COMBINING ABILITY AND THE ORDER EFFECT IN DOUBLE CROSS HYBRIDS OF COTTON 1- EARLINESS TRAITS

EL-FEKI, T. A. ${ }^{\mathbf{1}}$, A. I.EL- AGAMY ${ }^{\mathbf{2}}$, H. E.YASSIEN ${ }^{\mathbf{2}}$ And H. A. EL- HOSEINY ${ }^{\mathbf{1}}$
1. Cotton Research Institute, ARC, Giza, Egypt.
2. Faculty of Agriculture, Al-Azhar University.

(Manuscript received 16 May 2011)

Abstract

The objectives of this study were to determine the components of genetic variance and its order on the effect of the hybrids of double cross. Six diverse strains belonging to (Gossypium barbadense, L.). were used to produce 45 possible double cross hybrids. These hybrids were raised cross in a randomized complete block design with three replications. The additive gene variances were negative for earliness traits while the values of epistasis of additive (A) x additive (A) types were considerable for earliness traits. The epistasis additive x additive x additive was significant for earliness traits except for position of first fruiting node where the epistasis additive x dominance was considerable. The parent Karshenky (p_{3}) was the best parent when used as one forming the double crosses hybrids for earliness traits. The parent \{Australian (P_{1}), BBB $\left(\mathrm{P}_{2}\right)$ \}, $\left\{\right.$ Karshenky $\left(\mathrm{P}_{3}\right)$ and Suvin $\left.\left(\mathrm{P}_{5}\right)\right\}$ and $\left\{\mathrm{BBB}\left(\mathrm{P}_{2}\right)\right.$ and Giza $\left.70\left(\mathrm{P}_{4}\right)\right\}$ had highest negative of 2 -lines general effect. in all possible combinations without respect to arrangement (ijk) the best triple was ($P_{3} P_{5} P_{6}$) followed $P_{1} P_{2} P_{4}, P_{1} P_{2} P_{5}$ and $P_{1} P_{2} P_{3}$ and $P_{2} P_{4} P_{5}$. From previously results it could be suggested that P_{1}, P_{5}, P_{6}, as well as P_{3} formed the best "quadrialle" or with the parent Giza $70\left(P_{4}\right)$ in earliness index. The general effect of set of any four parents parent in various combination irrespective of order, it was obvious that parents $\left(P_{1}, P_{2}, P_{5}\right.$ and $\left.P_{6}\right),\left(p_{1}, P_{2}, P_{4}\right.$ and $\left.P_{5}\right),\left(P_{1}\right.$, P_{3}, P_{5} and $\left.P_{6}\right),\left(p_{1}, P_{4}, P_{5}\right.$ and $\left.P_{6}\right)$ exhibited the best effected to forming the double crosses for position of first node, for days to first flower, days to first boll and earliness index. The results confirm that the order in which the parents go into double cross hybrids is a deciding factor for its high or low performance.

INTRODUCTION

Enhancement for earliness in cotton has recorded a staying period cotton was shortened from 270 days to 210 days. This improvement cannot be attributed to management practices only but also due to genetic improvement of cultivars. ElTabbakh and El-Nakhlawy (1995) investigated inter-specific crosses of G. barbadense x G. hirsutum. They observed that the general combining ability (GCA) variance was not significant for height of first fruiting node and earliness index. On the other hand SCA variance was significant for height of first fruiting node while, it was highly
significant for earliness index, suggesting that non-additive genetic variance was predominant over additive genetic variance in the inheritance of these traits. Abou ElYazied (2004) indicated that the comparison of parental varieties for their combining ability revealed that the variety TNBI followed by BBB were the bet combiners for earliness traits. While the most pronounced SCA effects were found in the crosses (P.H. P x 24022, P.H.P. \times Suvin and $24022 \times$ G.88) in the case of height of first fruiting node. El-Hoseiny (2004) found that both GCA and SCA variances were significant for position of first fruiting node and days to first flower. He also added that the ratio GCA/SCA reflected the magnitude of dominance for the position of the first fruiting node and days to first flower. Kaushik etal (2006) and Kaushik and Kapoor (2007) found that significant general combining ability (GCA) and specific combining ability (SCA) x environment interactions were observed for those traits and they reported that variance ratio revealed the preponderance of non-additive genetic variance. Prasad et al. (2005) indicated that the heritability for days to 50% flowering was moderate while Potdukh and Parmar (2006) indicated that this trait exhibited low value of heritability. This study was conducted to giving the information on order effect of parent to form double crosses and estimated the genetic component for double crosses.

MATERIALS AND METHODS

Fourty five double crosses were obtained by mating between $15 \mathrm{~F}_{1}$'s of six parents belonging to Gossypium barbadense, L. which are Australian (P_{1}), BBB (big black boll) (P_{2}), Karshenky (P_{3}) and Suvin (P_{5}), while the other two varieties were extra-long staple, Giza $70\left(\mathrm{P}_{4}\right)$, Giza $77 \times$ Pima $\mathrm{S}_{6}\left(\mathrm{P}_{6}\right)$. The .45 double crosses were sown in randomized complete block design experiment with three replications at Sakha Agricultural Research Station. Each plot consisted of three rows. The rows were 4 meter long and 65 cm apart. Hills were spaced 20 cm within rows and seedlings were thinned to two plants / hill. Conventional cultural practices were followed through the growing season. The measurements, were recorded on ten individual guarded plants from the middle row of each plot.

I. The studied traits:

1. Position of First fruiting node.
2. Days to the first flower.
3. Days to first boll opening.
4. Earliness index.

The analysis of variance of the quadriallel crosses was made for all studied traits according to the procedures outlined by Singh and Chudhary (1985). As follows:

II. \mathbf{C}_{4}. Combining Ability Effects:

1- Average effect of line $i=g_{i}=\left[Y_{i \ldots} /\left(r p_{1} p_{2} p_{3} / 2\right)\right]-\mu$
Where, $\mu=Y \ldots . . /\left(p_{1} p_{2} p_{3} / 8\right) \quad$ Check: $\Sigma g_{i}=0$
2- The two line interaction effect of lines i and j appearing together irrespective of arrangement. $\quad=S^{2}{ }_{i j}=\left[Y_{\mathrm{ij} . . /} /\left(3 r \mathrm{p}_{2} \mathrm{p}_{3} / 2\right)\right]-\mu-\mathrm{g}_{\mathrm{i}}-\mathrm{g}_{\mathrm{j}} \quad$ Check: $\Sigma \mathrm{S}^{2}{ }_{(\mathrm{ij})}=0$
3- The three line interaction effect of lines i, j and k appearing together irrespective of arrangement. $=S_{i j k}^{3}=\left(Y_{j j k . . .} / 3 r p_{3}\right)-\mu-g_{i}-g_{j}-g_{k}-S_{i j}-S_{i k}-S_{j k} \quad$ Check: $\quad \Sigma S^{3}$ ${ }_{\mathrm{ijk}}=0$
4- The 4-line interaction effect of lines i, j, k and I appearing together irrespective of arrangement. $=S_{(j \mathrm{jkl})}^{4}=\mathrm{S}_{\mathrm{ijk} 1}=\left[\left(\mathrm{Y}_{\mathrm{jjk} . . .} /(3 \mathrm{r})\right]-\mu-\mathrm{g}_{\mathrm{i}}-\mathrm{g}_{\mathrm{j}}-\mathrm{g}_{\mathrm{k}}-\mathrm{g}_{\mathrm{i}}-\mathrm{S}_{\mathrm{ij}}-\mathrm{S}_{\mathrm{ik}}-\mathrm{S}_{\mathrm{i}}-\mathrm{S}_{\mathrm{jk}}-\right.$ $\mathrm{S}_{\mathrm{j} 1}-\mathrm{S}_{\mathrm{kl}}-\mathrm{S}_{\mathrm{j} \mathrm{k}}-\mathrm{S}_{\mathrm{ijl}}-\mathrm{S}_{\mathrm{jk} 1}-\mathrm{S}_{\mathrm{jk} 1} \quad$ Check: $\Sigma \mathrm{S}_{\mathrm{j} \mathrm{jkl}}=0$
5- The 2- line interaction effect of lines i and j due to particular arrangement.(ij) (--) $\mathrm{t}_{(\mathrm{j})(-)}=\mathrm{t}_{(\mathrm{jj)}(.)}=\left[\mathrm{Y}_{(\mathrm{j})(.) .} / /\left(\mathrm{rp}_{2} \mathrm{p}_{3} / 2\right)\right]-\mu-\mathrm{g}_{\mathrm{i}}-\mathrm{g}_{\mathrm{j}}-\mathrm{S}_{\mathrm{ij}} \quad$ Check: $\sum \mathrm{t}_{(\mathrm{jj})(. .)}=0$
6- The 2- line interaction effect of lines i and j due to particular arrangement.($i-)(j)$ $\mathrm{t}_{(\mathrm{i}-)(\mathrm{j}-)}=\mathrm{t}_{(\mathrm{i}-)(\mathrm{j}-)}^{2}=\left[\mathrm{Y}_{(\mathrm{i} .)(\mathrm{j}) .)} / r \mathrm{p}_{2} \mathrm{p}_{3}\right]-\mu-\mathrm{g}_{\mathrm{i}}-\mathrm{g}_{\mathrm{j}}-\mathrm{S}_{\mathrm{ij}} \quad$ Check: $\Sigma \mathrm{t}_{\mathrm{i}, \mathrm{j} .}=0$
7- The 3- line interaction effect of lines i, j and k due to particular arrangement.($\mathrm{i} j$)
$(k-) t^{3}{ }_{i j, k}=t_{(i j)}(k-)=\left[Y_{(i j)(k),} / r p_{3}\right]-\mu-g_{i}-g_{j}-g_{k}-S_{i j}-S_{i k}-S_{j k}-S_{i j k}-t^{2}{ }_{i j}-t^{2}{ }_{i, k}-$ $t^{2}{ }_{j, k}$

8- The 4- line interaction effect of lines $\mathrm{i}, \mathrm{j}, \mathrm{k}$ and I due to particular arrangement.(i j$)$
(kI) $\mathrm{t}^{4}{ }_{j \mathrm{jkl}}=\mathrm{t}_{(\mathrm{ij})(k \mid)}=\left[\mathrm{Y}_{(\mathrm{j})(k),} / \mathrm{r}\right]-\mu-\mathrm{g}_{\mathrm{i}}-\mathrm{g}_{\mathrm{j}}-\mathrm{g}_{\mathrm{k}}-\mathrm{g}_{\mathrm{l}}-\mathrm{S}_{\mathrm{ij}}-\mathrm{S}_{\mathrm{ik}}-\mathrm{S}_{\mathrm{il}}-\mathrm{S}_{\mathrm{jk}}-\mathrm{S}_{\mathrm{jl}}-\mathrm{S}_{\mathrm{kl}}-\mathrm{S}_{\mathrm{jik}}-$
 $\sum \mathrm{t}_{\text {ijkl }}=0$

9- Check:
a) $t^{2}{ }_{i j}+2 t_{i, j .}=0$
b) $\mathrm{t}^{3}{ }_{\mathrm{j}, \mathrm{k}}+\mathrm{t}_{\mathrm{i}, \mathrm{j}, \mathrm{j}}+\mathrm{t}^{3}{ }_{\mathrm{jk} . \mathrm{i}}=0$
c) $t^{4}{ }_{i j, k l}+t^{4}{ }_{i, j l}+t^{4}{ }_{i, j \mathrm{j}}=0$

10- Narrow sense heritability was estimated following equations

$$
h^{2}{ }_{n s}=\frac{1 / 4 \mathrm{~A}+1 / 8 \mathrm{AA}+1 / 16 \mathrm{AAA}}{1 / 4 \mathrm{~A}+1 / 8 \mathrm{AA}+1 / 16 \mathrm{AAA}+1 / 8 \mathrm{D}+1 / 16 \mathrm{AD}+1 / 32 \mathrm{DD}+\mathrm{E} / 3}
$$

Where, $\quad \mathrm{A}=$ Adittive, $\mathrm{D}=$ Dominance and $\mathrm{E}=$ Error variance

RESULTS AND DISCUSSION

I. The validity of double hybrids to additive dominance model

The analysis of double crosses serves a two fold purposes. The classification of genetic system underlying double cross hybrids of primary significance. In addition, the analysis provides estimates of genetic variance and test of genetic hypothesis. Table (1) revealed that 1-general and 2 -line specific and arrangement effects were significant indicating the importance of additive gene effects and all additive type of epistatic interaction. The data also showed that 2 -line specific and 2, 3 and 4-line arrangement effects were significant except 2-line specific for day to first boll opening and 3 and 4 arrangement for days to frist flower indicating importance of the dominance and the interaction involving dominance component for these results seemed to be predominant of non additive gene effect in the present material (Rawling and Cockarham 1962).
Table 1. Analysis of variance of double cross hybrids for earliness characters

Source	d.f	Position of first fruiting node	Days to first flower	Days to first boll	Earliness index
Replications	2	0.356	1.092	4.003	0.346
Hybrid	44	$1.084^{* *}$	$2.386^{* *}$	$8.857^{* *}$	$90.717^{* *}$
1-line general	5	$3.438^{* *}$	$5.462^{* *}$	$19.874^{* *}$	$51.439^{* *}$
2- line specific	9	$0.622^{* *}$	1.599^{*}	4.600	$94.928^{* *}$
2- line arrangement	9	$1.264^{* *}$	$4.499^{* *}$	$6.865^{* *}$	$134.410^{* *}$
3- line arrangement	16	$0.731^{* *}$	1.027	9.453^{*}	$82.581^{* *}$
4- line arrangement	5	0.370^{*}	1.271	7.176^{*}	$69.808^{* *}$
Error	88	0.158	0.693	2.328	4.295
Total	134	0.465	1.255	4.496	32.613

*,** significantly different at the 0.05 and 0.01 levels of probability, respectively

2. Genetic components and heritabilities.

The results in Table (2) indicated that the additive gene variance ($\sigma^{2} A$) was could be consideration equivalent to zero due to negative variance of all earliness traits. With respect the dominance variance were significant for the days to first flower, days to first boll and earliness index.

Table 2. The estimates of genetic variance to its components and genetic ratio for earliness characters in double cross hybrids

Source	Position of first fruiting node	Days to first flower	Days to first boll	Earliness index
Additive (A)	-0.799 ± 0.087	-2.122 ± 0.176	-6.261 ± 0.273	-193.204 ± 1.670
Dominance (D)	-0.702 ± 0.046	5.360 ± 0.131	3.089 ± 0.185	235.345 ± 0.623
A X A	2.696 ± 0.056	0.206 ± 0.097	7.270 ± 0.159	19.449 ± 0.823
A X D	1.736 ± 0.029	-10.877 ± 0.051	-54.501 ± 0.086	-1185.419 ± 0.306
D X D	3.401 ± 0.034	7.402 ± 0.058	86.883 ± 0.121	1367.079 ± 0.458
A X A X A	-1.157 ± 0.030	7.251 ± 0.051	36.334 ± 0.085	790.280 ± 0.409
Heritability	55.75	29.72	45.06	41.33

Table (2) showed that the genetic variance of all earliness traits except postion of first fruiting node were due to dominance (D), additive (A) x additive (A) , A xA XA and dominance x dominance gene effects. While the positive genetic variance positive for first fruiting node were due to $\mathrm{A} \times \mathrm{A}$ and $\mathrm{A} \times \mathrm{D}$ gene action. These results was are in partial agreement with those obtained by Abd El-Hadi et al., (2005) using three way crosses indicated that the additive effect was larger than dominance and the additive x dominance epistatic genetic variance were larger than those of dominance x dominance and additive x additive for number and of days day to first flower.

Table (2) showed that the heritability's were of high values for position first fruiting node, days to first boll and earliness index while, intermediate value of were detected for days to first flower. These results were in common with other results obtained by Zeina (2002), Abd El-Bary (2003), Yehia (2005) and Aziza Sultan (2008)

3. General combining ability effects for double cross hybrids

The1-line general combining ability effects are given in Table (3). As indicated by the data line (P_{3}) Karshenky must be used as one parent, because it provides the highest and negative effect which is desirable direction for all earliness traits, except for, the earliness index which the positive direction is desirable. As four lines are needed to produce a double cross hybrid, all lines can be used with the same efficiency for position of first fruiting node except the two line Giza 70 and Giza 77 x Pima S_{6} because the general effect is not only positive but also high. With regard the days to first flower it may be considered the two parents of Karshenky and Australian were classified as good combiner because it provides the highest negative effect and every of them could be used as one parent. As four lines needed to produce a double cross hybrid for days to first boll same lines can be used with the same efficiency
except the two lines Giza 70 and Giza $77 \times$ Pima S_{6} since the general effect is positive and highest.
Table 3. Estimates of general combining ability effects of double cross hybrids for earliness characters

Source	Position of first fruiting node	Days to first flower	Days to first boll	Earliness index
Australian $\left(p_{1}\right)$	-0.039	-0.021	-0.187	0.473
BBB $\left(p_{2}\right)$	-0.101	-0.148	0.384	-0.084
Karshenky $\left(p_{3}\right)$	-0.157^{*}	-0.148	-0.464^{*}	0.531
Giza $70\left(p_{4}\right)$	0.156^{*}	0.220	0.178	-0.681^{*}
Suvin $\left(p_{5}\right)$	0.019	-0.060	-0.018	-0.383
Giza $77 \times$ Pima $S_{6}\left(p_{6}\right)$	0.123^{*}	0.159	0.107	0.145

*,** significantly different at the 0.05 and 0.01 levels of probability, respectively
As for the days to first boll. The parent of variety Karshenky exhibited good combining ability and could be used as one parent, because it provides the negative highest effect for days to first boll opening. As four lines are needed to produce a double cross all lines can be used with the same efficiency except the lines BBB, Giza 70 , and Giza $77 \times$ Pima S_{6} because the general effect is not only positive but also high with respect to days to first boll. While for the earliness index, data indicated that the two lines, Australian and Karshenky must be used as one parent, because it provides the highest positive effect.

4. The $\mathbf{2}$-line general and $\mathbf{2}$-line arrangement effects

The 2-line effects with and without respect to their particular arrangement are given in Table (4). With respect to the position of first fruiting node, as regards to the 2-line general effects the parent (P_{1} and P_{3}) in various combinations performed the best, followed by $\left(P_{3}\right.$ and $\left.P_{5}\right)$ and (P_{2} and $\left.P_{4}\right)$ in this case the general effects was not only negative but also high.

Table 4. 2-line interaction effect of lines i and j due to particular arrangement (ij)(..)
 irrespective of arrangement for earliness characters

Source	Position of first fruiting node			Days to first flower			Days to first boll			Earliness index		
	ij	(ij)(--)	(i.)(j.)									
$\mathrm{P}_{1} \times \mathrm{P}_{2}$	-0.030	-0.189	0.094	-0.119	-1.033	0.517	0.172	-0.341	0.170	-0.278	1.948	-0.974
$\mathrm{P}_{1} \times \mathrm{P}_{3}$	-0.063	-0.067	0.033	-0.063	0.139	-0.069	-0.239	-0.426	0.213	0.512	1.224	-0.612
$\mathrm{P}_{1} \times \mathrm{P}_{4}$	0.079	-0.156	0.078	0.143	0.748	-0.374	0.093	1.189	-0.594	-0.331	-5.009	2.504
$\mathrm{P}_{1} \times \mathrm{P}_{5}$	-0.009	-0.007	0.004	-0.036	-0.087	0.044	-0.181	-0.407	0.204	0.397	4.172	-2.086
$\mathrm{P}_{1} \times \mathrm{P}_{6}$	-0.017	0.419	-0.209	0.053	0.233	-0.117	-0.032	-0.015	0.007	0.172	-2.335	1.167
$\mathrm{P}_{2} \times \mathrm{P}_{3}$	-0.045	0.100	-0.050	0.001	0.324	-0.162	-0.021	0.119	-0.059	0.761	-0.637	0.319
$\mathrm{P}_{2} \times \mathrm{P}_{4}$	-0.051	-0.196	0.098	-0.087	0.178	-0.089	-0.081	0.226	-0.113	0.048	0.828	-0.414
$\mathrm{P}_{2} \times \mathrm{P}_{5}$	0.005	0.163	-0.081	0.002	0.202	-0.101	0.218	0.100	-0.050	-1.030	-3.140	1.570
$\mathrm{P}_{2} \times \mathrm{P}_{6}$	0.019	0.122	-0.061	0.055	0.330	-0.165	0.097	-0.104	0.052	0.414	1.002	-0.501
$\mathrm{P}_{3} \times \mathrm{P}_{4}$	0.049	0.237	-0.119	0.035	-0.433	0.217	-0.059	-0.837	0.419	-0.479	1.419	-0.710
$\mathrm{P}_{3} \times \mathrm{P}_{5}$	-0.061	0.163	-0.081	-0.052	0.283	-0.142	-0.078	0.900	-0.450	0.188	-1.814	0.907
$\mathrm{P}_{3} \times \mathrm{P}_{6}$	-0.036	-0.433	0.217	-0.069	-0.313	0.156	-0.069	0.244	-0.122	-0.451	-0.192	0.096
$\mathrm{P}_{4} \times \mathrm{P}_{5}$	0.003	-0.048	0.024	0.017	-0.320	0.160	0.069	-0.522	0.261	0.066	1.009	-0.505
$\mathrm{P}_{4} \times \mathrm{P}_{6}$	0.076	0.163	-0.081	0.111	-0.172	0.086	0.156	-0.056	0.028	0.016	1.752	-0.876
$\mathrm{P}_{5} \times \mathrm{P}_{6}$	0.081	-0.270	0.135	0.008	-0.078	0.039	-0.045	-0.070	0.035	-0.005	-0.227	0.114

Australian $\left(p_{1}\right)$, BBB $\left(p_{2}\right)$, Karshenky $\left(p_{3}\right)$, Giza $70\left(p_{4}\right)$, Suvin $\left(p_{5}\right)$ and (Giza $77 \times$ Pima $\left.S_{6}\right)\left(p_{6}\right)$
The other 2-line effects which did well in combinations were (P_{2} and P_{3}) and (P_{3} and P_{6}). In most of other cases the 2-line general effects were negative. As regard to the 2-line with particular arrangement the specific combination $\left(\mathrm{P}_{3} \times \mathrm{P}_{6}\right)(--)$ had the highest 2-line specific effect of (ij)(--) type, followed by $\left(\mathrm{P}_{5} \times \mathrm{P}_{6}\right)(--)$ and $\left(\mathrm{P}_{2} \times \mathrm{P}_{4}\right)(--$).The cases of $\left(P_{1} \times P_{6}\right)(--)$ and $\left(P_{2} \times P_{5}\right)(--)$ were bad combinations because its 2 -line specific effects are not only positive but also high. The 2-line of (i-)(j) type were high and negative in the case $\left(P_{1} x-\right)\left(P_{6} x-\right)$ followed by $\left(P_{3} x-\right)\left(P_{4} x-\right)$ and $\left(P_{2} x-\right)\left(P_{5} x-\right)$ and $\left(P_{3} x-\right)\left(P_{5} x-\right)$, The2-line specific effects $\left(P_{3} x-\right)\left(P_{6} x-\right)$ is poor combination because it is not only positive but also high. When the order of arrangement become $\left(P_{3} \times P_{6}\right)(--)$ had desirable 2-line specific effect. Also the specific combination $\left(P_{1} \times\right.$ P_{4}) was poor specific 2-line when used another combination ($\mathrm{P}_{1}-$) ($\mathrm{P}_{4}-$) gave good 2line specific effect. Similar, the Australian parent and BBB which were good in specific combination of $\left(P_{1} \times P_{2}\right)(--)$ and $\left(P_{2} \times P_{4}\right)(--)$ respectively when used in another combination $\left(P_{1} x-\right)\left(P_{2} x-\right)$ and ($\left.P_{2} x-\right)\left(P_{4} x-\right)$ showed the positive 2-line specific. These results suggested that the order in which the parents were involved in
double cross was important. This means that importance consideration should be given to this parameters while attempting multiple crosses. The evidence of order effect in double crosses have been reported by Singh and Choudary (1977).

As regard to 2 -line general interaction effects for days to first flower, the parents (P_{1} and P_{2}) in various combinations were the best followed by (P_{2} and P_{4}) and (P_{3} and P_{6}). The other 2 -line which did well in combination were (P_{1} and P_{3}), (P_{3} and P_{5}) and (P_{3} and P_{6}). In most of cases, the 2 -line general effects were positive (Table 4). As particular arrangement the specific combination $\left(\mathrm{P}_{1} \times \mathrm{P}_{2}\right)(--)$ hade high 2-line specific effect (ij) (--) type, followed by ($\mathrm{P}_{3} \times \mathrm{P}_{4}$) (--) and ($\mathrm{P}_{4} \times \mathrm{P}_{5}$) (--) and ($\mathrm{P}_{3} \times \mathrm{P}_{6}$) $(--)$. These effect were high and negative so these effects were good combination. The combinations $\left(\mathrm{P}_{2} \times \mathrm{P}_{3}\right)(--)$ and $\left(\mathrm{P}_{1} \times \mathrm{P}_{4}\right)(--)$ were poor combinations because its $2-$ specific effect was not only positive but also highest. The other cases exhibited positive effect were $\left(P_{1} \times P_{6}\right)(--),\left(P_{2} \times P_{6}\right)(--)$ and $\left(P_{2} \times P_{5}\right)(--)$. The 2 -line specific effects of $(i-)(j-)$ type was highest and negative in case of $\left(P_{1} \times-\right)\left(P_{4} \times-\right)$ followed by $\left(P_{2} x-\right)\left(P_{6} x^{-}\right)$and $\left(P_{3} x-\right)\left(P_{5} x^{-}\right)$so these combinations were the best. It is obvious that the lines $\left(P_{1} P_{2} P_{3} P_{6}\right)$ which did well in 2 -line general effects were also included in the best 2 -line specific effect. While the parents P_{2} and P_{6} were bad in combination (ij)(--). For instance the specific combination ($\mathrm{P}_{1} \times \mathrm{P}_{2}$) (--) which had high and negative 2 -line specific effect, gave the highest and positive effect, when used in mother combination i.e. ($\left.\mathrm{P}_{1} \mathrm{x}-\right)\left(\mathrm{P}_{2} \mathrm{x}-\right)$. Similarity, parent 3and 4 which were good in specific combination $\left(P_{3} \times P_{4}\right)(--)$ showed the positive 2 -line specific effect when used in combination $\left(\mathrm{P}_{3} \mathrm{x}-\right)\left(\mathrm{P}_{4} \mathrm{x}-\right)$. It is obvious that, the order in which the parents were involved in double cross was important.

With respect to the days to first boll opening the 2 -line general effects are given in Table (4). The data indicated that the parents 1 and 2 in various combinations did the best performance, followed by (P_{1} and P_{5}). The other 2-line which did well in combinations were (P_{2} and P_{4}) and (P_{3} and P_{5}), as well as parents (P_{3} and P_{6}) and (P_{3} and P_{5}). The other cases of the 2 -line general effect were positive for (P_{2} and P_{5}), (P_{1} and P_{2}) and (P_{2} and P_{6}) exhibited poor combination (Table 16). As for the particular arrangement the specific combination $\left(P_{3} \times P_{4}\right)(--),\left(P_{4} \times P_{5}\right)(--),\left(P_{1} \times\right.$ $\left.P_{3}\right)(--)$ and $\left(P_{1} \times P_{5}\right)(--)$ had high and negative 2 -line specific effect of $(\mathrm{ij})(--)$ type and followed by $\left(P_{1} \times P_{2}\right)(--)$ which were the best combinations while the combination $\left(P_{3} \times\right.$ $\left.P_{6}\right)(--),\left(P_{1} \times P_{4}\right)(--)$ and $\left(P_{2} \times P_{4}\right)(--)$ exhibited positive and high effect therefore these combination were poor. The 2-line specific effect of $(\mathrm{i}-)(\mathrm{j}-)$ type was high and negative in the case of $\left(\mathrm{P}_{1} \times-\right)\left(\mathrm{P}_{4} \mathrm{x}-\right)$ followed by $\left(\mathrm{P}_{3} \mathrm{x}-\right)\left(\mathrm{P}_{5} \mathrm{x}-\right)$ and $\left(\mathrm{P}_{2} \mathrm{x}-\right)\left(\mathrm{P}_{4} \mathrm{x}-\right)$. It is obvious that line P_{1}, P_{3}, P_{4} and P_{5} which did well in 2-line general effect, were also included in the best 2 -line specific combinations. Another very important point to be
noted here in the order effect of parents, for instance the specific combination $\left(\mathrm{P}_{3} \mathrm{x}\right.$ P_{4})(--) which had negative highest 2 -line specific effect, gave the highest positive effect when used in another combination ($\left.\mathrm{P}_{3} \times-\right)\left(\mathrm{P}_{4} \times-\right)$. Similarly parent 4 and 5 which were good in specific combination of ($\mathrm{P}_{4} \times \mathrm{P}_{5}$) (--) showed positive 2-line specific effect when used in combination as ($\left.\mathrm{P}_{4} \mathrm{x}-\right)\left(\mathrm{P}_{5} \mathrm{x}-\right)$. It is obviously that, the order in which the parents were involved in double crosses was important.

With regard to for 2-line general effect for earliness index, the parents (P_{2} and P_{3}) in various combinations were the best, followed by (P_{1} and P_{3}), (P_{2} and P_{6}) and (P_{1} and P_{5}), because it had high and positive effects which was desirable direction for 2line general effect. The other 2-line which did well in combinations were (P_{3} and P_{5}) and (P_{1} and P_{6}) because its had positive 2 -line general effect. With regard to the particular arrangement the specific combination $\left(P_{1} \times P_{5}\right)(--)$ had the highest and positive 2-line specific effect of (ij) (--) followed by ($\mathrm{P}_{1} \times \mathrm{P}_{2}$) (--), ($\mathrm{P}_{4} \times \mathrm{P}_{6}$) (--), ($\mathrm{P}_{3} \times$ $\left.P_{4}\right)(--)$ and $\left(P_{1} \times P_{3}\right)(--)$. About half of cases had negative 2 -line specific effects which was bad combination. The 2 -line specific effect of $(i-)(j-)$ type were high in the cases of ($\left.\mathrm{P}_{1} \mathrm{x}-\right)\left(\mathrm{P}_{4} \mathrm{x}-\right)$ and $\left(\mathrm{P}_{2} \mathrm{x}-\right)\left(\mathrm{P}_{5} \mathrm{x}-\right)$ followed by $\left(\mathrm{P}_{1} \mathrm{x}-\right)\left(\mathrm{P}_{6} \mathrm{x}-\right)$ and $\left(\mathrm{P}_{3} \mathrm{x}^{-}\right)\left(\mathrm{P}_{5} \mathrm{x}-\right)$. It is obvious that lines P_{1}, P_{2}, P_{3} and 6 which did well in 2-line general effect were also included in the best line specific combinations. For instance the specific combination $\left(P_{1} \times P_{5}\right)(--)$ which had the highest 2-line specific effect, gave highest negative effect when used in another combination i.e. $\left(\mathrm{P}_{1} \times-\right)\left(\mathrm{P}_{5} \mathrm{x}-\right)$ similar parents (P_{1} and P_{2}) which were good in specific combination ($P_{1} \times P_{2}$) (--) showed the negative 2 -line specific effect when used in combination as ($\left.\mathrm{P}_{1} \times-\right)\left(\mathrm{P}_{2} \mathrm{x}-\right)$ as well as the parents P_{1} and P_{3} were good 2-line specific effect when used $\left(P_{1} \times P_{3}\right)(--)$ but when its used as $\left(P_{1} x-\right.$ $)\left(P_{3} \times-\right)$ exhibited negative specific effect. These results, indicate that the order in which the parents were involved in double crosses was important. This was agreement with Singh and Choudary (1977)

5. The three-line interaction effect

The three line interaction effect of lines i, j and k with and without arrangement are presented in Table (5). For the first fruiting node considering the specific order effect of three out of four parents i.e. (ij) (k-) type in double crosses it was found that $\left(\mathrm{P}_{1} \times \mathrm{P}_{5}\right)\left(\mathrm{P}_{4} \times-\right),\left(\mathrm{P}_{1} \times \mathrm{P}_{6}\right)\left(\mathrm{P}_{5} \times-\right),\left(\mathrm{P}_{2} \times \mathrm{P}_{3}\right)\left(\mathrm{P}_{4} \mathrm{x}-\right),\left(\mathrm{P}_{3} \times \mathrm{P}_{4}\right)\left(\mathrm{P}_{5} \times-\right)$ and $\left(\mathrm{P}_{3} \times \mathrm{P}_{5}\right)\left(\mathrm{P}_{1} \mathrm{x}-\right)$ combination were the best combination (Table 5). However, on the basis of the overall performance of any three parents in all possible combination regardless of their arrangement (ijk-), the best triple combination was $P_{1} P_{3} P_{6}$ followed by $P_{1} P_{3} P_{5}, P_{2} P_{4} P_{6}$ and $\mathrm{P}_{2} \mathrm{P}_{5} \mathrm{P}_{6}$. The order of these parents in cross events can be differd by changing the arrangement of the parents of a particular cross.

Table 5. Three-line interaction effect of lines I, j and k due to the particular arrangement (ij)(k-) i.e. $\mathrm{t} i \mathrm{jk}$ and specific effect irrespective s ijk i.e. 3 -line effect irrespective of the arrangement for earliness characters of cotton

Crosses	Position of first fruiting node		Days to first flower		Days to first boll		Earliness index	
	(ij)(k-)	i,j and k	(ij)(k-)	i, j and k	(ij)(k-)	i, j and k	(ij) -) (k	$\mathrm{i}, \mathrm{j} \text { and }$ k
$\left(P_{1} \times P_{2}\right)\left(P_{3}.\right)$.	-0.069	-0.039	0.172	-0.075	-0.109	0.001	0.462	0.689
$\left(P_{1} \times P_{2}\right)\left(P_{4}.\right)$	0.124	-0.007	0.233	-0.079	-0.085	0.059	1.152	-0.463
$\left(P_{1} \times P_{2}\right)\left(P_{5}.\right)$.	0.089	0.007	0.150	-0.076	0.135	0.148	1.324	-0.912
$\left(P_{1} \times P_{2}\right)\left(P_{6}.\right)$	0.044	-0.021	0.478	-0.007	0.400	0.136	1.313	0.130
$\left(P_{1} \times P_{3}\right)\left(P_{2}.\right)$	-0.052		0.025		-0.381		0.702	
$\left(P_{1} \times P_{3}\right)\left(P_{4}.\right)$	0.167	0.079	0.067	0.099	1.009	-0.046	3.360	-0.41
$\left(P_{1} \times P_{3}\right)\left(P_{5}.\right)$	0.004	-0.074	0.148	-0.074	0.531	-0.275	0.717	0.891
$\left(P_{1} \times P_{3}\right)\left(P_{6}.\right)$.	-0.052	-0.092	-0.379	-0.076	-0.733	-0.158	0.717	-0.150
$\left(P_{1} \times P_{4}\right)\left(P_{2}.\right)$	0.052		-0.183		0.131		2.405	
$\left(P_{1} \times P_{4}\right)\left(P_{3}.\right)$	-0.122		-0.081		-0.057		2.644	
$\left(P_{1} \times P_{4}\right)\left(P_{5}.\right)$	0.120	0.028	-0.004	0.079	-0.046	-0.010	0.894	0.329
$\left(P_{1} \times P_{4}\right)\left(P_{6}.\right)$	0.106	0.059	-0.481	0.189	-1.217	0.184	3.877	-0.122
$\left(P_{1} \times P_{5}\right)\left(P_{2}.\right)$.	-0.117		-0.092		0.302		1.418	
$\left(P_{1} \times P_{5}\right)\left(P_{3}.\right)$	0.248		-0.124		-0.541		2.303	
$\left(P_{1} \times P_{5}\right)\left(\mathrm{P}_{4}.\right)$	-0.235		-0.195		-0.896		1.162	
$\left(P_{1} \times P_{5}\right)\left(P_{6}.\right)$.	0.111		0.498		1.543		4.448	
$\left(P_{1} \times P_{6}\right)\left(P_{2}.\right)$	0.022		-0.267		-0.222		1.259	
$\left(P_{1} \times P_{6}\right)\left(P_{3}.\right)$	-0.091		0.102		0.494		0.734	
$\left(P_{1} \times P_{6}\right)\left(P_{4}.\right)$.	-0.133		0.269		0.567		1.458	
$\left(P_{1} \times P_{6}\right)\left(P_{5}.\right)$.	-0.217		-0.338		-0.824		1.799	
$\left(P_{2} \times P_{3}\right)\left(P_{1} \cdot\right)$.	0.120		-0.197		0.491		0.240	
$\left(P_{2} \times P_{3}\right)\left(P_{4}.\right)$.	-0.398	0.021	-0.019	-0.001	-0.172	-0.226	0.649	0.486
$\left(P_{2} \times P_{3}\right)\left(P_{5}.\right)$	-0.056	-0.013	-0.244	-0.026	-0.530	-0.193	1.569	0.408
$\left(P_{2} \times P_{3}\right)\left(P_{6}.\right)$	0.233	-0.021	0.136	0.070	0.093	0.152	0.043	-0.101
$\left(P_{2} \times P_{4}\right)\left(P_{1}.\right)$	-0.176		-0.050		-0.046		1.254	
$\left(P_{2} \times P_{4}\right)\left(P_{3}.\right)$.	0.269		-0.099		-0.178		0.332	
$\left(P_{2} \times P_{4}\right)\left(P_{5}.\right)$	0.209	-0.017	-0.096	0.033	-0.237	-0.001	1.170	0.527
$\left(P_{2} \times P_{4}\right)\left(P_{6}.\right)$	-0.106	-0.067	0.068	-0.072	0.235	0.024	0.579	-0.533
$\left(P_{2} \times P_{5}\right)\left(P_{1}.\right)$	0.028		-0.058		-0.437		0.093	
$\left(P_{2} \times P_{5}\right)\left(P_{3}.\right)$.	-0.061		0.339		0.431		0.894	

Australian $\left(p_{1}\right)$, BBB $\left(p_{2}\right)$, Karshenky $\left(p_{3}\right)$, Giza $70\left(p_{4}\right)$, Suvin $\left(p_{5}\right)$ and (Giza $77 \times$ Pima $\left.S_{6}\right)\left(p_{6}\right)$

Cont. Table 5.

Crosses	Position of first fruiting node		Days to first flower		Days to first boll		Earliness index	
	(ij)(k-)	i, j and k	(ij)(k-)	i, j and k	(ij)(k-)	i,j and k	(ij)(k-)	i,j and k
$\left(P_{2} \times P_{5}\right)\left(P_{4 .}\right)$.	-0.019	-0.015	0.034	0.003	0.685	-0.052	-0.096	0.685
$\left(P_{2} \times P_{5}\right)\left(P_{6}.\right)$.	-0.111	0.092	-0.517	0.082	-0.780	0.112	2.436	-0.513
$\left(P_{2} \times P_{6}\right)\left(P_{1}.\right)$.	-0.067		-0.211		-0.178		0.054	
$\left(P_{2} \times P_{6}\right)\left(P_{3}.\right)$.	-0.089		-0.250		-0.085		-0.418	
$\left(P_{2} \times P_{6}\right)\left(P_{4 .}\right)$.	0.194		-0.160		-0.315		0.007	
$\left(P_{2} \times P_{6}\right)\left(P_{5}.\right)$.	-0.161		0.292		0.681		-0.644	
$\left(P_{3} \times P_{4}\right)\left(P_{1 .}\right)$.	-0.044		0.014		-0.952		0.716	
$\left(P_{3} \times P_{4}\right)\left(P_{2}.\right)$.	0.130		0.118		0.350		0.981	
$\left(P_{3} \times P_{4}\right)\left(P_{5}.\right)$.	-0.231	-0.016	0.085	-0.003	0.181	0.034	-0.571	-0.048
$\left(P_{3} \times P_{4}\right)\left(P_{6}.\right)$.	-0.091	0.048	0.217	0.001	1.257	0.088	-2.545	-0.914
$\left(P_{3} \times P_{5}\right)\left(P_{1 .}\right)$.	-0.252		-0.024		0.009		1.587	
$\left(P_{3} \times P_{5}\right)\left(P_{2}.\right)$.	0.117		-0.094		0.098		-2.463	
$\left(P_{3} \times P_{5}\right)\left(P_{4 .}\right)$.	0.280		-0.034		-0.513		0.915	
$\left(P_{3} \times P_{5}\right)\left(P_{6}.\right)$.	-0.307	-0.012	-0.131	-0.096	-0.494	-0.067	1.775	-0.365
$\left(P_{3} \times P_{6}\right)(1$.$) .$	0.143		0.277		0.239		-1.451	
$\left(P_{3} \times P_{6}\right)(2$.$) .$	-0.144		0.114		-0.007		0.461	
$\left(P_{3} \times P_{6}\right)\left(P_{4 .}\right)$.	0.070		-0.231		-0.743		3.803	
$\left(P_{3} \times P_{6}\right)\left(P_{5}.\right)$.	0.365		0.153		0.267		-2.621	
$\left(P_{4} \times P_{5}\right)\left(P_{1}.\right)$.	0.115		0.199		0.943		-2.056	
$\left(P_{4} \times P_{5}\right)\left(P_{2}.\right)$.	-0.191		0.062		-0.448		1.266	
$\left(P_{4} \times P_{5}\right)\left(P_{3}.\right)$.	-0.048		-0.051		0.331		-0.344	
($P_{4} \times \mathrm{P}_{5}$) ($\left.\mathrm{P}_{6}.\right)$.	0.172	0.061	0.110	0.031	-0.304	0.090	0.124	0.382
$\left(P_{4} \times P_{6}\right)\left(P_{1}.\right)$.	0.028		0.211		0.650		-2.419	
$\left(P_{4} \times P_{6}\right)\left(P_{2}.\right)$.	-0.089		0.093		0.080		0.572	
$\left(P_{4} \times P_{6}\right)\left(P_{3}.\right)$.	0.020		0.014		-0.515		-1.258	
$\left(P_{4} \times P_{6}\right)\left(P_{5}.\right)$.	-0.122		-0.145		-0.159		1.352	
$\left(P_{5} \times P_{6}\right)\left(P_{1}.\right)$.	0.106		-0.160		-0.719		2.648	
$\left(P_{5} \times P_{6}\right)\left(P_{2}.\right)$.	0.272		0.225		0.098		-1.792	
$\left(P_{5} \times P_{6}\right)\left(P_{3}.\right)$.	-0.057		-0.022		0.228		0.846	
$\left(P_{5} \times \mathrm{P}_{6}\right)\left(\mathrm{P}_{4}.\right)$.	-0.050		0.035		0.463		-1.476	

Australian $\left(p_{1}\right)$, BBB $\left(p_{2}\right)$, Karshenky $\left(p_{3}\right)$, Giza $70\left(p_{4}\right)$, Suvin $\left(p_{5}\right)$ and (Giza $77 \times$ Pima S 6) $\left(p_{6}\right)$
For example change in the arrangement of parents of the best combination parents $\left(P_{1} \times P_{5}\right)\left(P_{4} \times-\right)$ into another combination say $\left(P_{1} \times P_{4}\right)\left(P_{5} \times-\right)$ makes specific effect positive with value (0.120) another combination which involves the same three parents, but in some other order $\left(\mathrm{P}_{4} \times \mathrm{P}_{5}\right)\left(\mathrm{P}_{1}-\right)$ had positive specific effect with value (0.115). This observation clearly shows the significance of order in which the parents
are involved in multiple crosses. With regard to the days to first flower the specific order effect of three out of four parents i.e. (ij)(k-) type in double crosses revealed that $\left(\mathrm{P}_{2} \times \mathrm{P}_{5}\right)\left(\mathrm{P}_{6} \times-\right)\left(\mathrm{P}_{1} \times \mathrm{P}_{4}\right)\left(\mathrm{P}_{6} \times-\right)\left(\mathrm{P}_{1} \times \mathrm{P}_{3}\right)\left(\mathrm{P}_{6} \mathrm{x}-\right)$ and $\left(\mathrm{P}_{1} \times \mathrm{P}_{6}\right)\left(\mathrm{P}_{5} \times-\right)$ combination were the best combinations (Table 5). However on the basis of the overall performance of any three parents, in all possible combinations without respect to arrangement (ijk) the best triple were ($\mathrm{P}_{3} \mathrm{P}_{5} \mathrm{P}_{6}$) followed by $\mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{4}, P_{1} \mathrm{P}_{2} \mathrm{P}_{5}$ and $\mathrm{P}_{1} \mathrm{P}_{2}$ P_{3} and $P_{2} P_{4} P_{5}$. Another very important point to be noted here is the order effect of the parents, for instance the specific combination $P_{3} p_{5} P_{6}$ had the highest 3-line specific effect which give little negative effect of value (-0.22) when used in another combination ($\mathrm{P}_{5} \times \mathrm{P}_{6}$) ($\mathrm{P}_{3} \times-$) and another combination $\mathrm{P}_{3} \mathrm{P}_{6} \mathrm{P}_{5}$ also gave little negative effect. This observation clearly shows the significance of the order in which the parents are involved in multiple crosses.

For the first boll opening, considering the specific order effect of three out of four parents i.e. (ij)(k-) type in double crosses, the combination of $\left(\mathrm{P}_{1} \times \mathrm{P}_{4}\right)\left(\mathrm{P}_{6} \times-\right),\left(\mathrm{P}_{3}\right.$ $\left.x P_{4}\right)\left(P_{1} \times-\right),\left(P_{1} \times P_{5}\right)\left(P_{4} x-\right),\left(P_{1} \times P_{3}\right)\left(P_{6} \times-\right),\left(P_{2} \times P_{5}\right)\left(P_{6} x-\right)$ and $\left(P_{3} \times P_{6}\right)\left(P_{4}\right)$ were the best combinations. With regard to the specific effect regardless of the arrangement (ijk-), the best triples were $P_{1} P_{3} P_{5}, P_{2} P_{3} P_{4}, P_{2} P_{3} P_{5}$ and $P_{2} P_{3} P_{6}$. The changing in the arrangement of parents of the best combination of three parents ($\mathrm{P}_{1} \mathrm{x}$ $\left.P_{4}\right)\left(P_{6} \mathrm{x}\right.$ -) into another combination as ($\mathrm{P}_{1} \times \mathrm{P}_{6}$) ($\left.\mathrm{P}_{4} \mathrm{x}-\right)$ make specific effect positive (0.567), other combination in which the same three parents were involved, but in another order $\left(\mathrm{P}_{4} \times \mathrm{P}_{6}\right)\left(\mathrm{P}_{1} \times-\right)$ had specific combination positive effect. It is obvious that the order in which the parents were involved in double cross was important. This means that more consideration should be given to this parameters while attempting multiple crosses.

With respect to the earliness index, the positive effect is desirable for the specific order of three out of four parents i.e. (ij)(k-) type in double crosses as it was found that $\left(\mathrm{P}_{1} \times \mathrm{P}_{4}\right)\left(\mathrm{P}_{6} \times-\right),\left(\mathrm{P}_{3} \times \mathrm{P}_{6}\right)\left(\mathrm{P}_{4} \times-\right),\left(\mathrm{P}_{5} \times \mathrm{P}_{6}\right)\left(\mathrm{P}_{4} \times-\right),\left(\mathrm{P}_{1} \times \mathrm{P}_{4}\right)\left(\mathrm{P}_{3} \times-\right)$ and $\left(\mathrm{P}_{2}\right.$ $\left.x P_{5}\right)\left(P_{6} \times-\right)$ were the best combinations (Table 20). However, on the basis of the overall performance of any three parents in all possible combinations regardless of the arrangement (ijk) the best triple was $P_{1} P_{3} P_{5}$ followed $P_{1} P_{2} P_{3}, P_{2} P_{4} P_{5}, P_{2} P_{3} P_{4}$ and P_{2} $P_{3} P_{5}$. The changing in arrangement of the parents of the best combinations ($P_{1} x$ $\left.P_{4}\right)\left(P_{6}-\right)$ into another combination i.e. $\left(P_{1} \times P_{6}\right)\left(P_{4}-\right)$ had negative specific effect. The second best combination ($P_{3} \times P_{6}$) ($\left.P_{4} \times-\right)$ when arrangement into another combination $\left(P_{3} \times P_{4}\right)\left(P_{6} \times-\right)$ had the high negative specific effect. This means that the order in which the parents were involved in double crosses was important (Singh and Choudary (1977).

6. The four-line interaction:

The 4-line interaction with and without respect to particular arrangements of the parents in double crosses are given in (Table 6). A critical assessment of the data in this Table (6) clearly showed that the involvement of the parents in crosses in particular arrangements such as $\left(P_{1} \times P_{2}\right)\left(P_{3} \times P_{4}\right),\left(P_{1} \times P_{2}\right)\left(P_{5} \times P_{6}\right),\left(P_{1} \times P_{5}\right)\left(P_{3} \times P_{6}\right)$, $\left(\mathrm{P}_{1} \times \mathrm{P}_{6}\right)\left(\mathrm{P}_{2} \times \mathrm{P}_{3}\right),\left(\mathrm{P}_{1} \times \mathrm{P}_{6}\right)\left(\mathrm{P}_{4} \times \mathrm{P}_{5}\right),\left(\mathrm{P}_{2} \times \mathrm{P}_{3}\right)\left(\mathrm{P}_{4} \times \mathrm{P}_{5}\right)\left(\mathrm{P}_{2} \times \mathrm{P}_{4}\right)\left(\mathrm{P}_{3} \times \mathrm{P}_{6}\right)$ and $\left(\mathrm{P}_{3} \times \mathrm{P}_{4}\right)\left(\mathrm{P}_{5}\right.$ $\left.x P_{6}\right)$ provided the maximum interaction effect with regard to the position of first fruiting node. That means that the four parents of the obvious double cross with this specific arrangement were the best combination but not in other order.

For example the combination $\left(P_{1} \times P_{2}\right)\left(P_{3} \times P_{4}\right)$ gave the negative specific effect. -0.193 when used other arrangement for the same parents as $\left(P_{1} \times P_{3}\right)\left(P_{2} \times P_{4}\right)$ gave positive specific effect (0.074). These results confirm that the order in which the parents were involved into a double cross is deciding factor for its high or low performance. Considering the general effect of set of any four parents in various combinations irrespective of the order, it is obvious that parents P_{1}, P_{3}, P_{5} and P_{6} formed the best combination.

With regard to the days to first flower, the data in Table(6) clearly showed that the involvement of parents in crosses in particular arrangements such as ($P_{1} \times$ $\left.P_{2}\right)\left(P_{3} \times P_{4}\right),\left(P_{1} \times P_{2}\right)\left(P_{5} \times P_{6}\right)$ and $\left(P_{3} \times P_{4}\right)\left(P_{5} \times P_{6}\right)$ had highest specific effects with value -0.387 followed by the combination $\left(P_{1} \times P_{3}\right)\left(P_{4} \times P_{6}\right)$ and $\left(P_{2} \times P_{5}\right)\left(P_{4} \times P_{6}\right)$ with values -0.295. The other combinations as ($\mathrm{P}_{1} \times \mathrm{P}_{4}$) ($\mathrm{P}_{2} \times \mathrm{P}_{6}$), ($\mathrm{P}_{1} \times \mathrm{P}_{4}$) ($\mathrm{P}_{3} \times \mathrm{P}_{5}$), ($\mathrm{P}_{1} \times$ $\left.P_{5}\right)\left(P_{3} \times P_{6}\right),\left(P_{2} \times P_{6}\right)\left(P_{4} \times P_{5}\right),\left(P_{2} \times P_{3}\right)\left(P_{4} \times P_{5}\right)$ and $\left(P_{2} \times P_{3}\right)\left(P_{3} \times P_{6}\right)$ were also best specific effects. When the arrangement were changed the performance also changed for example the four parents involved as arrangement $\left(P_{1} \times P_{2}\right)\left(P_{3} \times P_{4}\right)$ is best combination when the arrangement became $\left(P_{1} \times P_{3}\right)\left(P_{2} \times P_{4}\right)$ this combination had a poor specific effect. So the order in which the parents go into double hybrids is a deciding factor for its high or low performance.

Table 6. Four-line interaction effect of lines $\mathrm{I}, \mathrm{j}, \mathrm{k}$ and I due to the particular arrangement (ij) (kl) i.e. t ijkl and 4-lin effect irrespective of their arrangement for earliness characters of cotton.

Crosses	Position of first fruiting node		Days to first flower		Days to first boll		Earliness index	
$\left(P_{1} \times P_{2}\right)\left(P_{3} \times P_{4}\right)$	-0.193	0.101	-0.387	-0.074	0.283	-0.224	0.676	0.224
$\left(P_{1} \times P_{2}\right)\left(P_{3} \times P_{5}\right)$	-0.031	-0.050	0.224	-0.044	-0.067	0.182	0.126	0.582
$\left(P_{1} \times P_{2}\right)\left(P_{3} \times P_{6}\right)$	0.224	-0.166	0.163	-0.107	-0.217	0.047	-0.802	1.261
$\left(P_{1} \times P_{2}\right)\left(P_{4} \times P_{5}\right)$	0.224	-0.075	0.163	-0.217	-0.217	0.151	-0.802	-2.030
$\left(P_{1} \times P_{2}\right)\left(P_{4} \times P_{6}\right)$	-0.031	-0.046	0.224	0.053	-0.067	0.249	0.126	0.418
$\left(P_{1} \times P_{2}\right)\left(P_{5} \times \mathrm{P}_{6}\right)$	-0.193	0.147	-0.387	0.033	0.283	0.111	0.676	-1.288
$\left(\mathrm{P}_{1} \times \mathrm{P}_{3}\right)\left(\mathrm{P}_{2} \times \mathrm{P}_{4}\right)$	0.074		0.199		-1.050		1.508	
$\left(P_{1} \times P_{3}\right)\left(P_{2} \times P_{5}\right)$	0.019		-0.295		0.317		-1.147	
$\left(P_{1} \times P_{3}\right)\left(P_{2} \times P_{6}\right)$	-0.093		0.096		0.733		-0.361	
$\left(P_{1} \times P_{3}\right)\left(P_{4} \times P_{5}\right)$	-0.093	0.036	0.096	0.155	0.733	-0.200	-0.361	1.182
$\left(P_{1} \times P_{3}\right)\left(P_{4} \times P_{6}\right)$	0.019	0.099	-0.295	0.214	0.317	0.287	-1.147	-2.621
$\left(P_{1} \times P_{3}\right)\left(P_{5} \times P_{6}\right)$	0.074	-0.208	0.199	-0.334	-1.050	-0.807	1.508	0.910
$\left(P_{1} \times P_{4}\right)\left(P_{2} \times P_{3}\right)$	0.119		0.188		0.767		-2.184	
$\left(P_{1} \times P_{4}\right)\left(P_{2} \times P_{5}\right)$	-0.054		0.096		-0.500		3.326	
$\left(P_{1} \times P_{4}\right)\left(P_{2} \times P_{6}\right)$	-0.065		-0.284		-0.267		-1.142	
$\left(P_{1} \times P_{4}\right)\left(P_{3} \times P_{5}\right)$	-0.065		-0.284		-0.267		-1.142	
$\left(P_{1} \times P_{4}\right)\left(P_{3} \times P_{6}\right)$	-0.054		0.096		-0.500		3.326	
$\left(P_{1} \times P_{4}\right)\left(P_{5} \times \mathrm{P}_{6}\right)$	0.119	0.123	0.188	0.299	0.767	0.018	-2.184	1.836
$\left(P_{1} \times P_{5}\right)\left(P_{2} \times P_{3}\right)$	0.013		0.071		-0.250		1.021	
$\left(P_{1} \times P_{5}\right)\left(P_{2} \times P_{4}\right)$	-0.170		-0.259		0.717		-2.524	
$\left(P_{1} \times P_{5}\right)\left(P_{2} \times P_{6}\right)$	0.157		0.188		-0.467		1.503	
$\left(P_{1} \times P_{5}\right)\left(P_{3} \times P_{4}\right)$	0.157		0.188		-0.467		1.503	
$\left(P_{1} \times P_{5}\right)\left(P_{3} \times P_{6}\right)$	-0.170		-0.259		0.717		-2.524	
$\left(\mathrm{P}_{1} \times \mathrm{P}_{5}\right)\left(\mathrm{P}_{4} \times \mathrm{P}_{6}\right)$	0.013		0.071		-0.250		1.021	
$\left(P_{1} \times P_{6}\right)\left(P_{2} \times P_{3}\right)$	-0.131		-0.259		-0.517		1.163	
$\left(P_{1} \times P_{6}\right)\left(P_{2} \times P_{4}\right)$	0.096		0.060		0.333		1.016	
$\left(P_{1} \times P_{6}\right)\left(P_{2} \times P_{5}\right)$	0.035		0.199		0.183		-2.179	
$\left(P_{1} \times P_{6}\right)\left(P_{3} \times P_{4}\right)$	0.035		0.199		0.183		-2.179	
$\left(P_{1} \times P_{6}\right)\left(P_{3} \times P_{5}\right)$	0.096		0.060		0.333		1.016	
$\left(P_{1} \times P_{6}\right)\left(P_{4} \times P_{5}\right)$	-0.131		-0.259		-0.517		1.163	
$\left(\mathrm{P}_{2} \times \mathrm{P}_{3}\right)\left(\mathrm{P}_{4} \times \mathrm{P}_{5}\right)$	-0.131	-0.135	-0.259	0.021	-0.517	-0.016	1.163	-0.103
$\left(\mathrm{P}_{2} \times \mathrm{P}_{3}\right)\left(\mathrm{P}_{4} \times \mathrm{P}_{6}\right)$	0.013	-0.006	0.071	-0.026	-0.250	-0.340	1.021	1.103
$\left(P_{2} \times P_{3}\right)\left(P_{5} \times \mathrm{P}_{6}\right)$	0.119	0.121	0.188	0.232	0.767	0.289	-2.184	-0.783
$\left(P_{2} \times P_{4}\right)\left(P_{3} \times P_{5}\right)$	0.096		0.060		0.333		1.016	
$\left(\mathrm{P}_{2} \times \mathrm{P}_{4}\right)\left(\mathrm{P}_{3} \times \mathrm{P}_{6}\right)$	-0.170		-0.259		0.717		-2.524	
$\left(\mathrm{P}_{2} \times \mathrm{P}_{4}\right)\left(\mathrm{P}_{5} \times \mathrm{P}_{6}\right)$	0.074	0.007	0.199	-0.019	-1.050	-0.064	1.508	0.533
$\left(P_{2} \times P_{5}\right)\left(P_{3} \times P_{4}\right)$	0.035		0.199		0.183		-2.179	
$\left(P_{2} \times P_{5}\right)\left(P_{3} \times P_{6}\right)$	-0.054		0.096		-0.500		3.326	
$\left(P_{2} \times P_{5}\right)\left(P_{4} \times P_{6}\right)$	0.019		-0.295		0.317		-1.147	
$\left(\mathrm{P}_{2} \times \mathrm{P}_{6}\right)\left(\mathrm{P}_{3} \times \mathrm{P}_{4}\right)$	0.157		0.188		-0.467		1.503	
$\left(P_{2} \times P_{6}\right)\left(P_{3} \times P_{5}\right)$	-0.065		-0.284		-0.267		-1.142	
$\left(P_{2} \times P_{6}\right)\left(P_{4} \times P_{5}\right)$	-0.093		0.096		0.733		-0.361	
$\left(\mathrm{P}_{3} \times \mathrm{P}_{4}\right)\left(\mathrm{P}_{5} \times \mathrm{P}_{6}\right)$	-0.193		-0.387		0.283		0.676	
$\left(\mathrm{P}_{3} \times \mathrm{P}_{5}\right)\left(\mathrm{P}_{4} \times \mathrm{P}_{6}\right)$	-0.031		0.224		-0.067		0.126	
$\left(\mathrm{P}_{3} \times \mathrm{P}_{6}\right)\left(\mathrm{P}_{4} \times \mathrm{P}_{5}\right)$	0.224		0.163		-0.217		-0.802	

Australian $\left(p_{1}\right)$, $\operatorname{BBB}\left(p_{2}\right)$, Karshenky $\left(p_{3}\right)$, Giza $70\left(p_{4}\right)$, Suvin $\left(p_{5}\right)$ and (Giza $77 \times$ Pima $\left.S_{6}\right)\left(p_{6}\right)$

Considering the general effect, of set of any four parents in various combinations, irrespective of the order, it is clear that parents P_{1}, P_{3}, P_{5} and P_{6} formed the best combination.

With respect to the days to first boll, we found that the specific effect of particular arrangement of four parents as $\left(P_{1} \times P_{3}\right)\left(P_{2} \times P_{4}\right),\left(P_{1} \times P_{3}\right)\left(P_{5} \times P_{6}\right)$ and $\left(P_{2}\right.$ $\left.x P_{4}\right)\left(P_{5} \times P_{6}\right)$ were highest and negative specific effects followed by the combinations with particular arrangement as (Table 6) $\left(\mathrm{P}_{2} \times \mathrm{P}_{5}\right),\left(\mathrm{P}_{1} \times \mathrm{P}_{6}\right)\left(\mathrm{P}_{2} \times \mathrm{P}_{3}\right),\left(\mathrm{P}_{1} \times \mathrm{P}_{4}\right)\left(\mathrm{P}_{3} \times\right.$ $\left.P_{6}\right)$ and $\left(P_{2} \times P_{3}\right)\left(P_{4} \times P_{5}\right)$. The other combination with particular arrangement of four parents such $\left(P_{1} \times P_{4}\right)\left(P_{2} \times P_{5}\right)$ and $\left(P_{1} \times P_{4}\right)\left(P_{3} \times P_{6}\right)$ were best specific effects. We found in (Table 6) that best 4-line combination $\left(P_{1} \times P_{3}\right)\left(P_{2} \times P_{4}\right)$ in this order when combined in other order such $\left(P_{1} \times P_{2}\right)\left(P_{3} \times P_{4}\right)$ produced the positive effect which is undesirable. These results are a given confirm that the order in which the parents go into a double hybrids is deciding factor of high or low performance. Considering the general effect of set of any four parents in various combinations irrespective of order it is evident that parents $\mathrm{P}_{1}, \mathrm{P}_{3}, \mathrm{P}_{5}$ and P_{6} formed the best combination.

For earliness index, the data in Table (6) clearly showed that the involvement of parents in crosses in particular arrangements such as $\left(P_{1} \times P_{4}\right)\left(P_{2} \times P_{5}\right),\left(P_{1} \times P_{4}\right)\left(P_{3} \times\right.$ P_{6}) and $\left(P_{2} \times P_{5}\right)\left(P_{3} \times P_{6}\right)$ provided the maximum interaction effect. The other combinations as particular arrangement $\left(P_{1} \times P_{3}\right)\left(P_{2} \times P_{4}\right),\left(P_{1} \times P_{3}\right)\left(P_{5} \times P_{6}\right),\left(P_{1} \times\right.$ $\left.P_{5}\right)\left(P_{2} \times P_{6}\right),\left(P_{2} \times P_{4}\right)\left(P_{5} \times P 6\right)$ and $\left(P_{2} \times P_{6}\right)\left(P_{3} \times P_{4}\right)$ were the best, when the arrangement of highest interaction specific effect combination $\left(p_{1} \times P_{4}\right)\left(P_{2} \times P_{5}\right)$ changed to other arrangement i.e. $\left(P_{1} \times P_{2}\right)\left(P_{4} \times P_{5}\right)$ this combination had negative specific effect which is undesirable. These results again confirm that the order in which the parents go into double hybrids is deciding factor for its high or low performance. With regard to the general effect of set of any four parents in various combinations, irrespective of the order it is obvious that parents P_{1}, P_{4}, P_{5} and P_{6} formed the best combination. From aforementioned results, it could be suggested that P_{1}, P_{5}, P_{6}, as well as P_{3} formed the best "quadriallel" or with the parent Giza $70\left(P_{4}\right)$ in case earliness index.

REFERENCES

1. Abd El-Bary, A. M. R. 2003. Triallel analysis of some quantitatively inherited traits in Gossypium barbadense L. Ph.D. Thesis, Fac. of Agric. Mansoura, Univ, Egypt.
2. Abd El-Hadi, A. H., Z. M. El-Diasty, M. S. Hamada, M. A. Raaft and W. M. B. Yehia 2005. Inheritance of vegetative, earliness and fiber traits in some cotton crosses. J. Adv. Agric. Res., Fac. Agric; Saba Basha, Alex. Univ., (Egypt)., 10(1): 63-81.
3. Abou El-Yazied, M. A. 2004. Bochemical analysis as a tool to the prediction of heterosis and combining ability in some cotton crosses.Ph.D. Thesis, Fac. Agric., Mansoura, Univ., Egypt.
4. Aziza-Sultan M. M. 2008. Breeding behaviour for the botanical, yield and fiber characteristics of inter-specific crosses in cotton Ph.D. Thesis, Fac. of Agric., Cairo Univ., Egypt.
5. El-Hoseiny, H. A. 2004. Study on combining ability for top crosses in cotton. M.Sc. Thesis, Fac. of Agric. Al-Azhar, Univ., Egypt.
6. El-Tabbakh, S. S. and F. S. El-Nakhlawy. 1995. Estimation of general and specific combining ability for seed cotton yield and its components through a (5×5) diallel cross analysis. Minofiya J. Agric. Res., 20 (2): 493-505.
7. Kaushik, S. K., C. J. Kapoor and J. Singh. 2006. Combining ability analysis in upland cotton. National, J. of Plant-Improvement. (India)., 8 (1): 32-38.
8. Kaushik, S. K and C. J. Kapoor. 2007. Genetics of yield and other traits over environments in American cotton (Gossypium hirsutum, L.). J. Cotton Res. Develop. (India), 21(1): 6-11.
9. Potdukhe, N. R. and J. N. Parmar. 2006. Genetic nature of yield and fiber traits in upland cotton (Gossypium hirsutum, L.). J. of Maharashtra, Agric. Univ., 31(1): 128-129.
10. Prasad, U. S., V. C. Reddy and A. N. Reddy. 2005. Studies on genetic variability in American cotton (Gossypium hirsutum, L.). Karnataka, J. of Agric. Sci. (India)., 18 (4): 1095-1098.
11. Rawling, J. O. and C. C. Cockarham 1962. Analysis of double cross hybrids populations. Biometrics, 18: 229-44.
12. Singh, R. K. and B. D. Chaudhary. 1977. Biometrical Methods in Quantitative Genetic Analysis. 2nd ed., Kalyani, Publishers, Daryagani, New Delhi.
13. Singh, R. K. and B. D. Chaudhary. 1985. Biometrical Method in Quantitative Genetic Analysis. Kalyani Publishers, New Delhi.
14. Yehia, W. M. B. 2005. Three way crosses analysis of Egyptian cotton (Gossypium barbadense, L.). Ph. D. Thesis, Fac. Agric. Mansoura Univ. Cairo, 213 pp.
15. Zeina, A. M. A. 2002. Using biparental manting system to produce new promising recombination in cotton. Egypt. J. Agric. Res., 80 (1): 325-340.

قدرة التالف ونظم ترتيب الاباء فى الهجن الزوجية للقطن

> طلعت احمد محمود الفقي 1 - احمد ابراهيم العجمي2 حمزة السيد يس2ـ حسن أمين الحسيني1 1 معهـ بحوث القطن - مركز البحوث الزراعية - الجبزة - مصر 2 قسم المحاصبل - كلبة الزراعة - جامعة الأزهر

يهـدف البحث إلـى دراسـة القدرة العامـة والخاصـة على الائـتلاف واستتخدام الهجن الزوجية في تحسين صفات النبكير للقطن الصصرى وقد استخدمت في ذلك ستة اصناف وهي اسنترالي ، BBB ، كراشنكي ، جيزة 70، سيوفين ، الهجين المبشر (جـ77 × بيمـاس6) وقد زرعت هذه الأصناف فى عام 2005م بمحطة بحوث سخا بمركز البحوث الزراعية وتم إجراء التهجين بينها بطريقة الهجن الدائريـة في اتجاه واحد للحصول على 15 هجين فردى، وفي الموسـم الثاني عـام 2006م تـم زراعـة الجيل الأول للهجـن الفردبـة والتهجين بينهـا بحيث لا ينكرر ای اب فى الجيل الاول مرنين في الهجين الزوجي فيكون عدد الهجن الزوجية الناتجـة هو 45 هجين زوجي تبعا للمعادلة الاتية: عدد الهجن الزوجية = P (P-1) (P-2) (P-3) وفي الموسم الثالث 2007م تم زراعة الهجن الزوجية فى تجربة قطاعات كاملـة عشوائية من ثلاث مكررات احنوت القطعة على ثلاث خطوط طول الخط 4م وزرعت النباتات على مسـافة 20 سم تمتل الزراعة العادية وتم خف التجربة على نبانين فى الجورة وأجريت عليها العمليات الزراعيـة العاديـة لمحطـة بحوث سـخا وأخذت بيانـات التبكير على عشـر نباتات محاطـة مـن الجوانب.

وكانت الصفات المدروسة كالأتي :

$$
\begin{aligned}
& \text { أولا : صفات التبكير :1- موقع أول عقدة ثمرية 2- ميعاد ظهور أول زهرة } \\
& 3 \text { - ميعاد تفتح أول لوزة 4- معامل التبكير }
\end{aligned}
$$

1. كان الأب كراشنكى ذو قدرة نالف عامة كاب أوحد لتكوين الهجن الزوجيـة عاليـة القيمـة وسـالبة وهو الاتجـاه المرغـوب لجميع صـفات التبكيـر ماعـدا صـفة معامـل التبكيـر فــن القيمـة الموجبـة هـى
المرغوبـة.
2. كانت افضل قدرة نالف عامة ثـائية للاببين استراللي مـع ال BBB ، ال BBB مـع جيزة 70 فى هجين

فردى واحد مـع صـرف النظر عن الهجين الفردى الاخر، وعند تغير الترتيب لنفس الآبـاء يصبح الهجين الزوجى الثانى له قيمة قد تكون غبر مرغوبة في صفات التبكير •
3. كانت أفضـل قدرة تـالف عامـة ثلاثيـة الترتيب (استرالي × سـيوفين) × (جيزة $70 \times$ × -) بصـرف النظر عن الأب الرابـع ومـع تغير التترتيب يصبح الهجين الزوجي النـاتج غبر مرغوب لصـفات . التبكير
4. كانت أفضـل مجموعـة رباعيـة بصـرف النظـر عن الترتيب (استرالي ، BBB، سـيوفين ، الهجين المبشر (ج77 × بيما س6)) فى صفة أول عقدة ثمرية والمجموعة (استرالي ، BBB، جيزة 70، سيوفين) لصفة تفتح اول زهره، والمجموعة (استرالي ، كراشنكى، سيوفين ، الهجين المبشر (ج77 ، 77 ، × بيمـا س6) (لصفة تفتح أول لوزة ، والمجموعة (استرالي ، جيزة70 ، سيوفين ، الهجين المبشر (ج77 × بيما س6)) لمعامل التبكير .
5. تؤكد الننائج ان ترتيب الاباء فى نكوين الهجن الزوجية يحدد القيمة المظهرية للهجين اما ان تكون هذه القيمة مرنفعة او منخفضة.
6. باستعراض مكونات النباين الوراثى وجد ان التفاعل بين النتاينات الاضـافية لها قيمـة فى توريث
 ميزين فى صفات التبكير
7. دلت الننائج على ان ترتيب الاباء الداخلة فى الهجن الفرديـة المستخدمة فى انتاج الهجن الزوجية لـه اعتبار فى تميز الهجن الزوجيـة حيث ان التنيير فى هذا التزتيب لنفس الابـاء يفقد الهجين الزوجي تميزه.

