The integration Effect between Mineral and biofertilization on Wheat Production in Soils High in Iron at the New Valley, Egypt

H. A. Fawy, S. M. Ibrahim, H. K. Abo EL-Ela and Noha M. Abd EL- Hameed

Soil Fertility and Microbiology Dept., Desert Research Center (DRC), Cairo, Egypt.

HIGH Fe content in the New Valley soils hinders the absorption of both P and Zn by plants, which is negatively reflected on crop production. Field experiments were carried out in two successive seasons at two sites under the conditions of the New Valley soils in order to increase wheat yield by the integration between mineral (P and Zn) and bio-fertilization (Mycorrhiza and Azotobacter). The first experiment was carried out at El-Monera (sandy soil), El-Kharaga Oasis, while the second one was carried out at Al-Kaser (clayey soil), El-Dakhlla Oasis. Grains of wheat variety Sakha 93 was cultivated in both locations. Application of mineral P and Zn fertilizers along or with bio-fertilizers increased wheat yield parameters, nutrients content, total antioxidants, and phenols of wheat. Moreover, increasing the application rates of P and Zn decreased Fe and Mn contents in wheat and increased N, K, Zn and Cu contents in the straw and grains. The most effective treatment for yield, nutrients and biochemical contents was by applying P at a rate of 60 kg fed⁻¹ (1 fed = 4200 m²) in clay soils and 80 kg fed⁻¹ in sandy soils with spraying Zn at a rate of 250 mg L⁻¹ with the Mycorrhizae and Azotobacter applications. This treatment could achieve 5.45 and 2.21 Mg fed⁻¹ for straw and grains respectively in the sandy soil while, 9.5 and 4.16 Mg fed-1 in the clay soil. This study revealed that combining bio- and mineral P and Zn fertilizers application could decrease the negative effect of high Fe content in soils and increased wheat production.

Keywords: New Valley soils, P, Zn, Mycorrhizae, Azotobacter, Iron content, Wheat

Several studies have reported that application of organic and/or bio-fertilizers along with mineral fertilizers increase yield and biochemical components of wheat. For example Tayebeh et al. (2010) found that the highest wheat grain yield was achieved when applied mineral N fertilizer and compost. Shah *et al.* (2010) reported that the application of N fertilizer as urea with 25% N from farm yard manure or poultry manure or city waste achieved optimum wheat yield and reduced fertilizer cost by 50%. Applications of humic acid with mineral fertilizers achieved highest yield of wheat as well (Tahir *et al.*, 2011). Fadl-Allah *et al.* (2010) demonstrated that the use of bio-fertilizer with mineral N fertilizer optimized wheat production and nutrient contents. Singhal *et al.* (2012) reported that combining the application of mineral P along with mycorrhizae

could achieve the highest yield of wheat. Castillo *et al.* (2012) demonstrated the beneficial effect of mycorrhizae on P uptake in wheat, barley and oats. Hasanpour *et al.* (2012) found that inoculation of mycorrhizae and/or Azotobacter significantly increased wheat grain yields. In the same respect, Mir *et al.* (2013) demonstrated that mycorrhiza and Azotobacter applications could improve wheat growth and seed production even under drought stress conditions. Moola *et al.* (2014) reported that the highest increase in wheat productivity, grain quality and nutrient uptake was recorded with the application of green manure + farmyard manure + bio-fertilizers. Barker and Tagu (2002) evidenced the beneficial effect of mycorrhizae by producing phyto-hormones like auxins and cytokines, which promotes plant growth and consequently the yield.

Soils with high content in Fe retard the uptake of other nutrients, like P and Zn. For instance, Wandruszka (2006) revealed that high Fe content in soil decreases P content in the leaf, stem and root of wheat. However, high P additions could reduce the accumulation of Fe into wheat leaves (Handreck, 2006). Furthermore, Li et al. (2007) reported that higher available soil P significantly decreased crop micronutrients, possibly because of their precipitation as metal phosphates. Hasina et al. (2011) stated that the growth performance of wheat was highly influenced by the application of two times spray of 0.5% N, 0.5% K and 0.5% Zn solutions. Moghadam et al. (2012) reported that the wheat yield increased with foliar application of B and Zn. Niemi et al (2014) stated that application of Fe at high levels decreased the concentrations of Zn, Cu and Mn. The New Valley soils are high in Fe content causes severe problems regarding uptake of P and Zn by plants. Therefore, the present study was undertaken to study the possibility of improving yield and biochemical components of wheat under the New Valley conditions by integrating mineral P fertilizers, foliar spray of Zn and bio-fertilizers in order to overcome the problems caused by high Fe content.

Materials and Methods

Field experiments in two successive seasons (2012/2013-2013/2014) were carried out in split-split plot design with three replications in two sites at the New Valley, southern Egypt. The first site was at El-Kharaga Oasis (El-Monera villages) and the second was at El-Dakhlla Oasis (Al-Kaser). The first experiment (sandy soil) located at 27° 47.7'42" N and 30° 24.7' 56" E, while the second one (clay soil) located at 28° 20.6' 24" N and 31° 59.9' 58" E. The plot area was 90 m² at Al-Kaser location with flood irrigation system, while was 64 m² at the El-Monera with sprinkler irrigation system. The used cultivar in each site was Sakha 93, which is popular in these sites. The bio-fertilizer treatments in sub-sub plots.

Table 1 shows the analytical data of soil and water at the experimental sites. A basal dose of N as ammonium nitrate and K as potassium sulfate was applied as 70 and 50 kg fed⁻¹, respectively in sandy soil, where 50 and 25 kg fed⁻¹ was

applied in clay soil. The fertilizers of N and K were divided to three equal split doses and applied at 20, 60, and 90 days after sowing following the general recommendation in the study area. Farm yard manure applied at rate 25 and 15 m³ fed⁻¹ for sandy and clay soils respectively. Four rates of P as calcium superphosphate and three treatments (without Bio₀ and with Bio₁,Bio₂) of bio-fertilizers (Microheyzae and Azotobacter) were applied as shown in Table 2. Phosphorus fertilizer was mixed with the soil during seedbed preparation. Foliar Zn was applied as zinc sulphate at two rates (0, 250 mg L⁻¹) at three events during the growing season.

One rate of foliar NPK fertilizers divided to three doses and applied at the same times of Zn applications for all studied treatments except control as following; first dose₁ [1kg of (20/20/20)]/200L water, second dose₂ [0.75 kg of (20/20/20) + 0.25 kg of (0/80/0) + 0.25kg (0/0/50)]/200L water and third dose₃ [0.5kg of (20/20/20) + 0.35kg of (0/80/0) + 0.4 kg (0/0/50)]/200L water.

Depth	pН	EC		D.M		CaCO ₃	Sand	Silt		Clay	CEC	Texture		
cm	1:1	dS n	i ¹				%				meq/100g			
						Sa	ndy soil							
0-30	7.93	0.92	2	0.78		1.36	87.52	8.23	4	4.25	3.4	Sandy		
30-60	7.68	0.65	5	0.39	1.16		85.37	9.45	9.45 5		4.3	Sandy		
						C	lay soil							
0-30	8.48	2.43	3	1.23	1.94		21.46	25.31	5	3.23	29.6	Clayey		
30-60	8.25	1.56	5	0.83		1.76	19.51	26.37	5	4.12	30.7	Clayey		
Soluble cations and anions (meq L ⁻¹), amount of total antioxidants and total phenols														
Sandy soil														
	Na	Na K		Ca	ı	Mg	HCO ₃	Cl	S	SO_4	T. phenol**	T.A.A*		
0-30	3.42		1.22	1.9	8	2.58	1.85	3.99	3	.36	323	85		
30-60	2.51		0.95	1.3	2	1.74 1.20 3.20		2	2.12 18		54			
Clay soil														
0-30	12.7		1.67	5.2	5.20		2.32	16.36		5.62	572	157		
30-60	8.75		0.97	3.89		1.99	1.88	9.86		3.86	395	125		
					Α	vailable n	utrients (mg	kg ⁻¹)		-				
	N		Р			K	Mn	Mn			Cu			
						Sa	ndy soil	-						
0-30	16.	3	1.6	1.65		43	17.89	6.52		().25	0.12		
30-60	14.	2	1.1	6		55	19.93	8.54		().28	0.13		
						C	lay soil							
0-30	39.	6	2.9	3		246	31.9	12.9		().58	0.32		
30-60	30-60 32.4 2.2			5		283	38.4	18.4		().47	0.28		
				Some	che	mical pro	perties of irri	gation wate	r					
Soils	nH		EC	Na		K	Ca	Mg	H	CO_3	Cl	SO_4		
5013	PII	(iS/m				1	me/L			1			
Sandy	7.83		0.45	1.8	7	0.63	0.93	1.11	0	.98	3.12	0.43		
Clay	8.07		0.74	2.70)	0.95	1.59	2.16	1	.95	4.65	0.81		

 TABLE 1. Some physical and chemical properties of the soil and chemical analyses of the irrigation water at the experimental sites.

*: Total Antioxidants activity, µg of Ascorbic acid/ml extract, **:Total phenol, µmol of Gallic acid/ml extract

Fastilians	Sandy soil	Clay soil					
Ferunzers	kg fed ⁻¹						
Control	0	0					
P ₁	15	20					
P_2	30	40					
P ₃	45	60					
P_4	60	80					
Zn	Zn (0, 250 mg L^{-1}) added as f	oliar spray					
Bio-fertilizer ₁	Mycorrhizae (8 kg fed ⁻¹) added to soil with P						
Bio-fertilizer ₂	Mycorrhizae + (Azotobacater, 1% added a	as foliar spray with Zn)					

TABLE 2. Treatments of P (as P_2O_5), Zn and bio-fertilizers in wheat at the experimental sites.

Azotobacter isolate (H-A) was used in the experiments. It has N₂-ase activity, 456μ IC₂H₄h⁻¹I⁻¹, phosphate solubilization, 1.54 mg P I⁻¹, indole-3-acetic acid (IAA) was 0.16, gibberellic acid (GA3) was 3.2, Cytokinine was 26 µg ml⁻¹, enzyme production: Amylase was (+++), Protease was (+), Protease was (+) and Lipase was (+). Fresh liquid of *Azotobacter* culture of 48 hr old at a rate of 10^{8} CFU/ ml was added as foliar to plants at one rate (2L/200L) with Zn Foliar application.

For mycorrhiza, spores were isolated from soil pre-inoculated with mycorrhiza (Glomusmacrocarpium) by the wet-sieving and decantation method was used as described by Gerdeman and Nicolson (1963). The mycorrhiza was mixed with pure clay and used to inoculate the experiment plots with one rate (8 kg fed⁻¹) with seedbed preparation. Phosphate dissolving bacteria, (PDB) were Arbuscular Mycorrhizal Fungi (AMF), Bacillus sp and Pseudomonas fluorescens which achieved maximum yield when applied with the recommended dose of superphosphate (Neetu et al., 2012). The densities of azotobacter in the phyllosphere were determined by cutting 1 cm² of leaf of each plant and transferred to bottles containing 100 ml sterilized water and shaken vigorously for 15 minutes (Mikhail, 2002) then was analyzed by using modified Ashby's medium. Microbiological analyses of rhizosphere of wheat plants were determined including total microbial counts by plating on Bunt and Rovira agar medium according to Abdel-Hafez (1966). The most probable number (MPN) of azotobacter was determined after incubating the tubes at $28\pm 2C^{\circ}$ for 7 days on modified Ashby's medium ((Hill, 2000). The rates of CO₂ evolution were determined according to Page et al. (1984)

Initial Soil samples were collected from two layers (0-30 and 30-60 cm) for physical and chemical analysis. Plant samples were collected at physiological maturity. Yield components were determined as biological yield, grain weight, straw weight, weight of 1000 grain, weight of spikes/m² and number of spikes/m² in both seasons. Soil and plant samples were analyzed for macro and micro

nutrients according to Cottenie *et al.* (1982). Soil analyses were accomplished according to Page *et al.* (1984) and Klute (1986). Total antioxidants measurements and total phenol in soil and wheat plants were determined according to Rimmer (2009). The analysis of variance (ANOVA) was used to determine the effect of treatments on yield parameters. Least significant differences (LSD) test was used to determine the differences between treatments means at 5% probability level according to Gomez and Gomez (1984).

Results and Discussion

Effect of the integration between mineral and bio-fertilizers on wheat yield

Data presented in Table 3 showed that yield parameters of wheat were markedly affected by P and Zn treatments. Yield parameters of wheat were much higher in the clay soil than in the sandy soil. Increasing the rate of P and Zn increased yield parameters compared with other treatments. The best treatment appears to be P_4+Zn_1 . Bio-fertilizers treatments increased yield parameters of wheat when combined with mineral fertilizers. The most effective treatment for wheat yield was (P_4+Zn_1 plus Mycorrhizae + Azotobacter) which achieved 5.45 and 2.21 Mg fed⁻¹ for straw and grain, respectively in sandy soil, while 9.5 and 4.16 Mg fed⁻¹ were achieved in clay soil.

Foliar Zn application increased yield about 51.9 and 57.8% above control treatment for straw and grains respectively in sandy soil, while 52.9 and 49.8% in clay soil. Yield components of wheat were increased with increasing P soil applications rates where the highest increases values at P_4 (superior treatment) while the lowest increases values was at P_1 treatment in both studied soils. Straw and grain of wheat under superior treatment (P_4 +Zn₁ plus Mycorrhizae +Azotobacter) were higher than control about 56.3 and 63% for straw and grains respectively in sandy soil while, 55.2 and 52.4% in the clay soil.

Mycorrhizae had higher increase in grains yield than Azotobacter, while Azotobacter had higher straw yield than Mycorrhizae. Combining both biofertilizers sources had higher significantly values of grains and straw yield than the individual sources.

These results could be due to that application of mineral and bio-fertilizers increasing available nutrients contents in the soil and consequently enhancing plant growth and yield. Mycorrhizae application increased available P in soil because it dissolves soil P, while Azotobacter application increased available N in soil since it is fixing N from the air. Moreover, bio-fertilizers produce hormones like auxins and cytokines which regulating plant growth and increase plant productivity. These facts about bio-fertilizers are barreled with Barker and Tagu (2002); Castillo *et al.* (2012); Amanullah *et al.* (2012); Kowsar *et al.*, (2014); and Garshasbi *et al.* (2014), where mineral fertilizers effect agreed with Hasina et al.,(2011); Moghadam et al.,(2012); Abbas *et al.* (2013); and Ehsan *et al.* (2014)

T	reati	nents	Straw Grain		W. 1000 Grain	Spikes	Straw	Grain	W. Grain	$\frac{1}{2}$ Spikes
			101	Sand	y soil	Kg/III	101	Clay	z soil	Kg/III
				Build	Mineral	fertilizer		Ciuj	5011	
		Contr ol	2.21	0.76	23.9	0.39	3.80	1.80	33.8	0.93
	\mathbf{l}_0	P ₁	3.70	1.33	40.6	0.62	6.65	3.16	57.2	1.50
	Zr	P ₂	4.18	1.58	48.2	0.71	6.98	3.26	61.5	1.57
00		P ₃	4.47	1.77	51.9	0.86	7.41	3.52	66.5	1.63
Bi		P ₄	4.80	1.95	56.5	0.94	7.75	3.59	70.9	1.73
		P ₁	3.92	1.42	43.7	0.66	6.73	3.23	62.9	1.55
	$\mathbf{Z}\mathbf{n}_{\mathrm{l}}$	P ₂	4.30	1.67	49.8	0.76	7.34	3.29	63.4	1.63
		P ₃	4.57	1.87	53.6	0.88	7.64	3.71	69.2	1.69
		P ₄	4.81	1.99	60.5	1.04	8.22	3.77	73.0	1.77
				Bio-i	fertilizers	(Mycorrh	izae)			
		Control	2.24	0.78	25.1	0.41	3.83	1.86	35.4	0.99
1	Zn_0	P ₁	3.81	1.37	42.7	0.66	6.70	3.25	60.1	1.56
		P ₂	4.35	1.64	51.1	0.77	7.08	3.39	65.2	1.61
		P ₃	4.65	1.88	54.5	0.89	7.90	3.66	69.8	1.73
Bio		P_4	5.04	2.06	60.5	0.98	7.92	3.72	72.6	1.75
_		P ₁	4.03	1.47	45.9	0.69	6.86	3.33	66.0	1.60
	\mathbf{n}_1	P ₂	4.47	1.74	52.7	0.81	7.98	3.41	67.2	1.68
	Z	P ₃	4.75	1.94	56.3	0.94	8.56	3.85	72.7	1.79
		P ₄	5.05	2.11	64.7	1.09	8.94	3.96	75.3	1.81
			Bie	o-fertilize	rs (Mycor	rhizae+ A	zotobacte	er)		
		Contr ol	2.28	0.80	26.4	0.43	4.15	1.91	40.0	1.03
	1 0	P ₁	4.04	1.41	44.7	0.70	7.30	3.31	63.1	1.62
	Z	P ₂	4.64	1.70	55.1	0.82	7.92	3.52	69.1	1.68
3		P ₃	4.93	1.95	58.1	0.94	8.67	3.81	73.2	1.79
Bi		P ₄	5.39	2.15	64.7	1.04	8.77	3.86	77.6	1.81
		P ₁	4.28	1.50	50.0	0.75	7.45	3.40	69.3	1.67
	u ¹	P ₂	4.79	1.87	57.7	0.86	8.68	3.55	71.2	1.78
	Z	P ₃	5.04	2.03	61.7	0.99	9.36	4.06	76.3	1.91
		P_4	5.45	2.21	69.2	1.13	9.50	4.16	78.6	1.93
LSI	D _{0.05}	Bio	0.082	0.026	1.23	0.017	0.20	0.048	1.35	0.03
LSI	D _{0.05}	Zn	0.007	0.005	0.19	0.003	0.03	0.008	0.18	0.01
LSI	D _{0.05}	Р	0.059	0.027	0.76	0.013	0.10	0.042	0.79	0.02
LSD	0.05 H	Biox Zn	0.010	0.007	0.27	0.003	0.04	0.011	0.16	0.01
LSI	D _{0.05}	Bio x P	0.084	0.038	1.08	0.018	0.14	0.059	1.02	0.02
LSI	D _{0.05}	Zn x P	0.103	0.046	1.32	0.022	0.17	0.073	1.37	0.03
LSD	0 _{0.05} 3	factors	0.109	0.049	1.39	0.023	0.18	0.077	1.45	0.03

TABLE 3 . Effect of mineral and bio-fertilizers on wheat yield parameters in the studied soil.

W: Weight

Egypt. J. Soil Sci. 56, No. 1 (2016)

Effect of the integration between mineral and bio-fertilizers on nutrients uptake by wheat

Regarding the effect of mineral P and Zn on nutrients uptake, Tables 4 and 5 showed that application of P and Zn increased N, P, K, Zn and Cu uptake at harvest. On the other hand, Fe and Mn uptake by wheat have decreased. These results could be due to the antagonistic effect between the absorbed Fe and P.

 TABLE 4 . Effect of mineral and bio-fertilizers on wheat nutrients uptake at the first site (sandy soil).

			Nut	rients	uptak	e of st	raw			Nut	rients	uptak	ke of g	rain				
Tı	reat	tments	Ν	Р	K	Fe	Mn	Zn	Cu	Ν	Р	K	Fe	Mn	Zn	Cu		
]	Kg/fed	l		g/f	ed]	Kg/fec	1		g/f	ed			
							Mine	eral fe	rtilize	rs								
		Contr ol	5.3	1.8	4.6	690	365	5	3.5	2.2	1.1	1.3	271	140	3	1.4		
	0	P ₁	13.7	5.6	15.5	1062	570	13	6.1	5.9	2.5	3.7	464	229	8	2.5		
	Zn	P ₂	17.1	10.0	18.0	1137	619	16	7.1	7.6	4.4	4.9	529	254	10	3.1		
0c		P ₃	19.2	13.9	21.0	1140	621	21	7.8	9.0	6.4	6.0	582	271	13	3.5		
Bid		P_4	22.6	17.3	24.0	1133	610	25	8.5	11.1	8.0	7.0	608	277	15	4.0		
		P1	16.1	6.3	16.9	1031	517	251	7.6	6.7	3.1	4.4	447	223	118	3.0		
	n1	P_2	19.8	10.8	20.6	1079	520	297	9.4	9.0	5.3	6.0	506	247	141	3.7		
	Ñ	P ₃	22.9	15.1	24.2	1074	512	340	10.1	10.8	7.3	7.3	552	247	163	4.4		
		P ₄	25.0	17.8	26.5	1029	495	370	11.0	11.9	8.6	8.4	571	251	177	4.9		
Bio-fertilizers (Mycorrhizae)																		
		Contr ol	6.0	3.1	4.9	629	340	7	3.6	2.5	2.0	1.4	266	137	3	1.5		
	Zn_0	P1	14.9	10.7	16.4	964	518	14	6.4	6.3	4.7	4.0	455	230	9	2.8		
		P ₂	18.7	15.7	19.1	1070	561	17	7.6	8.2	6.4	5.7	533	254	11	3.5		
10		P ₃	20.9	20.9	22.8	1102	563	23	8.3	10.0	9.2	7.3	594	278	15	4.1		
Bi		P_4	24.7	26.7	26.2	1094	570	29	9.1	12.2	11.3	8.9	622	286	18	4.6		
		P1	17.7	12.5	17.7	923	463	284	8.3	7.5	5.4	4.9	467	219	125	3.4		
	Zn_1	P ₂	21.0	17.4	21.9	961	487	355	10.1	9.4	7.5	7.0	529	251	151	4.2		
		P ₃	23.3	22.8	25.2	988	466	399	10.9	11.3	10.1	8.5	568	246	174	4.8		
		P ₄	27.3	27.8	31.3	990	460	447	11.9	13.3	12.0	10.1	584	260	192	5.3		
			Bio-fertilizers (Mycorrhizae+ Azoto								obacter)							
		Control	6.6	3.6	5.7	613	340	7	3.8	2.8	2.3	1.8	266	137	4	1.7		
	0	P ₁	21.4	11.7	18.2	1002	533	15	6.9	8.9	5.2	4.4	458	219	10	3.0		
	Zn	P ₂	26.0	17.6	22.7	1086	561	20	8.3	11.2	7.3	6.6	530	241	12	3.7		
2		P ₃	30.6	23.7	27.1	1090	562	25	9.1	14.0	9.9	9.0	595	257	16	4.3		
Bic		P ₄	36.1	29.6	32.3	1137	577	32	10.1	16.6	12.0	10.5	630	258	20	4.9		
		P1	24.0	14.6	21.0	1010	479	319	9.0	9.8	5.7	5.3	453	222	131	3.5		
	'n	P ₂	29.2	20.6	24.9	1073	508	378	11.0	13.1	8.4	8.0	540	252	166	4.5		
	Ζ	P ₃	33.3	24.7	29.7	1068	474	428	11.9	15.2	11.2	9.9	552	250	187	5.2		
		P ₄	38.7	31.1	35.4	1046	480	488	13.2	18.3	13.0	11.7	586	256	207	5.7		
LSD 0.05 Bio		1.70	1.55	0.89	13	8.3	7.1	0.24	0.71	0.58	0.35	1.7	1.3	1.9	0.12			
LSD 0.05 Zn		0.14	0.08	0.14	4	4.5	18.3	0.13	0.07	0.05	0.06	1.1	0.7	7.8	0.04			
LSD 0.05 P		.05 P	0.43	0.42	0.44	9	4.1	5.7	0.13	0.21	0.17	0.15	6.4	2.5	2.5	0.06		
LSD ₀₀₅ BioxZn		5 Biox Zn	0.12	0.12	0.20	5	6.3	25.8	0.18	0.10	0.06	0.05	1.6	1.1	6.8	0.03		
LS	D ₀₀	5BioxP	0.61	0.59	0.63	13	5.7	8.1	0.19	0.30	0.24	0.21	8.2	3.5	3.6	0.09		
LS	D ₀₀	₅ ZnxP	0.75	0.73	0.77	16	7.0	9.9	0.23	0.37	0.30	0.26	11.0	4.3	4.4	0.11		
LS	D ₀₀₅	3 factors	0.79	0.77	1.09	22	9.9	14.0	0.24	0.39	0.32	0.28	15.6	6.1	6.2	0.12		

H. A. FAWY et al.

			Nı	ıtrient	s uptal	ke of st	raw		Nutrients uptake of grain									
Т	rea	tments	Ν	Р	K	Fe	Mn	Zn	Cu	Ν	Р	K	Fe	Mn	Zn	Cu		
]	Kg/fec	l		g/f	ed		Kg/fed	l		g/f	ed .				
							Min	eral fe	rtilizer	s	3							
		Control	16.0	4.6	13.3	1577	745	29	11.7	9.4	3.1	5.8	922	392	19	6.8		
		P1	50.5	14.6	39.2	2687	1210	83	21.0	28.8	9.8	16.7	1558	648	55	12.5		
	Zn_0	P ₂	54.4	21.6	42.6	2701	1208	96	23.4	30.0	13.7	17.9	1549	626	59	14.1		
_		P ₃	60.0	31.9	50.4	2705	1200	108	26.4	33.4	18.7	21.8	1602	644	69	16.2		
310(P_4	65.1	39.5	56.6	2658	1163	119	28.9	34.5	23.3	23.7	1562	628	74	17.0		
I		P1	53.2	16.2	42.4	2598	1184	595	30.1	31.3	11.3	18.4	1563	610	358	17.6		
	n1	P ₂	60.2	26.4	47.7	2708	1204	687	33.7	34.5	16.1	19.4	1530	569	374	18.5		
	Ζ	P ₃	64.9	34.4	55.8	2705	1169	746	35.8	40.4	21.5	24.5	1651	612	444	21.3		
		P_4	71.5	44.4	61.7	2770	1159	832	38.9	43.0	26.0	25.6	1576	573	466	22.5		
				Bio-fertilizers (Mycorrhizae)														
		Control	17.6	8.0	13.8	808	372	31	12.1	10.6	4.5	6.3	487	214	21	7.3		
		P1	52.3	22.8	41.5	2573	1159	88	21.7	30.6	12.4	18.2	1521	634	59	13.8		
3io ₁	Zn_0	P ₂	55.9	30.4	47.4	2577	1154	104	24.0	32.5	16.6	20.7	1515	610	65	15.2		
		P ₃	65.6	42.7	60.0	2678	1193	125	28.3	36.2	21.2	25.3	1548	622	73	17.3		
		P_4	67.3	48.3	64.2	2503	1093	133	30.0	38.3	26.0	27.2	1488	599	80	18.5		
I		P1	56.3	24.7	45.3	2518	1146	656	30.7	33.0	14.0	20.0	1532	599	384	18.6		
	n1	P ₂	67.0	37.5	57.5	2769	1229	776	36.8	36.8	18.4	22.2	1490	556	404	19.5		
	Z	P3	74.5	48.8	69.3	2816	1216	870	40.9	43.9	23.9	28.1	1594	589	467	22.9		
		P_4	79.6	57.2	75.1	2771	1162	948	43.2	46.7	28.9	30.1	1525	554	497	24.3		
			Bio-fertilizers (Mycorrhizae+ Azotobacter)															
		Control	22.4	10.4	16.2	834	382	41	13.3	16.4	5.0	6.9	476	208	23	8.0		
		P1	71.5	27.0	47.5	2665	1197	108	24.0	47.7	13.6	19.2	1473	612	64	14.5		
	Zn_0	P ₂	93.5	34.8	58.6	2709	1212	124	27.2	52.1	18.3	23.6	1478	598	72	15.9		
~		P ₃	107.5	51.2	72.8	2740	1214	139	31.6	58.3	24.4	29.0	1501	602	82	18.7		
Sio		P_4	112.3	55.3	78.9	2543	1114	153	33.7	60.6	28.2	31.3	1420	571	86	19.7		
Ι		P1	82.7	29.1	51.4	2593	1185	736	33.9	50.3	15.3	21.1	1486	581	394	19.6		
	n1	P ₂	105.0	39.9	68.6	2830	1259	878	40.6	54.7	19.9	25.6	1459	543	439	20.8		
	Z	P ₃	118.9	57.1	84.2	2864	1236	996	45.4	64.6	26.4	32.9	1563	581	515	24.8		
		P_4	125.4	62.7	88.4	2708	1131	1053	46.8	67.8	31.2	34.9	1473	562	549	25.9		
LS	D 0.0	₅ Bio	7.06	2.62	2.97	36	17	17	3.91	0.75	0.95	0.90	31	12	6	0.42		
LS	LSD ₀₀₅ Zn		0.48	0.26	0.40	5	1	37	0.28	0.12	0.13	0.61	1	2	20	0.28		
LS	D 0.0	ьP	1.37	0.84	1.08	35	15	12	0.71	0.43	0.43	0.48	20	7	7	0.27		
LS	D_{00}	5 Biox																
Zn			0.68	0.37	0.56	7	2	53	0.40	0.10	0.18	0.86	1	3	17	0.24		
LS	\overline{D}_{00}	6 Biox P	1.93	1.18	1.53	50	21	18	1.01	0.61	0.61	0.68	28	10	9	0.38		
LS	D 0.0	₅ Zn x P	2.37	1.45	1.87	61	26	22	1.24	0.74	0.74	0.83	34	12	11	0.47		
LSD ₀₀₅ 3 factors			2.50	1.53	1.98	65	28	30	1.31	0.78	0.78	1.18	36	13	16	0.49		

 TABLE 5 . Effect of mineral and bio-fertilizers on wheat nutrients uptake at the second site (clay soil).

The soil application of Mycorrhizae increased P uptake by straw and grain, while foliar application of Azotobacter increased N uptake by straw and grain. The application of bio-fertilizers (from both sources) with mineral P and Zn deceased Fe and Mn uptake.

These results could be due to the role of Mycorrhizae in dissolving P in soil and Azotobacter in fixing N from the air. The superior treatment was application of P_4 +Zn₁ along with Mycorrhizae + Azotobacter compared with the other treatments at *Egypt. J. Soil Sci.* **56**, No. 1 (2016)

both sites. These results demonstrate that high Fe content and its negative effect on plant growth and yield could be decreased by mineral P and Zn. This is in agreement with the results obtained by Ewa & Jolanta (2005); Kefyalew *et al.* (2006); Wandruszka (2006); Li *et al.* (2007); Yassen *et al.* (2010); and Niemi *et al.* (2014).

The sandy soil had higher response to mineral and bio-fertilizers application than the clay soil. That is logically because of the lower nutrient contents in sandy soils than clay soil, these are facts agreed with obtained by Abbas *et al.*, (2012), Abbas *et al.* (2011) and Nadim *et al.* (2011)

Effect of the integration between mineral and bio-fertilizers on biochemical components in wheat

Total phenols and antioxidants contents in straw and grain increased with increasing mineral P and Zn application in the two studied soils. Combining application of mineral and bio-fertilizers further increased total phenols and antioxidants contents in straw and grains of wheat (Table 6). These components contents in straw were higher than that in grains. These results agreeable with that obtained with Li *et al.* (2013).

The bio-fertilizer (Mycorrhizae + Azotobacter) increased total phenols and total antioxidants contents in straw and grains. The superior treatment was P_4 + Zn_1 combined with application of Mycorrhizae + Azotobacter compared with the other treatments in both soil types. These result agreed with that obtained by Yoshie *et al.* (2008) and Lachman *et al.* (2011).

Regarding the effect of soil type, sandy soil had higher response to mineral (P + Zn) and bio-fertilizers than clayey soil in respect of biochemical. However, the clay soil achieved the highest contents. This is agreed with Ríos *et al.* (2009); Vaher *et al.* (2010); and Li *et al.* (2013).

Effect of the integration between mineral and bio-fertilizers on microbial densities and CO_2 evolution

Microbial densities

Generally, the microbial densities in rhizosphere at vegetation stage in all treatments were significantly higher than control as shown in Table 7. The highest counts in rhizosphere were obtained from plants treated with P_4 +Zn₁ and Mycorrhizae + Azotobacter recording mean values of 92 and 965×10² cfu g⁻¹ dry soil in sandy and clay soils, respectively. The counts declined toward harvesting stage which could be attributed to the unfavorable moisture content of soil due to soil dryness.

The maximum phosphate dissolving bacterial (PDB) counts of wheat rhizosphere was 12.9 and 59 $X10^2$ CFU/g D.S) for sandy and clay soils respectively under superior treatment conditions. This result agreed with the obtained by Singhal *et al.* (2012), Castillo *et al.* (2012) and Hasanpour *et al.* (2012) who indicated that the combing the application of mineral P along with mycorrhiza could achieve the highest yield and P uptake by wheat.

H. A. FAWY et al.

				Sand	y soil		Clay soil							
7	-	tmonto	¹ T. antio	oxidants	T. ph	enols	T. antio	oxidants	T. ph	enols				
	rea	uments	μg [*] A	sc/ml	µmol **	Gal/ml	μg A	sc/ml	µmol (Gal/ml				
			Grains	Straw	Grains	Straw	Grains	Straw	Grains	Straw				
					Mineral	fertilizer	S							
		Contro	38	52	119	176	72	93	200	294				
		l D	52	72	159	245	107	127	208	420				
	Zn(г ₁ D	56	73	150	243	107	137	290	439				
0		P.	50	81	182	239	120	143	313	401				
Bio		1 3 D.	64	88	102	275	120	154	3/8	513				
		P.	57	78	169	264	115	147	313	461				
	1	P _a	61	83	183	283	120	154	328	483				
	Zn	P2	66	90	198	306	120	165	347	511				
		P.	72	99	212	333	134	171	359	529				
		14	Bio-fertilizers (Mycorrhizae)											
		Contro	10		105	100		104	010	210				
Bio_1		1	43	59	125	188	80	104	212	319				
	\mathbf{n}_0	P ₁	60	82	166	262	120	157	321	483				
	Ζ	P ₂	66	91	178	289	127	127 166		509				
		P ₃	69	95	193	302	134	174	362	544				
		P_4	75	103	198	328	143	187	373	560				
		P ₁	65	89	181	284	128	167	329	495				
	n1	P ₂	71	97	195	310	134	174	358	538				
	Ζ	P ₃	77	106	207	337	142	185	377	566				
		P_4	83	114	215	363	151	197	385	578				
			Bio	o-fertilize	rs (Myco	rrhizae+	Azotobac	ter)						
		Contro l	49	65	132	196	88	113	227	336				
	\mathbf{J}_0	P ₁	67	89	175	268	128	166	332	492				
	Z	P ₂	75	99	184	300	134	173	359	532				
0_2		P ₃	79	105	197	316	144	187	375	556				
Bi		P_4	86	114	208	344	153	197	390	578				
		P ₁	73	97	188	292	138	178	344	510				
	n1	P ₂	78	103	195	312	146	188	377	558				
	Ζ	P ₃	84	111	206	336	154	199	394	584				
		P_4	93	123	219	372	161	208	404	598				
Ľ	SD ₀	.05 Bio	3.1	3.7	2.5	6.2	4.1	5.6	7.2	11.5				
L	SD ₀	.05 Zn	0.3	0.4	0.8	1.4	0.4	0.6	0.8	1.1				
	$\frac{SD_0}{TD}$.05 P	0.7	0.9	1.5	2.8	1.2	1.6	3.1	4.7				
Zı	SD 0 1	.05 B10X	0.4	0.6	1.1	2.0	0.6	0.8	1.1	1.6				
L	SD ₀	_{.05} Bio x	0.0	10	2.2	2.0	4 7	2.0		6.0				
P 1 (SD.	7n v D	0.9	1.2	2.2	3.9 1 P	1./	2.2	4.4	0.0 g 1				
L	5D 0 5D.	05 ZII X P	1.1	1.0	2.1	4.0	2.1	2.1	5.4	0.1				
fa	ctor	s 5	1.2	1.6	2.8	5.1	2.2	2.9	5.7	8.5				

 TABLE 6. Effect of mineral and bio-fertilizers treatments on biochemical components of wheat in studied soils.

¹ T: Total, Asc*: µg Ascorbic acid/ml extract, Gal**: µmol of Gallic acid/ml extract

			To	otal m	icrob	ial]	PDB c	ounts	;	Azo	tobac	ter co	ount	C	'O ev	olutic	m
				cou	nts		ir	n rhizo	osphei	re	in	phyll	osphe	ere	U	0200	June	/ 11
Ті	eat	ments	(cou	nts X ¹ D	10²CI .S)	TUg	(cou	nts X1 D.S	10 ² CF S)	'Ug ⁻¹	(cou	nts X ¹ F.	10 ² Cl .L)	FUg	(mg	100g 24 l	⁻¹ dry 11 ⁻¹)	soil
			Sar	Sandy		Clay soil		ndy sil	Clay	v soil	Sai	ndy sil	Clay	y soil	Sar	ndy	Clay	y soil
			St.	St ₂	St.	St ₂	St.	St ₂	St.	St ₂	St.	St ₂	St.	St ₂	St.	St ₂	St.	St ₂
			~-1		~ 1]	Miner	al fer	tilizer	s		~-1	~ -2	~.1	2	~.1	~-2
		Contr ol	24	21	297	240	4.4	3.8	21	13	2.8	2.3	3.7	3.1	26	22	32	27
	0	P1	37	33	450	364	66	47	29	16	32	2.9	38	34	32	29	35	32
0	Zn	P ₂	41	37	529	428	7.8	5.5	34	19	3.5	3.2	4.3	3.9	37	33	41	37
		P ₂	43	38	599	484	89	67	39	23	40	36	49	44	41	38	47	42
Bic		P ₄	47	42	663	536	9.9	7.9	45	27	44	40	54	49	45	41	52	47
		P1	41	37	495	400	68	5.1	32	17	34	31	42	3.8	34	31	39	35
	-	P ₂	46	41	604	488	7.9	5.8	38	20	39	3.5	47	4.3	41	37	47	43
	Zn	P2	50	45	673	544	81	69	40	24	43	3.9	53	4.9	46	42	52	48
		P ₄	52	46	717	580	10.2	8.1	49	28	49	45	5.8	5.3	49	45	56	51
		- 7					Bio-	fertiliz	ers (M	vcont	nizae)				.,			
		Contr	32	26	376	304	4.8	4	23	14	3.1	2.6	3.9	3.2	31	26	41	34
-	0	P ₁	47	38	539	436	81	62	35	21	38	35	42	38	35	32	42	38
	Zn	P ₂	51	42	613	496	96	73	41	25	44	40	49	45	39	36	48	43
		P ₂	54	44	698	564	10.9	88	47	30	49	4.5	55	5.0	44	40	54	49
Bic		P ₄	59	48	777	628	12.2	10.4	53	36	54	49	61	5.6	49	45	60	55
		P1	53	43	599	484	83	67	39	23	41	37	46	42	38	35	47	42
	-	P ₂	56	46	678	548	9.7	7.7	46	26	48	44	5.6	5.1	43	39	53	48
	Zn	P2	59	48	762	616	9.9	9.1	47	31	5.5	50	62	5.7	48	44	59	54
		P ₄	64	53	831	672	11.5	10.7	55	37	5.8	53	66	60	55	50	65	59
		-4	0.	00	001	Bio-f	ertilize	rs (My	conthi	zae+ /	Azotok	acter`)	0.0	00	20	00	07
		Contr	20	01	400	240	<i></i>	47	26	16	41			47	24	20	47	20
		ol	38 60	56	430	524	5.4	4./	26	16	41	34	56	4/	34 41	29	4/	39
	Zn_0	P ₁	72	50	722	502	0.0	0.0	39	25	40	44	60	55	41	37	57	40 52
0		P ₂	72 90	66	132 926	592	10.7	0.0	40	29	54	49	00	70	40 52	41	51	50
Bio		Г3 D	00 97	71	000	728	11.4	9.7	59	40	60	62	92	76	59	40 52	70	59
		Г4 D	0/ 72	60	900 692	552	0.2	70	J0 12	40	52	19	62	59	J0 44	40	52	19
		1] D	70	65	792	622	9.2 10.0	0.1	43	21	50	54	72	56	50	40	61	55
	Znj	P.	85	70	886	716	11.2	9.1	55	31	59	54	82	75	56	4J 50	60	63
		1 3 D	00 00	75	065	781	12.0	10.2	50	38	73	67	80	7J 81	50	56	75	68
IS		Rio	58	13	36	20	0.43	0.40	21	17	11	10	14	12	10	17	30	27
LSD 0.05 B10		0.3	4.5	30	29	0.45	0.49	0.0	0.6	06	0.1	06	0.1	0.2	0.2	0.2	0.2	
LSD 0.05 Zn		0.5	0.2	8	2	0.10	0.10	0.9	0.0	0.0	0.1	0.0	0.1	0.2	0.2	0.2	0.2	
LSD 0.05 P		0.7	0.0	0	/	0.10	0.08	0.4	0.5	0.2	0.5	0.5	0.4	0.4	0.5	0.5	0.4	
LSD _{0.05} B10X Zn		0.2	0.2	4	3	0.25	0.25	1.3	0.9	0.8	0.2	0.8	0.2	0.2	0.2	0.3	0.2	
LS	D 0.05	5 Bio x																
Р		1.0	0.8	12	9	0.14	0.12	0.6	0.4	0.3	0.4	0.4	0.4	0.6	0.5	0.6	0.5	
LS	D 0.0	₅ Zn x P	1.2	1.0	14	12	0.17	0.14	0.7	0.5	0.4	0.5	0.5	0.6	0.7	0.6	0.8	0.7
LSD _{0.05} 3factors		1.3	1.1	15	12	0.24	0.20	1.0	0.7	0.6	0.7	0.7	0.8	1.0	1.0	0.8	0.8	

TABLE 7 . Effect of mineral and bio-fertilizers applied on total microbial counts,
PDB counts and CO2 evolution in rhizosphere and azotobacter densities
in phyllosphere of wheat in studied soils.

 St_1 = vegetating stage, St_2 = harvesting stage, F.L= fresh leaf, D.S=dry soil, PDB= Phosphate dissolved bacteria

Data also showed that the Azotobacter densities from the phyllosphere of wheat plants were 2.8 and 3.7 $\times 10^2$ cfu cm⁻² leaf in control treatment in sandy and clay soils, respectively. While these values increased to reach 73 and 89 $\times 10^2$ cfu/ cfu /cm² leaf with treating the plants with P₄+Zn₁ along with Mycorrhizae + Azotobacter in sandy and clay soils, respectively. These results agreeable with that obtained by Khin (2011) who reported that mixture of biofertilizer and zinc sulphate gave better results than individual treatments.

CO_2 evolution

The CO₂ evolved from rhizosphere (mg CO₂ $100g^{-1}$ dry soil 24 hr⁻¹) was periodically determined to detect the microbial activity as influenced by mineral (P + Zn) and bio-fertilizers (Mycorrhizae + Azotobacter) treatments.

Data in Table 7 show that the CO₂ evolution increased in rhizosphere reaching maximum levels at 40 days after sowing (vegetation stage) then decreased during harvesting stage in both soils. In both soils, rhizosphere of control treatment (without inoculation with bio-fertilizers) gave the lowest CO_2 evolution values. Results also showed that CO₂ evolved in rhizosphere of wheat were markedly affected by application of P and Zn treatments. Increasing P and Zn rates led to increase yield parameters to reach maximum value in the treatment of the P4 + Zn1. CO₂ evolution values in rhizosphere were much higher in clayey soils compared with sandy soils. Bio-fertilizers (Mycorrhizae) and (Mycorrhizae + Azotobacter) treatments increased CO₂ evolution in the presence of mineral fertilizers. The most effective treatment was NP₄K+Zn₁ plus Mycorrhizae + Azotobacter which produced 61.57 and 55.97 (mg $CO_2 100g^{-1}$ dry soil 24 hr⁻¹) in vegetation and harvesting stages, respectively, in sandy soil. While produced 75.08 and 68.25(mg CO₂ 100g⁻¹ dry soil 24 hr⁻¹), respectively, in clayey soil. These result agreeable with that obtained by Amanullah et al. (2012); Kowsar et al. (2014); and Garshasbi et al. (2014).

Conclusions

Application of mineral (P + Zn) and bio-fertilizers (Mycorrhizae+ Azotobacter) increased yield parameters, nutrients contents, nutrients uptake and biochemical components of wheat grown in the New Valley soils with high Fe content . These parameters were much higher in the clay soils than in the sandy soils. Bio-fertilizers (Mycorrhizae) and (Mycorrhizae+Azotobacter) treatments increased yield parameters of wheat in the presence of mineral fertilizers by increasing the available N and P in soils. The most effective treatment appeared to be applying P at a rate of 60 kg fed⁻¹ in clay soil and 80 kg fed⁻¹ in sandy soil with spraying Zn at a concentration of 250 mg L⁻¹ combined with the application of Mycorrhizae and Azotobacter which achieved 5.45 and 2.21 Mg fed⁻¹ for straw and grains respectively in the sandy soil, while 9.5 and 4.16 Mg fed⁻¹ in the clay soil. This study revealed that the combination of bio- and mineral P and Zn fertilizers could decrease the negative effect of high Fe content in soils and increased wheat production.

Referances

- Abbas, G., Hussain, F. Anwar, Z., Khattak, J.Z.K., Ishaque, M. and Ullah, A. (2012) Effects of iron on the wheat crop (Triticum aestivum L.) by uptake of nitrogen, phosphorus and potassium. *Asian Journal of Agricultural Sciences* 4(3) 229-235, 2012.
- Abbas, G., Khan, M.Q. Khan, M.J., Tahir, M., Ishaque, M. and Hussain, F. (2011) Nutrient uptake, growth and yield of wheat (*Triticum aestivum* 1.) as affected by manganese application. *Pak. J. Bot.*, **43**(1), 607-616, 2011.
- Abbas,G., Khattak, J.Z.K. Abbas, G., IShaque, M., Aslam, M., Abbas, Z., Amer, M. and Khokhar, M.B. (2013) Profit maximizing level of potassium fertilizer in wheat production under arid environment. *Pak. J. Bot.*, 45(3), 961-965.
- Amanullah, A.A.K., Saifullah, K. Munir, A. and Khan, J. (2012) Biofertilizer- a possible subsitute of fertilizers in production of wheat variety zardana in balochistan. *Pakistan J. Agric. Res.* 25 (1).
- Barker, J. S. and Tagu, D. (2002) The role of auxins and cytokinins in mycorrhizal symbioses. J. Plant Growth Regul. 19,144-154.
- Castillo C.G., Puccio, F. Morales, D., Borie, F. and Sieverding, E. (2012) Early arbuscular mycorrhiza colonization of wheat, barley and oats in Andosols of southern Chile. J. of Soil Sci. and Plant Nutr., 12 (3), 511-524.
- Cottenie, A., Verlso, M. Kilkens, L., Velghe, G. and Camerlynck, R. (1982) Chemical Analysis of Plants and Soils. Lab. Agroch. State Univ. Gent, Belgium.
- Ehsan, S., Shahid, J. Ifra, S., Fareeha, H. and Majeed, T. (2014) Effect of humic acid foliar spraying and nitrogen fertilizers management on wheat yield. *International Journal of Agronomy and Agricultural Research*, 4(4), 28-33.
- **Ewa S.G., and Jolanta, K. (2005)** Effect of excessive zinc content in soil on the phosphorus content in wheat plants. *Electronic Journal of Polish Agricultural Universities, Environmental Development, Topic,* Issue 4, Volume 8.
- Fadl-Allah, E.M., El-komy, H. M. and Sholkamy, E.N. (2010) The effect of cyanobacteria, nostoc muscorum as biofertilizer on growth and n-yield of wheat (*Triticum aestivum* 1.) under different doses of n-fertilizer. *Journal of the Association of Arab Universities for Basic & Appl*; **8**, p61.
- Garshasbi, L., Paknejad, F., Kashani, A., Nateghi, M. and Fatemi, Z. (2014) Wheat performance as affected by pre-plant and foliar application of phosphorus under inoculation with arbuscular mycorrhizal (AM) and non-inoculation. *International Journal of Biosciences*, 4(5),154-161.
- Gerdemann, J. W. and Nicolson, T. H. (1963) Spores of mycorrhizal *Endogone* species extracted from soil by wet sieving and decanting. *Trans. Brit. Mycol. Soc.* 46, 235 244.
- Gomez, K.A. and Gomez, A.A. (1984) Statistical Procedures for Agricultural Research. 2nd ed., Wiley, New York.
- Handreck, K.A. (2006) Interactions between iron and phosphorus in the nutrition of Banksia ericifolia L.f var ericifolia (Proteaceae) in soil-less Potting media. Australian Journal of Botany 39(4) 373-384.

- Hasanpour J., Panahi, M.S. P. M. M. and Arabsalmani, K. (2012) Effect of inoculation with VA mycorrhiza and *Azotobacter* on grain yield, LAI and protein of wheat on drought stress condition. *Inter. J. of Agri Sci.* 2(6), 466-476.
- Hasina, G., Ahmad, S., Beena, S., Fida, M. and Ahmad, I. (2011) Effect of foliar application of nitrogen, potassium and zinc on wheat growth. ARPN Journal of Agricultural and Biological Science, 6(4), ISSN 1990-6145.
- Hill, G. Sawers,(2000) Azotobacter. In Encyclopedia of Microbiology 3rd ed, Academic Press, New York, 2000, pp.359-371
- Kefyalew G., Martin, K. L., Freeman, K. W., Mosali, J., Teal, R. K., Raun, W. R., Moges, S. M. and. Arnall, D. B. (2006) Determination of Optimum Rate and Growth Stage for Foliar Applied Phosphorus in Corn. *Department of Plant and Soil Sciences*, Oklahoma State University, Stillwater, Ok, 74078, Contribution from the Oklahoma Agricultural Experiment Station.
- Khin S. Aye (2011) Investigation on the effectiveness of zinc sulphate and biofertilizer on mustard plant. Inter. *Scholarly and Scientific Research & Innovation* 5(3), 233-235.
- Klute, A.A. (1986) Methods of Soil Analysis. Part 1 2nd ed. American Society of Agronomy .Inc. Publishes, Madison, Wisconsin, USA.
- Kowsar, J., Rather, A.M. Boswal, M.V. and Ganie, A.H. (2014) Effect of biofertilizer and organic fertilizer on morpho-physiological parameters associated with grain yield with emphasis for further improvement in wheat yield production (Bread \Nheat=*Triticum aestivum* L.). *International J. of Agric. and Crop Sci.*, **7**(4),178-184.
- Lachman, J., Miholová, D. Pivec, V., Jírů, K. and Janovská, D. (2011) Content of phenolic antioxidants and selenium in grains of einkorn (*Triticum monococcum*), emmer (Triticum dicoccum) and spring wheat (*Triticum aestivum*) varieties. *Plant Soil Environ.*, 57(5), 235–243.
- Li, B.Y., Zhou, D.M., Cang, L., Zhang, H.L., Fan, X.H. and Qin, S.W. (2007) Soil micronutrient availability to crops as affected by long-term inorganic and organic fertilizer applications. *Soil and Tillage Research*, **96** (1–2),166–173.
- Li, Y., Sun, H., Li, H., Yang, L., Ye, B. and Wuyi, W. (2013) Dynamic changes of rhizosphere properties and antioxidant enzyme responses of wheat plants (Triticum aestivum L.) grown in mercury-contaminated soils. *Chemosphere*. http://dx. doi.org 10.1016/j.chemosphere, 50-63.
- Mikhail, Karima, K.(2002) Environmental factors affecting microbial activities in the phyllosphere of some medicinal desert plants. *Ph.D. Thesis*, Institute of Environmental Studies and Research, Ain Shams Univ., Cairo, Egypt.
- Mir Reza Miri, Moghadam, H. R. T., Ghooshchi, F., Zahedi, H. (2013) Effect of *Azotobacter* and Arbuscular Mycorrhizal colonization enhance wheat growth and physiological traits under well-watered and drought conditions. *Advances in Environ. Biol.* **7**(14), pp. 4630-4636.
- Moghadam, M.J., Sharifabad1, H.H., Noormohamadi1, G., Motahar, S.Y.S. and Siadat, S.A. (2012) The effect of zinc, boron and copper foliar application, on yield and yield components in wheat (*Triticum aestivum*). Annals of Biological Research, **3** (8),3875-3884.
- Moola, R., Davari, M. R. and Sharma, S.N. (2014) Direct, residual and cumulative effects of organic manures and biofertilizers on yields, NPK uptake, grain quality and

economics of wheat (*Triticum aestivum* L.) under organic farming of rice-wheat cropping system. *Journal of Organic Systems*, 9(1)16-30.

- Nadim, M. A., Awan, I.U., Baloch, M.S., Khan, E.A., Naveed, K., Khan, M.A., Zubair, M. and Hussain, N. (2011) Effect of micronutrients on growth and yield of wheat. *Pak. J. Agri. Sci.*, Vol. 48(3), 191-196,2011.
- Nautiyal, C.S. (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. *FEMS Microbiology Letters*, 170, 265-270.
- Neetu, N., Aggarwal, A., Tanwar, A. and Alpa, A. (2012) Influence of arbuscular mycorrhizal fungi and Pseudomonas fluorescens at different superphosphate levels on linseed (*Linum usitatissimum* L.) growth response. *Chilean Journal of Agricultural Research* 72 (2), 237-243.
- Niemi, S.N.A.L., Dohuki, M.S.S. and Barwary, S. S. (2014) Combined effect of iron and wheat genotype on seedling tissue concentration of Fe, Zn, Cu and Mn. *Journal of Agri-Food and Applied Sciences*. Available online at jaas.blue-ap.org ©2014 JAAS *Journal.* 2(3), 60-66.
- Page, A.L., Miller, R.H. and Keeney, D.R. (1984) Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties. Second edition. Agronomy J. 9: 2, Am. Soc. Agron. Inc., Soil Sci. Soc. Am. Inc. Pub. Madison, Wisconsin, USA.
- Pramer, D. and Schmidt, E.L. (1964) *Experimental Soil Microbiology*, Burgess Pub., Co., Minneota, USA.
- Rimmer; Smith (2009) Antioxidants in soil organic matter and in associated plant materials. *European Journal of Soil Science*, 60, No. 2, April 2009, pp. 170-175(6).
- Ríos J.J., Blasco, B., Cervilla, L.M., Rosales, M.A., Sanchez-Rodriguez, E., Romero, L. and Ruiz, J.M. (2009) Production and detoxification of H2O2 in lettuce plants exposed to selenium. *Annals of Applied Biology*, 154,107–116.
- Shah, A. S., Shah, S. M., Mohammad, W., Shafi, M., Nawaz, H., Shehzadi, S. and Amir, M. (2010) Effect of integrated use of organic and inorganic nitrogen sources on wheat yield. *Sarhad J. Agric.* 26(4), 559-563.
- Singhal, S.K., Sharma, V.K. and Singh, R.D. (2012) Effect of inorganic and biofertilizers (vam and psb) on yield of maize and wheat cropping sequence and soil fertility. *Indian Journal of Agricultural Research*; 46(2) p167.
- Tahir, M., Ayub, M. Javeed, H.M.R., Naeem, M., Rehman, H.U., Waseem, M. and A.Muqarrab (2011) Effect of Different Organic Matter on Growth and Yield of Wheat (*Triticum aestivum L.*). Pak. J. Life Soc. Sci., 9(1), 63-66.
- Tayebeh, A., Alemzadeh, A. and Kazemeini, S.A. (2010) Effect of organic and inorganic fertilizers on grain yield and protein banding pattern of wheat. *Australian Journal of Crop Science* (AJCS) 4(6), 384-389.
- Vaher, M., Matso, K., Levandi, T., Helmja, K. and Kaljurand, M. (2010) Phenolic compounds and the antioxidant activity of the bran, flour and whole grain of different wheat varieties. *Procedia Chemistry*, 2(1),76–82.
- Wandruszka, Ray von (2006) Phosphorus retention in calcareous soils and the effect of organic matter on its mobility. Department of Chemistry, University of Idaho, Moscow, ID 83844-2343, USA, Geochemical Transactions, 7:6.

- Yassen, A.1., Abou El-Nour, E.A.A. and Shedeed, S. (2010) Response of Wheat to Foliar Spray with Urea and Micronutrients. *Journal of American Science* 2010; 6(9),14-22.
- Yoshie, M., Marjorie Reyes-Díaz and Maria de la Luz Mora Gil (2008) Effect of selenite on the total polyphenol content and antioxidative activity of aqueous and ethanolic extracts in sprouts of four agronomic species. J. Soil Sc. Plant Nutr. 8 (1), 55-67.

(Received 15/4/2015; accepted 17/5/2015)

تاثير التكامل بين التسميد المعدنى والحيوى على انتاجية القمح تحت ظروف ارتفاع الحديد في اراضي الوادي الجديد، مصر

حسن عبد العاطى فاوى ، شريف محمود ابراهيم ، هشام كمال أبوالعلا ونهى موسى عبد الحميد قسم خصوبة وميكروبولوجيا الاراضى ، مركز بحوث الصحراء ، القاهرة

ارتفاع محتوى الحديد في اراضي الوادي الجديد يعيق امتصاص كلا من الفوسفور . والزنك بواسطة النباتات ، والذي

انعكس سلبيا على انتاجية المحصول. التجارب الحقلية نفذت خلال موسمين متتاليين فى موقعين تحت ظروف اراضى الوادى الجديد بهدف تحسين محصول القمح بواسطة التكامل بين الاسمدة المعدنية (الفوسفور والزنك) والحيوية (اراضى Mycorrhizae + Azotobacter). التجربة الاولى تمت فى المنيرة (اراضى رملية) فى الواحات الخارجة ، بينما الثانية تمت فى القصر (اراضى طينية)، الواحات الداخلة. حبوب القمح صنف سخا 93 زرعت فى كلا من موقعين الدراسة.

اضافة الاسمدة المعدنية للفوسفور والزنك بصورة فردية او مع الاسمدة الحيوية قد زاد من قياسات المحصول ومحتوى المغذيات ومضادات الاكسدة الكلية والفينولات الكلية والتسميد الحيوى للفوسفور زادت من قياسات المحصول ، محتوى المغذيات والممتص منها ومحتوى مضادات الاكسدة الكلية والفينولات الكلية فى القمح. وعلاوة على ذلك، زيادة معدلات اضافة الفوسفور والزنك خفضت من تركيز الحديد والمنجنيز فى القمح وزادت من محتوى النتروجين والفوسفور والبوتاسيوم والزنك والنحاس فى القش والحبوب. المعاملة الاكثر تاثيرا للمحصول ومحتوى العناصر الغذائية والممتصة ومحتوى المواد البيوكميائية (مضادات الاكسدة الكلية والفينولات الكثير مع تكون باضافة الفوسفور عند المعدل 80 كجم/ فدان فى الاراضى الطينية و 60 الميافة الاسمدة الحرية (مصادات الاكسدة الكلية) فى القش والحبوب هى تكون باضافة الفوسفور عند المعدل 80 كجم/ فدان فى الاراضى الطينية و اضافة الاسمدة الحيوية (محادلة مع رش الزنك بالمعدل250 ملجرام/لتر مع حققت 5.45 و2011. والات لكل من القش والحبوب على التوالى لنبات القمح النامى فى التربة الرملية بينما تكون 5.9 و 10.4 طن/ فدان فى الترابة اللمعاملة هذة الدراسة توضح ان الاتحاد بين الفوسفور والزنك المحاف خفض من التاثير السلبي لارتفاع محتوى الاتحاد بين الفوسفور والزنك المصاف خفض من التأثير السلبي لارتفاع محتوى الاتحاد بين الفوسفور والزنك المحاف فدان المعاملة منه النامي في التربة المية بينما تكون 5.9 و 10.4 طن/ فدان فى التوالى لنبات القمح