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Abstract: Slow convergence and long training times are still the disadvantages 
often mentioned when neural networks are compared with other competing 
techniques. One of the reasons of slow convergence in Backpropagation learning is 
the diminishing value of the derivative of the commonly used activation functions 
as the nodes approach extreme values, namely, 0 or 1. In this paper, we propose 
eight activation functions to accelerate learning speed by eliminating the number 
of iterations and increasing the convergence rate. Mathematical proving of the 
errors for the output and hidden layers using these activation functions are 
concluded. Statistical measures are also obtained using these different activation 
functions. Through the simulated results, these activation functions are analyzed, 
compared and tested. The analytical approach indicates considerable improvement 
in training times and convergence performance. 
 
Keywords:  Neural Networks, Neural Network Learning, Backpropagation, 
Activation Functions, Convergence speed. 
 
1. Introduction 
Artificial neural networks (ANN) have been developed as generalization of 
mathematical models of biological nervous systems [13]. They are known as the 
“universal approximators” and “computational models” with particular 
characteristics such as the ability to learn or adapt, to organize or to generalize data 
[3]. They are widely applied to solving a variety of problems such as information 
processing, data analysis, system identification, control etc. under structural and 
parametric uncertainty[2]. Neural networks have been very successful in solving 
different signal processing and pattern recognition. They have shown great promise 
in identifying complex nonlinear systems [24]. 
Artificial Feedforward Neural Networks (FNNs) have been widely used in many 
application areas in recent years and have shown their strength in solving hard 
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problems in Artificial Intelligence. Although many different models of neural 
networks have been proposed, multilayered FNNs are the most common. FNNs 
consist of many interconnected identical simple processing units, called neurons. 
Each neuron calculated the dot product of the incoming signals with its weight, 
adds the bias to the resultant, and passes the calculated sum through its activation 
function [21]. Figure(1) shows the architecture of an artificial neuron and a 
multilayered neural networks. 
Since the Feedforward neural networks are usually too slow for most applications 
[6], the multilayer Backpropagation (BP) neural networks based on gradient 
descent are the most common use of neural network models [21]. 
 

 
 
 
 
 
 
 

(a) Constitution of a neuron 
 

 
 
 
 
 
 

  
(b) b- Multilayered artificial neural network 

Figure1: Architecture of an Artificial Neuron and a Multilayer Neural Network. 
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The multilayer Backpropagation neural networks uses a most famous algorithm 
known as the Backpropagation algorithm [15]. Training is usually carried out by 
iterative updating of weights based on minimizing the mean square error. In the 
output layer, the error signal is the difference between the desired and the output 
values. Then the error signal is fed back through the steepest descent algorithm to 
the lower layers to update the weights of the network. The weights of the network 
are adjusted by the algorithm such that the error is decreased along a descent 
direction. Traditionally, two parameters, called learning rate and momentum factor, 
are used for controlling the weight adjustment along the descent direction and for 
dampening oscillations. However, the convergence rate of the BP algorithm is 
relatively slow, especially for networks with more than one hidden layer. The 
reason for this is the saturation behavior of the activation function used for the 
hidden and output layers. Since the output of a unit exists in the saturation area, the 
corresponding descent gradient takes a very small value, even if the output error is 
large, leading to very little progress in the weight adjustment [15].    
Our objective is to improve the convergence of the learning process of the 
Backprobagation algorithm. Basically two different approaches have been developed 
for improving convergence of the learning process: modification of the activation 
function and modification of the activation function slope calculation for error 
propagation [23]. Convergence of the learning process can be improved by changing 
how the error propagates back through the network. With a standard sigmoid activation 
function, only a small error propagates back when the neuron is in a maximally wrong 
state. This is a consequence of using the steepest gradient method for calculating the 
weight adjustments. For the purpose of error propagation, the slope is calculated from 
the line connecting the output value with the desired value rather than the derivative of 
the activation function at the output value [23]. 
 The remainder of this paper is organized as follows: in section 2, general aspects 
of Backpropagation is discussed. Section 3, shows a description of the 
Backpropagation neural networks. The role of activation functions is presented in 
section 4. Deriving the errors using the proposed activation functions is discussed 
in section 5. The simulation results are shown in section 6. Finally section 7 
concluded this paper. 
2. General Aspects of Backpropagation 
The iterative process of adjustment of weights of a neural network is called training. 
The aim is to derive a neural network response that approximates the underlying data 
set with a maximum quality. There exist a variety of different methods to train a neural 
network. In this study the focus is on the Backpropagation algorithm as one form of 
supervised error-correction learning. This algorithm requires training data in form of 
input-output pairs that are obtained by repeatedly applying the computational model for 
structural analysis. The Backpropagation algorithm may be described with the 
following three steps, which have to be applied several times in an iteration. 
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1- Forward computation of input signal of training sample and determination of 
neural network response 

2- Computation of an error between desired response and neural network response. 
3- Backward computation of the error and calculation of corrections to synaptic 

weights and biases 
The initial values of the synaptic weights are obtained using random numbers. 
After the computation of the neural network response to an input signal the 
response error is determined and used to compute adequate changes of the synaptic 
weights with the aim of improving the quality of the neural network response in the 
next step. By applying these corrections to the weights it is attempted to minimize 
the error surface. Backpropagation is based on a standard gradient method. For the 
computation of the gradient the activation function needs to be differentiable. The 
correction of the synaptic weights may be expressed by the following Eq. (1). 
Within the Backpropagation algorithm two different modes, viz. incremental and 
batch can be applied [4]. 
(weight correction) = (learning-rate parameter)*(local gradient)*(input signal)        (1) 
Incremental Mode The incremental mode, also known as single, on-line or 
sequential mode, applies a weight correction after each presentation of one sample of 
training data. The training sample is chosen randomly out of the training data, leading 
to a stochastic nature of the search for the minimum of the error surface. This 
maximizes the probability of finding the global minimum. Furthermore, the 
incremental mode is resistant against redundant training data. As the weight correction 
is applied after each sample, the exact error of the specific sample is used.  
Batch Mode The batch mode applies a weight correction only once after each 
epoch. During one epoch every sample of the training data is presented to the 
neural network. The weight correction according to each training sample needs to 
be stored and the weights are updated after the presentation of the whole training 
data using all stored weight changes. The training samples are not chosen randomly 
which assures a convergence to a (local) minimum. Further, redundant training 
data is disadvantageous, because it yields longer computation time. 
3.  Description of the Backpropagation neural networks 
 One of the most commonly used supervised ANN model is backpropagation 
network that uses backpropagation learning algorithm. Backpropagation algorithm 
is one of the well-known algorithms in neural networks. The backpropagation 
neural network is essentially a network of simple processing elements working 
together to produce a complex output. These elements or nodes are arranged into 
different layers: input, middle and output. The output from a backpropagation 
neural network is computed using a procedure known as the forward pass [7]: 



A Comparative Approach to Accelerate Backpropagation Neural Network Learning using different Activation Functions 
 

 
  
  
  
  
  
  
 

٨٧

• The input layer propagates a particular input vector’s components to each node 
in the middle layer. 

• Middle layer nodes compute output values, which become inputs to the nodes 
of the output layer. 

• The output layer nodes compute the network output for the particular input vector. 
The forward pass produces an output vector for a given input vector based on the 
current state of the network weights. Since the network weights are initialized to 
random values, it is unlikely that reasonable outputs will result before training. The 
weights are adjusted to reduce the error by propagating the output error backward 
through the network. This process is where the backpropagation neural network 
gets its name and is known as the backward pass: 
• Compute error values for each node in the output layer. This can be computed 

because the desired output for each node is known. 
• Compute the error for the middle layer nodes. This is done by attributing a portion 

of the error at each output layer node to the middle layer node, which feed that 
output node. The amount of error due to each middle layer node depends on the 
size of the weight assigned to the connection between the two nodes. 

• Adjust the weight values to improve network performance using the Delta rule. 
• Compute the overall error to test network performance. 
The training set is repeatedly presented to the network and the weight values are 
adjusted until the overall error is below a predetermined tolerance. Since the Delta 
rule follows the path of greatest decent along the error surface, local minima can 
impede training. The momentum term compensates for this problem to some degree. 
4.  The role of Activation Functions 
The activation function zi = f(x, wi) connects the weights wi of a neuron i to the 
input x and determines the activation or the state of the neuron[10]. The behavior 
of an ANN depends on both the weights and the activation function that is 
specified for the units. Because the standard BP algorithm descends along the 
gradient of the error surface, the use of any activation function that has a larger 
gradient than that of the sum of the squared error at higher energy values would 
make for faster training. Modification of the Backpropagation algorithm using 
different methods of determining the slope of the activation function enhances the 
convergence of the learning procedure. 
The great benefit of using neural networks (NNs) is their nonlinear behavior, which 
allows them to approximate nearly every type of function. Nonlinearities are 
introduced in NNs by means of the activation function. Ideally, any differentiable 
function can be used as an activation function [19].  
Activation functions for the hidden units are needed to introduce nonlinearity into 
the network. Without nonlinearity, hidden units would not make nets more 
powerful than just plaint perceptions (which do not have any hidden units, just 
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input and output units). The reason is that a linear function of linear functions is 
again a linear function. However, it is the nonlinearity (i.e., the capability to represent 
nonlinear functions) that makes multilayer networks so powerful. Almost any 
nonlinear function does the job, except for polynomials. For BP learning, the 
activation function is differentiable, and it helps if the function is bounded; the 
sigmoidal functions such as logistic and tanh and the Gaussian function are the most 
common choices. Functions such as tanh or arctan that produce both positive and 
negative values tend to yield faster training that functions that produce only positive 
values such as logistic [18], because of better numerical conditioning[14, 23]. 
For hidden units, sigmoid activation functions are usually preferable to threshold 
activation functions. Networks with threshold units are difficult to train because the 
error function is stepwise constant, hence the gradient either does not exist or is 
zero, making it impossible to use BP or more efficient gradient-based training 
methods. Even for training methods that do not use gradients – such as simulated 
annealing and genetic algorithms – sigmoid units are easier to train than threshold 
units. With sigmoid units, a small change in the weights will usually produce a 
change in the outputs, which makes it possible to tell whether that change in the 
weights is good to bad. With threshold units, a small change in the weights will 
often produce no change in the outputs [23]. 
In this paper, the following nonlinear activation functions are investigated that is: 
the sigmoid  function, the hyperbolic tangent function, the trigonometric sine 
function, the arctangent function, the Cauchy distribution function, the logistic 
sigmoid function, the trigonometric cosine function and the Exponential function. 
5. Deriving  the errors using  the proposed activation functions 

5.1.  The sigmoid function 
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Using this energy function, the activation level is between 0 and 1. 
For a neuron j located in the output layer 

 
 

For a neuron j located in the hidden layer 
 
 
 
where neuron j is hidden 
5.2. The hyperbolic tangent function 

 
 

 
The limiting values of this function are -1 and  +1. 
The derivative of  w.r. to v is 

 
           

  
  
        
For a neuron j located in the output layer 

�
  

For a neuron j located in the hidden layer 
 
  

5.3.  The trigonometric sine function 
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For a neuron j located in the output layer 
        
For a neuron l located in the hidden layer 
         
5.4. The arctangent function 
            

  
 

For a neuron j located in the output layer 
  
 

For a neuron j located in the hidden layer 
  
 

where neuron j is hidden. 
5.5. The Cauchy distribution function 
 
 
The formula for the cumulative distribution function for the Cauchy distribution is: 
 
  
For a neuron j located in the output layer 
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For a neuron j located in the hidden layer 
 
 

5.6. Logistic sigmoid function  F 

            
  

  
 using this energy function, the activation level is  between 0 and 1. 
 For a neuron j located in the output layer 
  
 For a neuron j located in the hidden layer 
  
 where neuron j is hidden 
5.7. Trignometric cosine function 
 
              
  
  
  
                                 
 For a neuron j located in the output layer 
  
 For a neuron j located in the hidden layer 
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5.8.  Exponential function 
 
 
               
  
For a neuron j located in the output layer 
  
For a neuron j located in the hidden layer 
   
 where neuron j is hidden 
6. Simulation Results 
The activation function of neurons allows non-linearity to be introduced into neural 
network training and determines the elasticity of weight changes. It therefore can 
improve convergence in training. The sigmoid function is, anyway, the most 
widely used activation function. It is a smooth function, which returns nearly 
proportional outputs for intermediate values, while smoothing out values at the 
extremes of the spectrum. The hyperbolic function is mostly similar to the sigmoid 
function. The hyperbolic function is negatively oriented, tending to force extreme 
values of the distribution to either 1 or – 1. 
While any of the described functions can be implemented in NNs, there is no clear 
rule on how to select the most appropriate activation function. The use of sigmoid 
functions for classification problems, and of hyperbolic functions for forecasting 
problems, that is, when learning about deviations from the average is involved. A 
different function can ideally be used for each computational unit in the NN. While 
the usual NN models found in the literature employ the same activation function 
for all units, examples can also be found of NNs in which a different function is 
selected for the output units. Sigmoid functions are mostly used in the input and 
hidden layers, while there is no agreement on what activation function should be 
employed for the output units [19]. 
In this section, and on simulated data sets, we discuss some of the figures and 
tables showing the behavior resulting from the practical implementation as a 
comparison between the different eight activation functions. 
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Figure (2) shows the number of iterations for each activation function. In this 
figure, we find that using the trigonometric sine activation function is the best one, 
and the multilayer perception trained with the BP algorithm learn faster in terms of 
the number of  iterations. 

Figure 2 :  The Number of Iterations For Each  Activation Function. 
The second function in terms of the number of iterations is the trigonometric cosine 
function. The third function is the hyperbolic tangent function, the fourth function 
is the arctangent activation function, the fifth function is the exponential activation 
function, the sixth function is the logistic activation function, the seventh function 
is the Cauchy distribution activation function, and finally the last one in terms of 
the number of iterations is the sigmoid activation function. 
Table (1) shows the number of iteration, actual output, the sum of square error 
(SSE) and the mean square error (MSE) for each activation function given that the 
desired output = 0 and the learning rate = 0.5. 



A Comparative Approach to Accelerate Backpropagation Neural Network Learning using different Activation Functions 
 

 
  
  
  
  
  
  
 

٩٥

Table1:  Shows the Number of Iteration, Actual Outputs, SSE, and MSE. 
Activation 
Function 

Number  of 
Iterations 

Actual Output Sum of square 
error(SSE) 

Mean Square 
error(MSE) 

Sigmoid 358 0.1996718 0.01996718 0.00996721 
Hyperbolic 23 0.184995643 0.01711169 0.00855584 
Trig sin 10 0.1824833 0.0166500 0.0083250 
Arctangent 26 0.1928384 0.0185933 0.0092966 
Cauchy 226 0.1999554 0.01999108 0.0099955 
Logistic 187 0.1997979 0.0199596 0.0099798 
Trig cos 18 0.193509 0.018722 0.009361 
Exp 74 0.158863 0.012618 0.006309 
Figure (3) . Shows the Behavior of the MSE For All the activation Functions. 

Figure  3 : Shows the MSE Using the Eight Activation Functions. 
It shows that the graduation of the MSE from lowest value to the largest value is as 
follows: the exponential activation function, the trigonometric sine, the hyperbolic 
tangent, the arctangent, the trigonometric cosine function, the sigmoid function, the 
logistic function, and the Cauchy distribution activation function. 
Table (2) shows the degree of convergence using each activation function. The 
table shows that the exponential activation function = 84.114 % is higher than the 
trigonometric sine activation function = 81.752 % which is higher than the 
hyperbolic tangent function = 81.5 % which is higher than the other functions 
which falls nearly on the same level. 

Table (2) shows the degree of convergence using each activation function. 
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Activation 
Function 

 Number of 
Iterations  

 Degree of 
convergence 

Sigmoid 358 80.033 % 
Hyperbolic 23 81.500 % 
Trig sin 10 81.752 % 
Arctangent 26 80.716 % 
Cauchy 226 80.004 % 
Logistic 187 80.020 % 
Trig cos 18 80.649 % 
exp 74 84.114 % 

    Table (3) Shows Some Statistical Calculations Illustrating the Behavior of the 
actual outputs for the last nine iterations. The minimum statistic shows the last 
actual output for the stopping criteria = 0.01 and the desired output = 0. The table 
shows that the exponential activation function is the nearest one to the desired 
output. Following to this function is the trigonometric sine function, etc., but 
comparing the maximum and minimum for each activation function, we find that 
the trigonometric sine function is more convergent than any other function. This is 
shown also from the mean value. The standard deviation STD shows the deviation 
from the mean. 

Table (3) shows the Min, Max, Mean, and STD for the actual output 
using the last nine iterations. 

 
 

 
 
 
Figure (4) illustrates the phenomena shown in the table. It shows that the 
trignometric sine function has a significant difference between the maximum value 
and the minimum value. Following this function is the hyperbolic tangent function. 
The sigmoid function which has a low convergence reaches to the stability in terms 
of we find that the Min value, the Max value, and the Mean value are 
approximately equal. 
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Figure  4 : Shows a Comparison Among the Eight Activation Functions 
(Min, Max, Mean,  and   STD) 

    Figure (5) shows statistical results which  indicat the behavior of the neural 
network learning  for the last nine iterations using each activation function. In 
Figure (5-a) the actual output using  the exponential function is the lowest i.e., it is 
the nearest to the desired output = 0. Following to it is the trignometric sine 
function, and so on as illustrated in the figure. The Max as shown in Figure (5 – b) 
means the value of the actual output for the ninth iteration from the last.  The 
behavior is shown in the Figure. Figure (5 – c) the mean of the last nine iterations 
for the actual output coressponding to the desired output = 0. The Figure shows the 
stability of the logistic function over all the other functions. Figure (5 – d)  shows 
standard deviation using each activation function. The Figure shows that the 
sigmoid function is the lowest in the convergence and the deviation from the mean 
is a smallest value compared to all the other functions. 
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(b)
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 (c) 
                        
 
 
 
 
 
 
 
 
 

 
(d) 

Figure  5 :  Shows The Statistics (Min, Max, Mean, and STD) For Tha Actual 
Output in the Last Nine Iterations. 
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7. Conclusions 
The multilayer Backpropagation neural networks needs a lot of research to 
overcome the slow convergence and the long training times. To alleviate the need 
for eliminating the number of iterations, speeding the convergence rate and to 
increase the efficiency of BP-Learning, we developed an efficient set of activation 
functions which improves the convergence accuracy, speed and reduces the 
number of iterations using each activation function. Simulation results show that 
the proposed comparative approach achieves a good performance and considerable 
enhancements for the BP-learning. We conclude the following issues: 
• Mathematical proving for the errors in the output and hidden layers are concluded. 
• The number of iterations using the trigonometric sine activation function is the 

lowest, so this function is the best. The one that follows is the trigonometric cosine 
function. The hyperbolic tangent function is the third. The fourth function is the 
arctangent function. The fifth function is the exponential function in terms of the 
number of iterations. The sixth function is the logistic, the Cauchy function is the 
seventh and the last activation function is the sigmoid activation function. 

• The convergence rate of the BP-learning increases using the exponential function. 
Following to this is the trigonometric sine function, and the hyperbolic tangent 
function lies in the third category. The arctangent function is the fourth one. The fifth 
function is the trigonometric cosine function. There is a little difference among the 
three last equations namely, sigmoid, logistic and Cauchy. 

• Statistical results (Min, Max, Mean, and Standard deviation) show the behavior of 
the actual output for the last iterations of the neural network are conducted as shown 
in the simulation results. 

The analysis illustrated in the present paper can be expanded by carrying out 
further research in several directions.  
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