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Abstract: In this study we consider a multiobjective integer linear stochastic 
programming problem with individual chance constraints. We assume that there is 
randomness in the right-hand sides of the constraints only and that the random 
variables are normally distributed. Some stability notions for such problem are 
characterized. An auxiliary problem is discussed and an algorithm as well as an 
example is presented. 
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1. Introduction 
Decision problems of stochastic or probabilistic optimization arise when certain 
coefficient of an optimization model are not fixed or known but are instead, to 
some extent, stochastic (i.e. random or probabilistic) quantities. 
In recent years methods of multiobjective stochastic optimization have become 
increasingly important in scientifically based decision-making involved in practical 
problems arising in economic, industry, healthcare, transportation, agriculture, 
military purposes and technology. We refer the Stochastic programming Web Site 
(2002) [10] for links to software as well as test problem collections for stochastic 
programming. In addition, we point the reader to an extensive list of papers 
maintained by Maarten van der Vlerk at the Web Site: 
http://mally.eco.rug.nl/biblio/SP list.html. 
In literature there are many papers that deal with stability of solutions for stochastic 
multiobjective optimization problems. Among the many suggested approaches for 
treating stability for these problems are listed in [3, 4, 8, 15]. 
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More recently, some papers for the author and others have been published in the 
area of stochastic. 
multiobjective optimization problems such as [9,10,12]. In [9], a solution algorithm 
is presented for solving integer linear programming problems involving dependent 
random parameters in the objective functions and with linearly independent 
random parameters in the constraints. The main feature of the proposed algorithm 
is based mainly upon the chance-constrained programming technique [11] along 
with the cutting-plane method of Gomory [14]. Saad in [10] reviewed theory and 
methodology that have been developed to cope with the complexity of optimization 
problems under uncertainty. The classical recourse-based stochastic programming, 
robust stochastic programming, and probabilistic programming have been 
discussed and contrasted. In addition, the advantages and shortcomings of these 
models are reviewed. Applications and the state-of-the-art in computations are also 
surveyed and several main areas for future development in this field are reported. 
Stability of solution in multiobjective integer linear programming problems is 
investigated in [12], where the problem involves random parameters in the right-
hand side of the constraints only and those random parameters are normally 
distributed. Some stability notions for such problems have also been characterized. 
This paper is organized as follows: we start in Section 2 by formulating the model 
of chance-constrained multiobjective integer linear programming problem 
(CHMOILP) and the solution concept is introduced. In Section 3, a parametric 
study is carried out on the problem of concern, where some basic stability notions 
are characterized for the formulated model. These notions are the set of feasible 
parameters; the solvability set, and the Stability Set of the first Kind (SSK1). 
Moreover, an algorithm is described to determine the (SSK1) for the (CHMOILP). 
In Section 4,   an example is provided to illustrate the developed results. Finally, in 
Section 5, some open points are stated for future research work in the area of 
stochastic multiobjective integer optimization problems.  
2. PROBLEM STATEMENT AND THE SOLUTION CONCEPT  
The chance-constrained multiobjective integer linear programming problem with 
random parameters in the right-hand side of the constraints can be stated as 
follows:  
 (CHMOILP):    max F(x),       
    subject to 
    x∈X,      
where 

{ }






=≥=≥≤∈= ∑
=

1,2,..nj integer,0,....,,2,1,)(
1

andxmibxaxgPRxX j
n

j
iijiji

n α



On the solution of stochastic multiobjective integer linear programming problems with a parametric study 
 

 
 
 
 
 
 
 

 

��

Here x is the vector of integer decision variables and F(x) is a vector of k-linear 
real-valued objective functions to be maximized. Furthermore, P means probability 
and iα  is a specified probability value. This means that the linear constraints may 
be violated some of the time and at most 100(1- iα  ) % of the time. For the sake of 
simplicity, we assume that the random parameters bi, (i =1, 2,…m) are distributed 
normally with known means E{bi} and variances Var {bi} and independently of 
each other. 
Definition 1: 
A point Xx* ∈  is said to be an efficient solution for problem (CHMOILP) if there 
does not exist another Xx∈ such that )x(F)x(F *≥  and )x(F)x(F *≠  with  
            
  
 
The basic idea in treating problem (CHMOILP) is to convert the probabilistic 
nature of this problem into a deterministic form. Here, the idea of employing 
deterministic version will be illustrated by using the interesting technique of 
chance-constrained programming [11]. In this case, the set of constraints X of 
problem (CHMOILP) can be rewritten in the deterministic form as: 

where 
i

Kα  is the standard normal value such that i1)K(
i

α−=Φ α  ; and )a(Φ  
represents the “cumulative distribution function” of the standard normal 
distribution evaluated at a. Thus, problem (CHMOILP) can be understood as the 
following deterministic version of a multiobjective integer linear programming 
problem: 
(MOILP):  max [f1(x), f2(x),…., fk(x)], 
     subject to 
          x∈X′. 
Now it can be observed, from the nature of problem (MOILP) above, that a suitable 
scalarization technique for treating such problems is to use the ∈- constraint 
method [2]. For this purpose, we consider the following integer linear 
programming problem with a single-objective function as: 
Ps(ε):    max fs(x), 
     subject to 

{ }{ }'Xx,sKr,)x(fRx)(X rr
n ∈−∈ε≥∈=ε  

where s∈K={1, 2, …,k} which can be taken arbitrary. 
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It should be stated here that an efficient solution x* for problem (CHMOILP) can 
be found by solving the scalar problem Ps(ε) and this can be done when the 
minimum allowable levels (ε1, ε2, …, εs-1, εs+1, …, εk) for the (k-1) objectives (f1, 
f2,…, fs-1, fs+1,…, fk) are determined in the feasible region of solutions X(ε). 
It is clear from [2] that a systematic variation of εi's will yield a set of efficient 
solutions. On the other hand, the resulting scalar problem Ps(ε) can be solved easily 
at a certain parameter ε= ε* using the branch-and bound method [14]. If x*∈ X(ε*) 
is a unique optimal integer solution of problem Ps(ε*), then x* becomes an efficient 
solution to problem (CHMOILP) with a probability level *

iα  , (i = 1, 2,…m). 
3. A PARAMETRIC STUDY ON PROBLEM (CHMOILP)  
Now and before we go any further, we can rewrite problem Ps(ε) in the following 
scalar relaxed subproblem which may occur in the branch-and-bound process as:  
Ps

'(ε):    max fs(x), 
     subject to 
       x∈Xs(ε), 
where 

, 
 
 
 
 
 
where the constraint { }1,2,..n Jj,x jjj ⊆∈β≤≤γ  is an additional constraint 
on the decision variable xj and that has been added to the set of constraints of 
problem Ps(ε) for obtaining its optimal integer solution x* by the branch-and-bound 
algorithm. 
In addition, it is supposed that:  

 
 
In what follows, definitions of some basic stability notions are given for the relaxed 
problem Ps

'(ε) above. We shall be essentially concerned with three basic notions: 
the set of feasible parameters; the solvability set and the Stability Set of the first 
Kind (SSK1). The qualitative and quantitative analysis of these notions has been 
introduced in details by Osman [6, 7] for different classes of parametric 
optimization problems. Moreover, stability results for such problems have been 
derived. 
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The feasibility condition for problem Ps
'(ε) is given in the following. 

The Set of Feasible Parameters 
Definition 2: 
The set of feasible parameters of problem Ps

'(ε), which is denoted by A, is defined 
by: 

{ }.)(XRA s
1k Φ≠ε∈ε= −  

The Solvability Set 
Definition 3: 
The solvability set of problem Ps

'(ε), which is denoted by B, is defined by: 
    { }.solutionintegeroptimalhas)(PoblemPrAB s ε∈ε=  
The Stability Set of the First Kind 
 
Definition 4: 
Suppose that B* ∈ε  with a corresponding optimal integer solution x*, then the 
stability set of the first kind of problem Ps

'(ε) corresponding to x*, which is denoted 
by S(x*), is defined by: 

{ }.)(Pproblemofsolutionintegeroptimalremain*xB*)x(S '
s ε∈ε= . 

Utilization of the Kuhn-Tucker Necessary Optimality Conditions for Ps
'(εεεε). 

Now, given an optimal point x*, which is found as described earlier in Section 2, 
the question is: For what values of the vector ε the Kuhn-Tucker necessary 
optimality conditions for the subproblem Ps

'(ε) are satisfied? 
In the following, the Kuhn-Tucker necessary optimality conditions corresponding 
to problem Ps

'(ε) will have the form: 
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where I∪J⊆{1,2,…n}, I∩J = Φ and all the above relations of system (*) above are 
evaluated at the optimal integer solution x*. The variables µr, δi, uj, vj  are the 
Langrangian multipliers. 
The first and last four relations of the system (*) above represent a Polytope in µδ 
u v –space for which its vertices can be determined using any algorithm based upon 
the simplex method, for example, Balinski [1]. According to whether any of the 
variables µr, r∈K-{s}, δi, (i=1,2,…m), uj,(j∈I) and vj, (j∈J) is zero or positive, then 
the set of parameters ε's for which the Kuhn-Tucker necessary optimality 
conditions are utilized will be determined. This set is denoted by T(x*). 
Determination of the Set T(x*) 
In what follows, we propose an algorithm in a series of steps to find the set of 
possible ε which will be denoted by T(x*). For the set T(x*), the point x* remains 
efficient for all values of the vector ε. Clearly, T(x*)⊆ S(x*) 
The suggested algorithm can be summarized in the following manner. 
The Algorithm: 
Step 1.  Determine the means and variances E{bi} and Var{bi} (i =1, 2,…m). 
Step 2. Convert the original set of constraints X of problem (CHMOILP) into the 
equivalent set of    
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             constraints X′. 
Step 3. Formulate the deterministic multiobjective integer linear problem (MOILP) 
corresponding  
to problem (CHMOILP). 
Step 4. Formulate the integer linear problem with a single-objective function Ps(ε). 
Step 5. Solve k-individual integer linear problem Pr, (r =1,2,…,k) where 
            Pr:    max     fr(x),  (r=1,2,…,k), 
                                      subject to 
                                                    x∈ X′, 
            to find the optimal integer solutions of the k-objectives. 
Step 6. Construct the payoff table and determine nr, Mr (the smallest and the largest 
numbers in the   
             rth column in the payoff table). 
Step 7. Determine the εi's from the formula: 
 εr = nr + 
 
            where t is the number of all partitions of the interval [nr, Mr].   
Step 8. 
   Find the set { }}s{Kr,MnR rrr

1k −∈≤ε≤∈ε=ℑ −   
Step 9. Choose ℑ∈ε*

r  and solve the integer linear problem Ps(ε*) using the 
branch-and-bound   
             method [14] to find its optimal integer solution x*. 
Step 10. Determine the set T(x*) by utilizing the Kuhn-Tucker necessary 
optimality conditions (*)   
               corresponding to problem Ps

'(ε). 
Step 11. If  T2(x*) is a one-point set, go to step 12. Otherwise, go to step 13. 
Step 12.  Define  { }}{,*)( ** sKrMRxT rrr

1k
2 −∈≤≤∆−∈= − εεεεεεεεεεεε , where  ∆  

is  any   small pre-specified positive real number. 
Step 13. Determine *)(xT2−ℑ . If φφφφ=−ℑ *)(xT2 , stop. Otherwise, go to step 14. 
Step 14. Choose another *)(xT2rr −ℑ∈= εεεεεεεε  and go to step 9. 
  The above algorithm terminates when the range of ℑ is fully exhausted. 

}{),(1 sKrnMN
t

rr −∈−−
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4. AN ILLUSTRATIVE EXAMPLE 
Here, we provide a numerical example to clarify the developed theory and the 
proposed algorithm. The problem under consideration is the following bicriterion 
integer linear programming problem involving random parameters in the right-
hand side of the constraints (CHBILP). 
(CHBILP):  max F(x) = [f1(x), f2(x)], 
                                    subject to 
                                                 P{x1+x2 ≤ b1} ≥ 0.90, 
                                                 P{-x1+x2 ≤ b2} ≥ 0.95, 
                                                 P{3x1+x2 ≤ b3 }≥ 0.90, 

x1, x2 ≥ 0 and integers. 
where 
      f1(x) = 2x1 + x2, f2(x) = x1 + 2x2. 
Suppose that bi, (i =1, 2, 3) are normally distributed random parameters with the 
following means and variances. 
    E {b1} = 1,  E{b2} = 3,  E{b3} = 9, 
    Var {b1} = 25,  Var {b2} = 4,  Var {b3} = 4. 
From standard normal tables, we have: 
    

1
Kα = 

3
K α = 90.0K  ≅ 1.285, 

2
Kα = 95.0K  ≅ 1.645 

For the first constraint, the equivalent deterministic constraint is given by: 
x1 + x2 ≤ C1 = E{b1} + = 1+1.285(5) = 7.425 

For the second constraint: 
- x1 + x2 ≤ C2 = E{b2} + = 3+1.645(2) = 6.29 

For the third constraint: 
3x1 + x2 ≤ C3 = E {b3} + = 9+1.285(2) = 11.57 

  
Therefore, problem (CHBILP) can be understood as the corresponding 
deterministic bicriterion integer linear programming problem in the form: 
(BILP):  max [f1(x) = 2x1 + x2, f2(x) = x1 +2x2], 
     subject to 

}{ 11
bVarKα

}{ 22
bVarKα

}{ 33
bVarKα
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        x1 + x2 ≤ 7.425, 
       -x1+ x2 ≤ 6.29, 
       3x1 + x2 ≤ 11.57 
           x1, x2 ≥ 0 and integers. 
Using the ε-constraint method [2], then problem (BILP) above with a single-
objective function becomes: 
P1 (ε):    max f1(x) = 2x1 + x2, 
     subject to 
            x1 + 2x2 ≥ ε2, 
            x1 + x2 ≤ 7.425, 
            -x1+ x2 ≤ 6.29, 
            3x1 + x2 ≤ 11.57 
            x1, x2 ≥ 0 and integers. 
It can be shown easily that 12.7775 ≤ ε2 ≤ 14.2825. 
Problem P1(ε) can be solved at ε2 =  ε2

* = 13 using the branch-and-bound method 
[14] and its optimal integer solution is found (x1

*, x2
*)= (1, 6). 

Furthermore, problem P1(ε) can be rewritten in the following parametric form as: 
 P1'(ε):  max f1(x) = 2x1 + x2, 
     subject to 
        x1 + 2x2 ≥ ε2, 
        x1 + x2 ≤ 7.425, 
        -x1+ x2 ≤ 6.29, 
        3x1 + x2 ≤ 11.57 
        0 ≤ x1≤ 1, 
       0 ≤ x2 ≤ 6  
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Therefore, the Kuhn-Tucker necessary optimality conditions corresponding to 
problem P1'(ε) will take the following form: 

where all the above expressions of system (#) are evaluated at the optimal integer 
solution (x1

*,x2
*) = (1, 6). In addition, it can be shown that  

δ1 = δ2 = δ3 = 0, u1, u2 > 0, µ1 ≥0 
Therefore, the set T1(1, 6) is given by: 

T1(1, 6) = {ε∈R 12.7775 ≤ ε2 ≤ 13 }. 
A systematic variation of  ε2∈R and 12.775 ≤ ε2 ≤ 13 will yield another stability set 
T2(1, 6), and so on. 
 
5. Conclusions: 
The purpose of this study is to investigate stability of the efficient solution for chance-
constrained multiobjective integer linear programming problem. A parametric study is 
carried out on the problem under consideration, where some basic stability notions 
have been defined and characterized for the formulated problem. 
Many aspects and general questions remain to be studied and explored in the field 
of multiobjective integer optimization problems under randomness. This paper is 
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an attempt to establish underlying results which hopefully will help others to 
answer some or all of these questions. 
There are however several unsolved problems, in our opinion, to be studied in 
future. Some of these problems are: 

(i) An algorithm is required for solving multiobjective integer linear 
programming problems involving random parameters in the left-hand 
side of the constraints, 

(ii) An algorithm is needed for treating large-scale multiobjective integer 
linear nonlinear programming problems under randomness, 

(iii) An algorithm should be handled for solving integer linear and integer 
nonlinear goal programs involving random parameters. 
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