	<u> </u>	Fep.	Mar	Apr.	May.	June.	July.	Aug.	Sep.	Oct	Nov.	Dec.	5/M
ETo (mm/day)	3.51	3.3	450	5.40	627	7.01	9	6.64	380	5.29	4	398	
1000	0.0000000000000000000000000000000000000	SUBSECTION OF	SOUTH	22 CANADAWA	Bar	Валала	CONTROLEY C	2000 0000	W. ALMANA	0.000,000	CONTRACTOR	OTENSION I	
KC per month	0.70	0.75	080	0.75	060	1.00	1.10	1.20	130	1.40	8.	1.60	
ЕТ стор тт/дау	2.46	2.84	3.60	4.05	5.64	7.01	8	197	7.75	7.41	18.9	637	
ET crop per month	73.8	852	108.0	121.5	169.2	210.3	227.7	29.1	232.5	2223	2043	191.1	20820
					Œ	Flax							
KC per month	88'0	1.15	960	0.75			88				0.45	0.75	
ЕТ стор тт/дау	3.09	4.36	432	4.05							2.04	298	
ET crop per month	92.7	1308	129.6	121.5		333				255	612	89.4	625.2
					æ	Barley							
KC per month	18'0	6.23	Γ	Γ						0.18	18.0	1.15	
ET crop.mm/day	2.84	0.87								960	3.88	458	100000
ET crop per month	85.2	26.1								283	110.4	137.4	387.6
1000	COMPANY OF	200000000000000000000000000000000000000	WC-child	2000 STORY 12	Gibrus -	1-2	0.000000	2002-2005	CONTRACTOR IN	CONTRACT C	CONTRACTOR OF	0.00000	
KC per month	60	60	60	60	60	60	60	60	60	60	60	60	
ЕТ стор тт/ day	3.16	3.41	4.05	486	5.64	6.31	6.21	293	289	4.76	4.09	358	
ET crop per month	8.88	E 201	121.5	145.8	169.2	883	1863	1.671	160.8	142.8	122.7	107.4	1722.0
					5	Cibrus - 2							
KC per month	60	20	0.7	0.7	0.7	6.0	60	60	60	0.3	60	0.7	
ET crop mm/day	2.46	2.65	315	378	4.40	4.91	83	4.65	4.17	3.70	3.18	2.79	
ET crop per month	73.8	562	94.5	113.4	132.0	1473	144.9	1395	125.1	117.0	95.4	83.7	1346.1
					Ы	Pea							200000000000000000000000000000000000000
KC per month			Γ	Γ						0.63	1.02	1.10	
ET crop mm/day	200	8			88		8		8 3	3.33	4.72	438	2743536
ET cronner month										JUUL	4 6	131.4	3780

Egypt. J. Soil Sci. 56, No. 1 (2016)

Months	lan.	Fep.	Mar	Apr.	May.	June.	luly.	Aug	Sep.	Oct	Nov.	Dec.	W/S
ETo (mm/day)	3.51	3.79	450	5.40	627	7.01	069	6.64	286	5.29	4.54	398	200000000
00000		100		0.000	Pea	Peamut					2		
KC per month	22	8 3		0.23	0.75	160	1.05	0.38					eșe
ET crop.mm/day				124	4.70	638	724	388					
ET crop per month	200	3 3		37.2	141.0	191.4	217.2	115.5					7023
					P7	Lentil							
KC per month	1.1	90	0.25							0.23	092	1.05	
ET crop mm/day	3.86	2.27	1.13							1.22	4.18	4.18	100
ET crop per month	1158	1.88	33.9			22.000				366	125.4	125.4	5052
	100000000	S2000-000-00	00000000	8	Chris	Систирет	0:		8	1000000	0150 H000 S	Series de Calebra	
KC per month		0.49	0.75	1.15	1.04	0.27							
ЕТ стор тт/ дау		1.86	338	621	6.52	189							0000000
ET crop per month		855	101.4	186.3	195.6	26.7							5958
0.00					Sunflower	OWET	0. SPERIOR SE		2000000	10000000			900
KC per month	33	8 2			Same	0.29	0.75	1.08	26'0	0.28			
ЕТ стор тт/ day						2.03	5.17	7.17	5.66	1.48			
ET crop per month	200	3 3				609	155.1	215.1	169.8	44.4			6453
					Omion	Onion/dry							
KCper month	1.05	880	0.43			88.88			000	1.03	0.88	0.43	100
ЕТ стор тт/ day	3.68	3.33	193	8 8	8 2		8		8	5.55	4.00	17.1	20
ET crop per month	110.4	0001	57.9		S	a de la contraction de la cont			8 3	1665	120.0	51.3	606.1
	220000000000000000000000000000000000000	35905/4645S G	0.00000000	00 20	Wh	Wheat	90 80	7	00 0	900 600 000	\$15000000000000000000000000000000000000	000 a 25 a 50 a 50 a 50 a 50 a 50 a 50 a	200000000000000000000000000000000000000
KCper month	80	g 0								0.55	095	1.15	
ET crop mm/day	2.81	28'0							250	2.91	431	4.58	575 755 755 755
ET crop per month	843	36.1								873	129.3	137.4	464.4
		200000000000000000000000000000000000000		3	Suger beet	-beet	2	b	0.000.00		2000	0.008.00.00	
	D 74	0.35			Same of S	100000000000000000000000000000000000000			0.23	80	86 U	511	5
								1	1	-			

BLE 9. (

Egypt. J. Soil Sci. 56, No.1 (2016)

		F	L	2.84	ŀ	F	F	F	r		137		L	L	L
Service State of Services	3		28.0	852		10000	8			1	41.1	1369	1385	137.4	4 602.1
ABLE 10. Chemical composition of irrigation waters and its classes of some selected wells and springs.	hemical	compos	tion of it	rigation	waters ar	nd its cla	ses of s	ome se	ected we	lls an	dsprim	30			
Location	Prof.	j <u>e</u>	SAR	- AK	Soluble Cations (meq/I)	/bauc) suo	e	(m	(neq.1) Soluble Anions	le Ani	91.0	TDS (ppm)	EC dS/m	Ηď	*CW.C
				తే	Mg	Na	К	ζΩ	юэн	ប	SQ.				
West El- Mowhob	-	0.025	1.12	82	0.52	1.14	0.27	16	1.23		0.26	217.6	¥.0	6.42	C1 - S1
El-Zaiat	2	0.031	26.65	51.28	343.7	374.5	1.53	i	6.15		6749	37952	893	7.14	C4 - S4
El- Mowhob & El-Zaiat	6	6100	1.83	6.41	223	3.81	1.14	34	0.92		13.09	748.8	1.17	6.50	C2-S1
Mut	4	0.044	1.38	5.13	1.04	2.79	0.41	Ŷ	1.84		937	428.8	29'0	99'9	C2-S1
El-Kalamon	5	0.025	030	5.12	1.05	05.0	0.55	×	1.23		299	140.8	0.22	7.70	C1-S1
El- Bashandy	9	15.0	0.35	33.45	1.49	1.68	0.50		1.38		1.77	339.2	62.0	029	C2-S1
El-Mowhob	7	0.019	. නැ	5.12	1.05	1111	0.52	5	1.54		2.28	204.8	0.32	699	C1 - S1
Bathor spring	8	0.13	10.4	1292	11.82	598	1.96		1.54		10.56	4390.4	98'9	422	C4 - S2
El- Mowhob	6	0.18	96'0	2.13	1.04	1.21	0.50	35	1.69		0.19	3008	0.47	634	C2-S1
El-Zaiat	10	0.15	2.80	7.69	7.12	1.80	1.86	3	139		630	1408.0	2.20	526	C3-S1

00

References

- **Abu El-Izz, M.S.** (2000) *Landforms of Egypt*, The American Univ., Cairo Press, Egypt, p. 282.
- **Allen, R.** (1998) "Crop Evapotranspiration Guidelines" for computing crop water requirements, FAO Irrigation and Drainge paper No. 65.Rome, Ittaly.
- **Attia S.H.** (1970) Subsurface Geology of El -Dakhla Oasis. *M. Sc. Thesis*, Faculty of Science, Cairo University.
- **CLAC** (2010) "Central Laboratory for Agriculture of Climate . Agic. Res. Center, Giza, Egypt.
- **Egyption Metrological Authority (2010)** *Climatic Atlas of Egypt*; pubished by Ministry of Transport Arab Republic of Egypt.
- **FAO** (2006) Guideline for Soil Description "4th ed FAO, Rome, Ittaly.
- Folk, R.L. and Ward, W.C.A. (1957) Brazos River bar, a study in the significance of grain size parameters. *J. Sed. Perol.* 27, 3-8, 3-26.
- **Hermina, M.** (1967) Geology of the nothwestern approaches of Kharga Oasis. *Geol. Surv.* Cairo, Egypt, 44, 87 p.
- Munsell (2010) Munsel Soil Color Charts, Baltimore, Maryland, USA.
- Said, R. (2000) *The Earth Science*, Hurbe and Raw Publishers, New York and London, 814.p.
- Said, R. (1962) The Geology of Egypt, Elsevier, Amsterdam, the Netherlands; 377p.
- **Shata, A.A.** (1959) "Geological problems related to the groundwater supply of some desert areas of Egypt". *Bull. Soc. Geogr., J. Egypt,* T. 32, 247-263.
- Sys, C. (1991) Land Evaluation parts I and II Lecture Notes., Gent. Univ., Gent, Belgium.
- Sys, C., Ranst, E., Van Debaveye, J. and Beernaer, T.F. (1993) Land Evaluation part III "Crop Requirements", Agric, Public 7, Gest Adm for Dev. Coop., Brussels, Belgium.
- **USDA** (2004) "Soil Survey Laboratory Methods Manual", Soil Survey Investigation Report No. 42; version 4.0 November, 2004.
- USDA (2010) Keys to Soil Taxonomy. 11th Edition. USA.
- **Zayed, A.M.A. and Ashoub, T.M. (2000)** Influence of soil micro relief on some soil physical properties. *Egypt.J. App. Sci.*, **15** (7), 378-384.

(Received 11/6/2014; accepted 27/12/2014)

Egypt. J. Soil Sci. 56, No.1 (2016)

دالة تقييم صلاحية أراضي الواحات الداخله للزراعه _ مصر

محمود سليمان محد

معهد بحوث الأراضي والمياه والبيئه - مركز البحوث الزراعية E-mail:mahmoudaldemelawi@hotmail.com mahmoudeldemelawi@yahoo.com:

تقع أراضي الواحات الداخله بين خطي طول 30° $^{\circ}$ 28 $^{\circ}$ 20° شرقاً، ودائرتي عسرض $^{\circ}$ 20° $^{\circ}$ 20° شمالاً، وتمثل مساحاتها حوالسي 2000 كم $^{\circ}$.

وتشمل داله التقييم للمنطقه دراسة الوحدات الفيزيوجرافية للأرض، وتقسيم الأراضي، قياسات التوزيع الحجمي الأحصائي، نوعية وصلاحية مصادرالمياة للري، الأحتياجات المائية للمحاصيل المختاره والقدره الحالية والمتوقعه للأرض وصلاحياتها للزراعة.

وقد إستخدمت صورة القمر الصناعي (2010) مع النموزج الرقمي للإرتفاعات وتقنية المعلومات الجغرافية ثلاثية الأبعاد لإنتاج خريطة الوحدات الفيزيوجرافيه السائده وتقسيمها حتى مستوى العائله مايلى:

1) - أراضي البلايا: Playa

a-Typic Haplosalids, fine loamy over sandy skeletal, mixed, hyperthermic.

b-Duric Haplosalids, sandy skeletal, mixed, hyperthermic.

2) - أراضى السبخات: Sabkha

Lithic Gypsisalids, sandy skeletal, siliceous, Hyperthermic, shallow.

3) – أراضى الفراشات الرمليه: Sand Sheets

Calcic Haplosalids, sandy skeletal, mixed, hyperthermic, deep.

4) – أراضى أشباه السهول: Peniplain

Typic Haplosalids, clayey skeletal, hyperthermic.

Cultivated plain : أراضي الوديان المنزرعه) – أراضي

a- Typic Torriorthents, fine loamy, mixed, hyperthermic.

b-Typic Torriorthents, clayey over fine loamy skeletal, mixed, hyperthermic.

c-Typic Haplosalids, coarse loamy skeletal over clayey, mixed, hyperthermic .

d-Typic Haplosalids, fine loamy over coarse loamy, mixed, hyperthermic.

Egypt. J. Soil Sci. 56, No. 1 (2016)

وتوضح نتائج دراسة التوزيع الحجمي الإحصائي للحبيبات أن تلك الأراضي يسود بها التصنيف الرديء بدرجه كبيره مما يدل علي أن أراضي تلك المنطقة قد تكونت بفعل المياه أو بفعل المياه والرياح معاً ومن ثم عدم تجانس لمكونات مادة الأصل.

وقد أمكن تحديد القدرة الحاليه لصلاحية الأرض للزراعه الي ثلاث درجات وهي متوسطة الصلاحيه (S_2) – حدية الصلاحية (S_3) - وغير صالحه (N_1) وذلك بدرجات شده مختلفه لمحددات التربة. وبإجراء عمليات تحسين التربة المناسبة فقد تبين أن درجات الصلاحيه المتوقعه للأرض تنتمي الي متوسطة الصلاحية (S_2) وغير صالحه دائماً (N_2) .

وتشير النتائج الي درجة عدم الملائمه الحاليه (N) لزراعة بعض المحاصيل المختاره لتلك الوحدات الفيزيوجرافيه ما عدا بعض المناطق المتفرقه في الوديان المنزرعه حيث تؤكد صلاحيتها لزراعة تلك المحاصيل. ومن ناحيه أخري فإن نتائج درجات الصلاحيه المتوقعه لزراعة المحاصيل تختلف بناءاً علي مدي ملائمة الظروف المتوفره بين خواص التربة للوحدات الفيزيوجرافيه والإحتياجات المائيه للمحاصيل – حيث تمثل أراضي السبخات والوديان المنزرعه درجة صلاحيه عاليه (S_1) لزراعة الغول السهول والوديان المنزرعه درجات صلاحيه عاليه (S_1) لزراعة البطاطا والعنب – أما أراضي البلايا وأشباه السهول والوديان المنزرعه فإنها تمثل درجه صلاحيه متوسطه (S_2)

وتعتبرمياه الأبار والعيون الطبيعيه هي المصدر الرئيسي لمياة الري لأراضي الواحات الداخله- حيث تشير النتائج الي درجة صلاحيه عاليه (C_1-S_1) لمياه الري دون تسبب في أي أضرار للأرض والنبات في مناطق غرب الموهوب والكلامون – بينما تمثل درجة صلاحيه منخفضه جداً (C_4-S_4) مع وجود تأثيرات عاليه للملوحة والقلويه ضاره في مياه أبار الزيات وعيون الباثور مما يتسبب عنه أضرار بالغه لتلك الأراضي.

وتشير النتائج إلي إرتفاع قيم النتح والتبخر بتلك المنطقه حيث يمثل متوسط تلك القيم 500 ، 800 ، 1800 مم/الموسم لمحاصيل الخضراوات والحقل والفاكهه على الترتيب. لذلك فإن من الأهميه بمكان تطبيق إستخدام أنظمة الري المناسبه مثل الري بالرش والتنقيط تحت تلك الظروف.