Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.

Egyptian Academic Journal of Biological Sciences is the official English language journal of the Egyptian Society for Biological Sciences ,Department of Entomology ,Faculty of Sciences Ain Shams University .

Physiology & molecular biology journal is one of the series issued twice by the Egyptian Academic Journal of Biological Sciences, and is devoted to publication of original papers that elucidate important biological, chemical, or physical mechanisms of broad physiological significance.

www.eajbs.eg.net

Activity Level of Lactate dehydrogenase and β-glucosidase Enzymes in the honeybee colonies, (*Apis mellifera* L.) with different feeding

> Sameh Mostafa Abd El- Naby and Ehab Wafeek Zidan Plant Protection Research Institute (PPRI), ARC, Dokki, Giza

ARTICLE INFO

Article History Received: 25/2/2014 Accepted: 5/4/2014

Keywords: Honey bee β-glucosidase Lactate dehydrogenase Antibiotic Natural plant extract and ripe milk.

ABSTRACT

The activity of Lactate dehydrogenase and β -glucosidase was determined in Carniolan workers honey bee, *Apis mellifera* L. after feeding on different diets antibiotic ,ripe milk and some natural plant extract (thyme, clove, cinnamon, black seeds and anise). The results showed the highest increase in the β -glucosidase activity was occurred in the diet containing Ripe milk (106.17%) and the other diets scored decrease in the activity , as well as the Lactate dehydrogenase activity the results showed highly enzyme activity in diets antibiotic and clove 192.56%, & 215.70%. respectively as compared with the other diets used in this study.

INTRODUCTION

Carbohydrates and fatty acids play a predominant role in the generation of energy for prolonged flights in insects (Beenakkers, 1969; Sacktor, 1970). Insects utilize various high-energy fuels for flight. They derive energy to meet the intense metabolic needs of flight from carbohydrates, fat or amino acids such as proline (Wheeler, 1989; Candy, 1989). During flight, honeybees increase their metabolic rate to relatively high values (Harrison and Fewell 2002; Feuerbacher *et al.*, 2003). In honey bee colonies requires proteins, carbohydrates, lipids, vitamins, minerals and water. These nutrients must be in the diet in a definite qualitative the food metabolism plays an important role in bee life. The physiological digestion different in bee body composition; percentage of glycogen, lipids and proteins (Hrassing and Crailsheim 2005). The source of feeding honey bees effects on induction haemolymph enzymes (Bounias and Morgan, 1990).

The enzyme glucosidase is ubiquitous and occurs in all the living kingdoms starting from bacteria to highly evolved mammals and performs varied functions in these organisms. In bacteria and fungi, β -glucosidases are mainly a part of the cellulase enzyme system and are responsible for the hydrolysis of short chain oligosaccharides and cellobiose (Bisaria and Mishra, 1989; Kubicek *et al.*, 1993). In insects and plants, β -glucosidase is involved in the release of cyanides from cyano-glucoside precursors. This is a part of a defense mechanism displayed in these systems (Esen, 1993).

Biochemical characteristics of β glucosidase have been studied in the digestive system and salivary glands of many insect species belong to different orders, such as Glyphodes pyloalis Walker (Lep.: Pyralidae), Apis mellifera L. (Hymenoptera: Apidae), Drosophila (Diptera: melanogaster Meigen Drosophilidae), Xanthogaleruca luteola Mull. (Col.: Chrysomelidae) and ferrugineus *Rhynchophorus* Olivieri (Col.: Curculionide) (Ghadamyari et al. 2010; Riseh et al. 2012; Huber and Mathison 1976; Sharifi et al. 2011; Tanimura et al. 1976; Chipoulet and Chararas, 1985; Pratviel-Sosa et al. 1987; Santos and Terra, 1985; Terra and Ferreira, 1958). **B**-glucosidase can degrade cellobiose and cellooligosaccharides to glucose in insects. Hemicelluloses and cellulose present in insect food are converted to di- and oligo-β-saccharides by some carbohydrases digestive and βglucosidases that play an important role in their hydrolysis (Terra WR, Ferreira, Also, several investigations 1994). indicate the main role of β -glucosidases in insect-host plant interaction (Ferreira et al. 1997; Ferreira et al. 1998; Mattiacci et al. 1995; Marana et al. 2000). βglucosidases are enzymes that catalyze the cleavage of glycosidic bonds in oligosaccharides or glycoconjugates. Several glucosidases are specific for the cleavage of glycosidic bonds depending on the number, position, or configuration of the hydroxyl groups in the sugar molecule. The activity of glucosidases is fundamental to several biochemical processes such as degradation of diet polysaccharides furnish to monosaccharide units, which are then able to be metabolically and used by the organism, lysosomal glycoconjugate catabolism and glycoprotein processing, and biosynthesis of oligosaccharide units in glycoproteins or glycolipids (Murray et al. 1994).

In insects, the fat body is the main organ responsible for energetic metabolism. This is also the organ of conversion and storage of fat. carbohydrates, and proteins (Arrese and Soulages 2010). The fat body is responsible for metabolism of carbohydrates and is especially enlarged in insect larvae. In honeybee larvae, it can constitute up to 65% of an individual's body mass (Bishop 1925).

Lactate dehydrogenase (LDH) is an important glycolytic enzyme present in virtually all animal tissues (Kaplan and Pesce, 1996). It is also involved in carbohydrate metabolism and has been used to indicate exposure to chemical stress (Diamantino et al., 2001). LDH is involved in the production of energy, being particularly important when a considerable amount of additional energy is required immediately. A negative correlation between LDH activity and ambient oxygen levels for some aquatic organisms were suggesting a possible biochemical adjustment in response to the lowered oxygen levels. This probably occurs also in situations of chemical stress. Therefore, this enzyme may be a sensitive criterion in laboratory (Senthil Nathan et al., 2005). LDH is, also, a parameter widely used in toxicology and in clinical chemistry to diagnose cell, tissue, and organ damage. However, the potential of this enzyme as an indicative criterion in the invertebrate toxicity tests has been scarcely explored (Senthil Nathan *et al.*, 2006).

The aim of this study is to evaluate the effect of different feeding period winter to help bee colonies to surmount on the malnutrition particularly at unsuitable conditions

MATERIALS AND METHODS Feeding Honeybee Colonies

This work was carried out at the apiary of the Agriculture Research Station, Beni sweif Egypt. During the period from 22nd Dec. 2012 to 10th of Feb. 2013. Twenty four healthy honeybee colonies from Carniolian Hybrid were conducted for this study.

Food supplement

A cake of 100gm food supplement consisted of one part medical dried yeast mixed with two parts powder sugar (w/w) according to zidan 2009.

Diet (1) content 100gm of food supplement and 2gm antibiotic (Sodium Sulphate demidin).

Diet (2) content 100gm of food supplement and 30ml of natural plant extract of Thyme.

Diet (3) content 100gm of food supplement and 30ml of natural plant extract of Clove.

Diet (4) content 100gm of food supplement and 30ml of natural plant extract of Cinnamon.

Diet (5) content 100gm of food supplement and 30ml of natural plant extract of black seeds.

Diet (6) content 100gm of food supplement and 30ml of natural plant extract of Anise.

Diet (7) content Ripe milk mixed with powder sugar (1: 3) (w: w).

Diet (8) Control (fed on food supplement without additives). 100gm of blend was placed on the top of the Combs from three colonies weekly to feed throughout the experimental periods. Samples of 100 adult workers were taken directly from the central comb of each colony at the experimental end. Bee Samples was transferred to the Laboratory and immediately frozen stored until analysis.

Preparation of extracts from bees

The samples were homogenized in a glass Potter homogenizer on an ice bath with 2.5 ml. cool 0.9% NaCl (1:10 w/v). Homogenates were centrifuged for 15 min at 1000 x g at 4 °C. In the supernatants.

Determination of enzymatic activity Determination of Lactate dehydrogenase activity:

The method described here is derived from the formulation recommended by the German Society for chemistry (DGKC, clinical 1972). Lactate dehydrogenase of catalyzes the conversion pyruvate to lactate, NADH is oxidized to NAD in the process. The rate of decrease in NADH is directly proportional to the LDH activity and determined photometrically.

Determination of β - glucosidase activity:

 β - glucosidase activity was measured by assaying glucose liberated by enzymatic hydrolysis of salicin as described by Lindorth (1988).

RESULTS AND DISCUSSION

Data show in Table (1) indicated that the increase of percentage in the biological activity to area of sealed worker brood reared, the diets which content antibiotic and ripe milk recorded higher value percentage 429.96% and 384.95, respectively, the same diets recorded higher value of percentage for mean number of combs covered with bees (115.475% and 107.85, respectively) and recorded higher value of percentage pollen stored with all diets than control, but found the diets which content antibiotic and ripe milk recorded higher value percentage 38.80% and &33.78%, respectively.

Table 1: Effect of the different feeding on some biological activities of the honey bee Colonies.

treatments	Mean area of sealed worker brood			Mean No. of combs covered with bee			Pollen grain	
	(inch ²)			/colony				
	treatments		Increasing	treatments		Increasing	Mean area	Increasing
	before	After	%	before	After	%	(inch ²)	%
Diet(1)	115.47	9.33	4.33	429.96	1190.67	224.67	276.67	38.80
Diet(2)	100.23	8.67	4.33	328.85	1060.67	247.33	262.67	31.78
Diet(3)	78.37	8.33	4.67	204.66	960.67	315.33	249.33	25.08
Diet(4)	92.38	8.33	4.33	204.24	910.67	299.33	255.33	28.09
Diet(5)	78.37	8.33	4.67	279.70	1035.33	272.67	245.33	23.10
Diet(6)	85.65	8.67	4.67	193.53	966.67	329.33	260.67	30.77
Diet(7)	107.85	9.00	4.33	384.95	1290.67	266.67	266.67	33.78
Diet(8)	64.24	7.67	4.67	138.41	740.67	310.67	199.33	-

Zidan (2009) fed honey bee colonies with food supplement mixed with 6 ml of each of the previously prepared mixture; eucalyptus, peppermint and thymol oils by different concentration and the control one was fed only with cake. He found that the increase of the biological activities of treated bee colony (sealed worker brood, covered combs with bee, pollen grain stored, royal jelly and honey), advice the beekeeper to using essential oils with sugar solution added to pollen supplement for their directly that help the bee workers to the reactivation after the season end.

The data resulted for the biochemical assay summarized in Table 2, the changes in β -glucosidase activity in the homogenate of honeybee, *Apis mellifera* (Fig.1) show the low activity in all types of different feeding, Antibiotic (Sodium Sulphate demidin), diet contain extract of Thyme, diet contain extract of

Clove, diet contain extract of Cinnamon, diet contain extract of black seeds and diet contain extract of Anise (23.95 %, 31.71%, 34.77%, 24.95%, 43.01% and 56.58%, respectively). On the contrary, the diet containing Ripe milk show high activity (106.17%). The enzyme activity decreases as the glucose chain length increases (Bisaria and Mishra, 1989; Kubicek et al., 1993). That means the increase in activity of β -glucosidases due to degradation of diet polysaccharides to furnish monosaccharide units, which are then able to be metabolically and convert monosaccharide to energy (Murray et al. 1994). The activity of the enzyme depends on several factors including; age of bee, stage of the colony, nectar flow, environment conditions and the beekeeping practices β -glycosidase has been purified the ventricles and honey sac of Apis mellifera L.(De Moraes and Bowen 2000).

					<u> </u>	0	2		
	Treatment	Lactate dehydro	genase U x	10^{3} /ml	β – glucosidase (ug glucose./min/mg)				
		Mean \pm SE	A*	%	Mean \pm SE	A*	%		
	Diet (1)	77.667 ± 0.752	1.93	192.56	2.860 ± 0.235	0.24	23.95		
	Diet (2)	32.000 ± 0.965	0.79	79.34	3.787 ± 0.133	0.32	31.71		
	Diet (3)	87.000 ± 0.769	2.16	215.70	4.153 ± 0.359	0.35	34.77		
	Diet (4)	28.667 ± 0.999	0.71	71.08	2.980 ± 0.141	0.25	24.95		
	Diet (5)	38.000 ± 0.661	0.94	94.22	5.137 ± 0.337	0.43	43.01		
	Diet (6)	29.333 ± 0.366	0.73	72.73	6.757 ± 0.344	0.57	56.58		
	Diet (7)	18.333 ± 0.717	0.45	45.45	12.680 ± 0.788	1.06	106.17		
	Control	40.333 ± 1.001	1.00	100.00	11.943 ± 0.618	1.00	100.00		
iet (1): Antibiotic (Sodium Sulphate demidin) Diet (2): extract of Thyme Diet (3): extract of Clove									

Table 2: Enzyme activity for β - glucosidase and Lactate dehydrogenase at homogenate honeybee

Diet (1): Antibiotic (Sodium Sulphate demidin)Diet (2): extract of ThymeDiet (4): extract of CinnamonDiet (5): extract of black seDiet (7): Ripe milkDiet (8): Control

Diet (5): extract of black seeds Diet (6): extract of Anise Diet (8): Control

A*= Enzyme activity for diet no. () / Enzyme activity for control * % = percentage relative to control

Fig. 1: Enzyme activity of β - glucosidase (ug glucose./min/mg) on honey bee with different feeding.

Data in the Table (2) and Fig. (2) show that, the lactate dehydrogenase activity showed highly enzyme activity in diet contain extract of Clove and Antibiotic (Sodium Sulphate demidin) 215.70% and 192.56%, respectively. Lactate dehydrogenase is an important glycolytic enzyme present in virtually all animal tissues (Kaplan and Pesce, 1996). It is also involved in carbohydrate metabolism and has been used to indicate exposure to chemical stress (Wu and Lam, 1997; Diamantino et al., 2001). Higher LDH activity in insects is most probably due to consumption as well as utilization of large quantities of food and involved in the production of energy, being particularly important when a considerable amount of additional energy is required immediately. A negative correlation between LDH activity and ambient oxygen levels. (Wu and Lam,

1997; Diamantino et al., 2001; Senthil Nathan et al., 2005). The result in other diet used in this study show low activity of LDH in the diet contain extract of Thyme, diet contain extract of Cinnamon, diet contain extract of black seeds, diet contain extract of Anise and diet containing Ripe milk (79.34%, 71.08%, 94.22%, 72.73% and 45.45%%, respectively). From result found inverse relationship between β-glucosidase activity and Lactate dehydrogenase activity in diet contain Ripe milk that may be come back to increase of protein percentage and the diets which content antibiotic and ripe milk recorded higher value percentage to area of sealed worker brood reared, mean number of combs covered with bees and pollen stored so that recommended to use that diet for feeding honev bee.

Fig. 2: Enzyme activity of lactate dehydrogenase (U x 10^3 /ml) on honey bee with different feeding.

REFERENCES

- Arrese, EL; and JI. Soulages (2010). Insect fat body: energy, etabolism, and regulation. Annual Review of Entomology 55: 207-225.
- Beenakkeras. M. Th. (1969). Carbohydrate and fat as a fuel for insect flight. A comparative study. J. Insect Physiol. 15, 353-361.
- Bishop, G.H. (1925). Body fluid of the honey bee larva. II. Chemical

constituents of the blood, and their osmotic effects. Journal of Biological Chemistry 66: 77-88.

- Bounias, M. and M.R.J. Morgan (1990). Effect of sucrose feeding on the induction of honey bee haemolymph alpha glucosidase (E.C.3.2.1.20). J.Apic. Res., 29(4):181-186.
- Candy, D. J. (1989). Utilization of fuels by the flight muscles, in:

Goldsworthy G.J., Wheeler C.H.(Eds.), Insect flight, CRC Press, Boca Raton, Florida, pp. 305–319.

- Chipoulet JM and Chararas C. (1985). Survey and electrophoretical separation of the glycosidases of *Rhagium inquisitor* (Coleoptera: Cerambycidae) larvae, Comp. Biochem. Physiol., Part B., 2: 241–246
- DE-Moraes R. L. M. S. and I. D. Bowen (2000). Modes of death in the hypopharyngeal glands of the hony bee (*Apis mellifera* L.). (*cellbiology* – *Internatiomal.*, 24 (10): 737-743.
- Deutsch Gesellschaft für Klinische chemie (1972). Empfehlungender Deutsch Gesellschaft für Klinische chemie (DGCK). j. clin. chem. Biochem., 10: 182-193.
- Diamantino, T.C., Amadeu, E., Soaresa, M.V.M., Guilherminoc, L., (2001) Lactate ehydrogenase activity as an effect criterion in toxicity tests with Daphnia magna straus. Chemosphere 45, 553–560.
- Esen, A. (1993). β-glucosidases: overview, in β-Glucosidases: Biochemistry and Molecular Biology, Esen, A., Ed., American Chemical Society, Washington, DC, 1–14.
- Ferreira C, Parra JPP, Terra WR, (1997).
 The effect of dietary plant glycosides on larval midgut β-glucosidases from Spodoptera frugiperda and Diatraea saccharalis, Insect Biochem. Mol. Biol., 27: 55-59
- Ferreira C, Torres BB, Terra WR, (1998).
 Substrate specificities of midgut β-glycosidases from insects of different orders, Comp. Biochem.
 Physiol. B: Biochem. Mol. Biol., 119B, 219–225
- Feuerbacher, E; Fewell J.H; Roberts S.P; Smith E.F; and J.F Harrison (2003). Effects of load type (pollen or

nectar) and load mass on hovering metabolic rate and mechanical power output in the honey bee Apis mellifera, J. Exp. Biol. 206, 1855–1865.

- Ghadamyari M, Hosseininaveh V, Sharifi M, (2010). Partial biochemical characterization of α- and β-glucosidases of lesser mulberry pyralid, *Glyphodes pyloalis* Walker (Lep.:Pyralidae), C. R.Biol., 333, 97–204
- Harrison, J.F. and J.H. Fewell (2002). Environmental andgenetic influences on flight metabolic rate in the honey bee, Apis mellifera, Comp. Biochem. Physiol. A 133: 323–333.
- Hrassingg N. and K. Crailsheim (2005). Differences in drone and worker physiology in honeybees (Apis mellifera). Apidologie 36: 255-277.
- Huber RE, Mathison RD, (1976)Physical, chemical and enzymatic studies on the major sucrase on honey bees (*Apis mellifera*), Can. J. Biochem., 54: 153–164
- Kaper, T., Lebbink, J. H.G., Pouwels, J., Kopp, J., Schulz, G.E., van der Oost. J., and de Vos, W.M. (2000). Comparative structural analysis and substrate specificity engineering of the hyperthermostable βglucosidase CelB from *Pyrococcus furiosus*. *Biochemistry* 39: 4963-4970.
- Kaplan, L.A., Pesce, A.J. (Eds.), (1996).Clinical Chemistry: Theory,Analysis, Correlation, third ed.Mosby-Year Book Inc., St. Louis,PP. 609–610.
- Kubicek, C.P., Messner, R., Gruber, F., Mach, R.L.,and Kubicek-Pranz, E.M. (1993). The *Trichoderma*cellulase regulatory puzzle: from the interior life of a secretory fungus. Enz. Microb. Technol. 15: 90-99.
- Lindorth, R. L (1988). Hydrolysis of phenolic glycosides by mid gut β -

glucosidases in Papilo glaucus subspecies. insect biochem., v18:789-792.

- Marana HRC, da Silva JS, de Andrade JM, (2000) NK cell activity in the presence of IL-12 is aprognostic assay to neoadjuvant chemotherapy in cervical cancer, Gynecol. Oncol., 78:318–323.
- Mattiacci L, Dicke M, Posthumus MA, (1994) β-Glucosidase: an elicitor of herbivore induced plant odour that attracts host-searching parasitic wasps, Proc. Nat. Acad. Sci. U.S.A., 92, 2036–2040
- Murray, R. K.; Granner, D. K.; Mayes, P. A.; Rodwell, V. W. (1994). Harper: Bioquímica. São Paulo: Editora Atheneu. PP. 628–646.
- Pratviel-Sosa F, Clermont S, Percheron F, Chararas C, (1987). Studies on glycosidases and glucanases in Thaumetopoea pityocampa larvae-II. Purification and some properties of a broad specificityβ-Dglucosidase, Comp. Biochem. Physiol. B: Comp. Biochem., 1: 173–178
- Riseh NS, Ghadamyari M, Motamediniya
 B, (2012). Biochemical characterrization of α & β-glucosidasesand α
 & β-galactosidases from red palm weevil, *Rhynchophorus ferrugineus* Olivieri (Col.:Curculionidae), Plant Protect. Sci., 2: 85–93
- Rothe, U. and W. Nachtigall (1989). Flight of the honeybee. IV. Respiratory quotients and metabolic ratesduring sitting, walking and flying, J. Comp. Physiol., 158 (B): 739–749.
- Sacktor, B. (1970). Regulation of intermediary metabolism, with special reference to the control mechanisms in insect flight muscle. Adu. Insect Physiol. 7: 267-347.
- Santos CD, Terra WR, (1985). Physical properties, substrate specificities and a probable mechanism for a β-D-glucosidase (cellobiase) from

midgut cells of the cassava hornworm (Erinnyis ello), Biochim. Biophys. Acta (BBA) - Protein Struct. Molec. Enzymol., 2: 179-185.

- Senthil Nathan, S., Chung, P.G., Murugan, K., (2005). Combined effect of biopesticides on the digestive enzymatic profiles of Cnaphalocrocis medinalis (Guene'e) (Rice leaffolder) (Insecta: Lepidoptera: Pyralidae) Ecotoxicol. Environ. Safety. Ecotoxicol. Environ. Safety, 64: (2006) 382–389.
- Senthil Nathan S.; Kalaivani K.; Chung, P. G. and Murugan K. (2006a). Effect of neem limonoids on lactate dehydrogenase (LDH) of the rice leaffolder, *Cnaphalocrocis medinalis* (Guene'e) (Insecta: Lepidoptera: Pyralidae). Chemosphere, 62: 1388–1393.
- Senthil Nathan, S.; Kalaivani, K. and Murugan, K. (2006b). Effect of biopesticides on the lactate dehydrogenase (LDH) of the rice leaffolder, *Cnaphalocrocis medinalis* (Guenee) (Insecta: Lepidoptera: Pyralidae). Ecotoxicol. Environ. Safety., 65: 102 – 107.
- Sharifi M, Ghadamyari M, Moghadam MM, Saiidi F, (2011). Biochemical characterization of digestive carbohydrases from Xanthogaleruca luteola and inhibition of its α -amylase by inhibitors extracted from the common bean, Arch. Biol. Sci. Belgrade, 3:705–716.
- Tanimura T, Kitamura K, Fukuda T, Kikuchi T, (1979). Purification and partial characterization of three forms of alpha-glucosidase from the fruit fly Drosophila melanogaster, J. Biochem., 1:123–30.
- Terra WR, Ferreira C, (1983). Further evidence that enzymes involved in the final stages of digestion by *Rhynchosciara* do not enter the

endoperitrophic space, Ins Biochem., 2: 143–150.

- Terra WR, Ferreira C, (1994). Insect digestive enzymes: properties, compartmentalization and function, Comp. Biochem. Physiol., 109(B): 1–62.
- Wheeler, C.H. (1989). Mobilization and transport of fuels to the flight muscles, in: Goldsworthy G.J., Wheeler C.H. (Eds.), Insect flight, CRC Press, Boca Raton, Florida, PP. 273–303.
- Insect Wu, R.S.S., Lam, P.K.S. (1997). Glucose-6-phosphate dehydrogenase and lactate dehydrogenase in the greenlipped mussel (Perna viridis). Possible biomarker for hypoxia in 09(B): the marine environment. Water Res. 31: 2797–2801.
 - Zidan, E.W. (2009). Studies on varroa mite and its effect on productivity of honeybee colonies, Ph.D. Thesis, Banha Univ., Fac. of Agric. Moshtohor, Egypt, PP.210.

ARABIC SUMMARY

مستوى نشاط إنزيمي لاكتك ديهدر وجينيز وبيتا جليكوسيديز في طوائف نحل العسل مع التغذيات المختلفة

سامح مصطفى عبد النبى ، ايهاب وفيق زيدان معهد بحوث وقاية النباتات – مركز البحوث الزراعية – الدقى – الجيزة

نشاط إنزيم لاكتك ديهدروجينيز وبيتا جليكوسيديز تم تقديرها فى شغالات نحل العسل بعد التغذية على بيئات مختلفة (مضاد حيوى ، لبن رايب، مستخلصات نباتية طبيعية) (زعتر ، قرنفل، القرفة، الحبة السوداء، الينسون) وقد اظهرت النتائج ارتفاع نسبيى فى نشاط انزيم بيتاجليكوسيديزفي البيئة الغذائية التي تحتوي علي اللبن الرايب 106.17% وانخفاض فى جميع المعاملات الأخرى، بينما وجد ارتفاع فى نشاط إنزيم لاكتك ديهيدروجينيز في حالة البيئات الغذائية التي تحتوي علي المضاد الحيوي والقرنفل 192,50%و215,70 علي التوالى مقارنة مع البيئات الغذائية التي المستخدمة فى هذه الدراسة