Transgenic Drosophila melanogaster Carrying RNAi Against gce Gene Proved the Involvement of gce in Juvenile Hormone Action

Reda F. A. Bakr^{1&2}; Jehane A. Hafez¹; Thorya F. K. Alnagar¹; Dalia A. M. Salem¹ and Ola H. Zyaan¹

1-Department of Entomology, Faculty of Science, Ain Shams University, Abbassia-Cairo, Egypt.

2- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia

E-mail: rfbakr@yahoo.com

ABSTRACT

Juvenile hormone (JH) is important for multiple aspects of insect development and physiology. Although roles of JH have received considerable studies, JH signaling pathway at the molecular level is still not well understood. Methoprenetolerant (Met) in Drosophila melanogaster fulfills many of the requirements as a hormone receptor gene. A paralogous gene, germ-cell expressed (gce), possesses homology to Met and is a candidate as a Met partner in mediating JH action. To probe roles of this gene in JH action, we carried out in vivo gce underexpression studies using RNAi technique. Precocious expression of broad (br) gene was found to occur when gce was knocked down in the young larvae. We also demonstrated that RNA interference-driven knockdown of gce expression in transgenic flies results in appearance of resistance to pyriproxyfen (IGRs). These results show that gce is a vital gene and appears to promote JH action in larval stages.

Keywords: Drosophila melanogaster, Transgenic, Juvenile Hormone, RNAi and gce gene

INTRODUCTION

Drosophila melanogaster (Order: Diptera; Family: Drosophilidae) provides an ideal system to examine the genes and molecular mechanisms of hormones that regulate the growth and differentiation of tissue. RNA interference (RNAi) is a mechanism that knocks down gene expression in variety of organisms 2001. (Nishikura 2001). In the Drosophila researchers started to inject dsRNA into adult Drosophila abdomen, trying to trigger RNAi of their favorite gene (Dzitoveva et al. 2001). When a long dsRNA is introduced into the organism, its double-stranded structure is recognized by a ribonuclease III enzyme Dicer, which named subsequently cleaves it into smaller fragments named small interfering RNAs (siRNA). In turn, siRNA directs the cleavage of homologous messenger RNA after

siRNA is incorporated into the RNAinduced silencing complex (RISC) (Nishikura 2001; Hannon 2002). The cleavage of messenger RNA then results in a substantial decrease in expression of that gene in the organism. The RNAi technique involves an inverted repeat of a sequence specific to the target gene, and clones the inverted repeat structure into a that contains a conditional vector promoter (Allikian et al. 2002). Since its discovery a decade ago, RNAi has become an important and powerful research tool to investigate gene function in an array of organisms, both in vivo and in vitro. Recently, researchers developed a large scale RNAi injection method for Drosophila embryos to identify and characterize the molecular functions of the 14,000 Drosophila genes (Cornell et al. 2008). More recent works based on RNAi experiments have shown

that the transcription factor Broad and Kruppel homolog 1 are also involved in antimetamorphic action of JH the (Minakuchi et al., 2009). RNAi can be triggered by the expression of a long double stranded hairpin RNA from a transgene containing a gene fragment cloned as an inverted repeat. The expression of such transgenes under the control of a generic promoter containing the Gal4-responsive upstream activator sequence (UAS) element can target RNAi to any cell type at any stage of the insect for which a suitable Gal4 driver line is available (Bellés 2010).

To understand how Gce mediates JH action, we generated transgenic flies carrying the RNAi system to knockdown gce expression. The gce underexpression produced precocious broad expression in the immature stage and is functioning prepupal development by inhibiting br expression. Furthermore, we show that RNA interference-driven knockdown of gce expression in transgenic flies results appearance of resistance in to pyriproxyfen (IGRs). This study lays a foundation for further elucidation of the molecular mechanism of JH action in Drosophila.

MATERIALS AND METHODS Insect used

The red-eyed Oregon-R strain was used as susceptible wild type control, Pin/Cyo, and UAS-mCD₈-GFP/Fm7c were from Bloomington Drosophila Stock Center at Indiana University (USA). Met²⁷ was a gift from Dr. Thomas Wilson (Ohio State University, USA). Gal4- PG12 was a gift from Dr. Henri Bourbon (Centre de Biologie du De'veloppement, France). All Drosophila strains were grown on standard cornmeal/molasses/yeast food at 25°C.

Preparation of target DNA fragment

Genomic DNA was isolated according to the standard method. One pair of specific *gce* primers carrying restriction enzymes cut sites were used in

the PCR reaction to amplify the target DNA fragment from the isolated genomic DNA. The primers were gce-DNA-F 5'-ATTGAATTCGC ATTGAA CAGCATTTGGG-3' (EcoR1) and gce-DNA-R 5'-ATTTCTAGAGTGAAGG GACTGAGATTGCG-3' (Xba1)

Preparation of target cDNA fragment

Total RNAs were isolated using the RNeasy Mini Kit (Qiagen, USA). One pair of specific primers (gce primer) carrying restriction enzymes cut sites were used in the RT-PCR reaction to amplify the target complementary DNA (cDNA) fragment from the isolated total RNA. The primers were gce-cDNA-F 5'-ATTGCGGCCGCGCATTGAACAGCA TTTGGG-3' (Not1) and gce-cDNA-R 5' ATTTCTAGAGATTCTGGATGAGCC GCA-3' (Xba1)

The gce RNAi construct

Expression of gce was subjected to RNAi-mediated knockdown. А gce RNAi-generating transgene was engineered from a fusion of genomic DNA and reverse complement cDNA and then subcloned into the injector plasmid vector, pCaSpeR-hs plasmid. Plasmid was sent to Best Gene Incorporation (USA) to be injected into Drosophila embryos (white eye strain, w^{1118}).

Green florescent protein (GFP) as a marker for the *Broad* (*br*) expression

Broad (br) gene is an important gene represents initiation of the metamorphosis, and its endogenous expression can be visualized in the larvae using green florescent protein (GFP) specific (Gal4marker in fly PG12>UAS-mCD₈-GFP). That fly was crossed with gce-RNAi fly.

Heat shock procedure

Because the RNAi fragment for the *gce* gene was subcloned into pCaSpeR-hs plasmid, this insertion is under control of heat shock promoter (hs-promotor). By heat shock the first instar larvae of the transgenic fly for *gce* for one hour at 38°C, the RNAi fragment are transcribed

into targeting mRNA as hair-pin structure. This structure functions as double stranded RNA (dsRNA) which interferes with endogenous mRNA of the targeting gene *gce*. This process, finally, reduce the mRNA level of this gene.

Immunohistochemistry and microscopy

Larval fat bodies were dissected from the 2^{nd} instar larvae. Immunohistochemistry was performed as described previously (Wang *et al.*, 2002). Endogenous Br proteins were labeled with a Br-core antibody (25E9.D7, from the DSHB at the University of Iowa). Florescence signals were captured with a Zeiss LSM510 confocal microscope (Carl Zeiss).

JHA treatment

The JHA pyriproxyfen (Sigma) was dissolved in 95% ethanol to give a 300 ppm stock solution. JHA-containing fly food was prepared by adding JHA stock solution to the standard food at 50-55°C to a final concentration of 0.03-3 ppm. For the JHA resistance assay, 100 newly hatched Oregon-R, Met²⁷, or gce-RNAi larvae were reared in vials of food containing different concentrations of JHA. Survival rates were calculated based on the numbers of flies developing to adulthood.

RESULTS

Crossing screening for the successful integrated *gce*-RNAi into the genomic DNA of the injected flies:

The constructed plasmid for gce-RNAi was injected in the newly laid *Drosophila* eggs, w^{1118} , which marked by whit eve flies. Accordingly the constructed plasmid was designed to carry the *mini-white* gene as a red eye marker. The eve marker was used as an indicator for the successful integration by seeing the change in the eye color. As shown in Fig. (1) the survival injected which carry males the gce-RNAi integrated constructs were crossed to Pin/CyO virgin females. After about 10 days, males with red eyes which carry the Pin or CyO marker were selected from the progeny and crossed to Pin/CyO virgin females. After two generations, the Р [hs-gce RNAi] on the second chromosome were selected independently and crossed to keep the stocks of the transgenic flies as shown in Fig. (2).

Fig.1: A Crossing screening to select the integrated P [hs-gce RNAi] construct in the second chromosome of the transgenic flies. B) Crossing steps to build the homozygous stock of the transgenic flies carrying the integrated P [hs-gce RNAi] construct in the second chromosome.

Fig. 2: Crossing screening to select the integrated P [hs-gce RNAi] construct in the second chromosome of the transgenic flies.

Knockdown validation of *gce* in the gce-RNAi flies:

In a qualitative RT-PCR test the expression level of *gce* was compared in the wild type and heat shocked insects at the same conditions. The results were presented in Fig. (3).It can be noticed from Fig. (3) that the expression level of *gce* was dramatically decreased in the heat shocked insects compared with the expression level in the wild type insects.

This indicated that gce-RNAi was active and targeted the *gce* gene which leads to produce nonfunctional mutant *gce* gene. The control gene, *Rp49*, was expressed normally in both heat shocked insects and in the wild type insects as well. The positive expression of the control gene was validating that the mRNA level of the target gene was the only affected one. As shown in Fig. (3 B).

- A: M: DNA marker in bp
 - 1: gce expression in the wild type insects
 - 2: gce expression in the heat shocked insects
- B: M: DNA marker in bp
 - 1: *Rp49* expression in the wild type insects
 - 2: Rp49 expression in the heat shocked insects

Resistance bioassay to juvenile hormone agonist, pyriproxyfen (IGRs) in three different fly types:

Met gene is well known as a candidate receptor for juvenile hormone signaling path way and mediates its action. When this mediator (*Met*) is knocked down and become mutant, the flies which carry this mutation become resistant to JHA such as methoprene and pyriproxyfen in the larval stages. Based on that, gce-RNAi larvae were contentiously heat shocked in order to activate gce-RNAi and subsequently knock down the expression of *gce*. This type of larvae in addition to the susceptible wild type Oregon R larvae and Met²⁷ larvae as a resistant strain were treated by 0, 0.03, 0.1, 0.3, or 1 ppm pyriproxyfen

independently. The mean percentage numbers of the survival adult flies from each concentration were counted and presented in Table (1). Results represented in Table (1) and Fig. (4) revealed that the mean percentage number of adult survival from the four different fly genotype had a positive relation with the different concentrations of pyriproxyfen.It can be noticed that the survival percentages of adult flies were decreased significantly (p < 0.05) with the increase in the concentration of pyriproxyfen. From table (1) & Figure (4) it is clear that at conc. 0.1ppm, the highest tolerance which leads to a high adult survival rate was recorded as 87.3±9.7% for the Met mutant flies (Met²⁷), and recorded as $52.3\pm7.3\%$ in the gce-RNAi flies.In comparing with Oregon R ($34.2\pm3.3\%$), the previous two survival rate percentages showed high significant difference at the same concentration. At concentration 0.3 ppm, the wild type flies showed significant

low survival rate $4\pm1.3\%$ compared with the survival rate 29.2 ±6.3 , and 83 $\pm8.7\%$ for gce-RNAi, and Met²⁷ flies, respectively.

Fig. 4: Comparison between the mean percentage number of survival Oregon R, gce-RNAi, and Met²⁷ adult flies after treatment by different concentrations of pyriproxyfen (IGRs).

Table 1: Mean percentage number of survival Oregon R, gce-RNAi, and Met²⁷ adult flies after treatment by different concentrations of pyriproxyfen (IGRs).

	Mean % number of survival adult flies ± SE		
	Oregon R	gce-RNAi	Met ²⁷
0 ppm	95.3±3.4 a	94.2±5.5 a	93.6±5.7 a
0.03 ppm	83.6±4.5 b	81.7±4.7 b	88.9±5.5 b
0.1 ppm	34.2±3.3 c *	52.3±7.3 c *	87.3±9.7 b *
0.3 ppm	4±1.3 d *	29.2±6.3 d *	83±8.7 b *
1 ppm	0	0	74.6±7.6 c
3 ppm	0	0	55.7±8.2 d

Mean values in vertical columns having different small letters are statistically significant (p < 0.05) Mean values in horizontal rows followed by asterisk (*) are statistically significant (p < 0.05)

The use of *Gal4-PG12* to recapitulate the *br* expression pattern in gce-RNAi flies:

The *broad* (*br*) gene is a molecular marker for pupal commitment and specifies the larval-pupal metamorphosis in a variety of holometabolous insect species. It is the most important one of the early response genes in the Ecdyson signaling path way where it is highly expressed in the late third instar larvae. The broad (br) gene has been identified as a key regulator in mediating the cross-talk between Ec and JH signaling pathways. JH through its receptors inhibit the expression of br during the larval stages so br is a key gene for monitoring the JH signaling bath way through its receptor. The expression patterns of the Gal4-PG12 enhancer-trap line inserted near the br gene

was used to monitor *br* expression in live organisms. Where the expression pattern of the Gal4-PG12 was found to be closely resembled temporal and the spatial expression pattern of the endogenous *br* gene in tissues other than the salivary gland. In this study Gal4-PG12 was used to drive UASmCD8GFP on the X chromosome as a reporter of br expression. The gce-RNAi insertion on the 2nd chromosome was made homozygous in combination with Gal4-*PG12>UASmCD8GFP* by genetic crosses as illustrated in figures (5) to produce the flies stock:

Gal4-PG12>UASmCD8GFP/Fm7c/Y; gce-RNAi.

Fig. 5: Schematic diagram of genetic crosses for combining *gce*-RNAi on the second chromosome with *Gal4-PG12> UAS-mCD*₈*GFP* on X chromosome which used to monitor *br* expression.

Monitoring the precocious *br* expression in the gce-RNAi 2nd instar whole larvae:

Because JH represses br expression during early larval stages, it was reasoned that mutations that reduce the JH titer or disrupt JH action should cause precocious br expression in the young larvae (2nd instar). Accordingly br expression was monitored in gce-RNAi 2nd instar larvae by using special Gal4-UAS binary system with a specific Gal4 driver, Gal4-PG12. It is expressed resemble to the expression of the endogenous br expression, and drives UAS-mCD₈GFP which produces florescent green color. The gce-RNAi flies were combined with Gal4- $PG12 > UAS-mCD_8GFP$ on X chromosome by genetic crosses independently. The GFP expression was examined at the 2nd instar and images were captured under the fluorescent microscope and presented in figure (6).Images in figure (6) displayed that the expression of Gal4-PG12>UAS-mCD8GFP was restricted to salivary glands in the wild type 2nd instar larvae but ubiquitous expression of Gal4-PG12>UAS-mCD8GFP was detected at the same stage in the gce

mutant larvae. These results suggest that gceis required to repress br expression during the early larval stages, possibly by regulating either the JH titer or JH signaling.In order to distinguish whether gceis involved in the JH titer or JH signaling, Gal4-PG12>UAS-mCD8GFP/Fm7c/Y ; gce-RNAi larvae were fed on food containing 0.1 ppm juvenile hormone analogue (pyriproxyfen) and heat shocked. The GFP expression was examined at the 2nd instar and images were captured under the fluorescent microscope and presented in figure (7). Images in figure (7) demonstrated that the expression of Gal4-PG12>UAS-mCD8GFP was restricted to salivary glands in the wild type 2nd instar treated larvae with pyriproxyfen while the gce mutant treated larvae with pyriproxyfen showed ubiquitous expression of Gal4-PG12>UAS-mCD8GFP at the same stage. The precocious br expression was prevented not by pyriproxyfen treatment. These results propose that gce is required to repress br expression during the early larval stages. possibly by regulating the JH signaling.

Fig. 6: GFP images show the expression of Gal4-PG12>UAS-mCD8GFP in the gce-RNAi 2nd instar larvae after the heat shock process. GFP was detected and captured under the fluorescent microscope. (60 X magnification). A: Wild type larva. B: Gal4-PG12>UAS-CD8GFP/Fm7c/Y; gce-RNAi larva. A',B': White light images of the same larvae are shown in[A,B].

Detection of the precocious br expression in the fat bodies of the 2nd instar larvae of gce-RNAi:

The *br* gene represents the key gene which is prevented to be expressed in the immature stages where the JH acts through its receptors and its signaling to suppress the br expression. Accordingly the br expression was examined in the mutant gce 2nd instar larvae by Br-core antibody in the fat body (FB) cells by the immunohistochemical assav and compared to the *br* expression in the same stage of the wild type. The samples were inspected under the florescent microscope and the captured photos were presented Fig. in (8). Immunohistochemical results in Fig. (8) revealed that the precocious br expression was found to be highly expressed in the fat body cells of gce-RNAi mutant larvae at the 2nd instar marked by the red color and was not detected in the wild type larvae at the

Fig. 7: GFP images show the expression of Gal4-PG12>UAS-mCD8GFP in the gce-RNAi 2nd instar of treated larvae with 0.1 ppm pyriproxyfen after the heat shock process. GFP was detected and captured under the fluorescent microscope (60 X magnification). A: Wild type larva.
B:Gal4-PG12>UAS-mCD8GFP/Fm7c/Y;gce-RNAi larva. A'-B': White light images of the same larvae are shown in [A-C].

same stage. Therefore, suppression of gce by RNAi gene targeting in the early larval instars caused precocious br expression and premature metamorphosis. To figure out whether Gce protein is required for JH-mediated *br* suppression in the FB cells, wild type, gce-RNAi, larvae were reared on a diet containing 0.1 ppm pyriproxyfen. The br expression was examined in the 2nd instar larvae by Br-core antibody in the FB cells by the immunohistochemical assay. The samples were perceived under the florescent microscope and the captured photos were presented in Fig. (9).Photos of the immunohistochemical results in Fig. (9) confirmed that precocious brexpression was highly expressed in the FB cells of gce treated mutant larvae. The results revealed that precocious br expression was not suppressed by exogenous JHA in the FB of these mutant larvae and was not detected in the FB cells of the wild type larvae at the

Fig. 8: Photos of immunohistochemical results showing that the fat bodies of the 2nd instar larvae were stained with a Br-core antibody (red) [A,B]. The nuclei of the same tissues were stained with DAPI (blue) [A',B']. A: Fat body cells of wild type larvae showing no br expression. B: Fat body cells of gce-RNAi larvae showing precocious br expression.

+ JHA

Fig. 9: Photos of immunohistochemical results showing that the fat bodies of treated 2nd instar larvae with pyriproxyfen (JHA) were stained with a Br-core antibody (red) [A-C]. The nuclei of the same tissues were stained with DAPI (blue) [A', B']. A: Fat body cells of wild type larvae showing no br expression. B: Fat body cells of gce-RNAi larvae showing precocious br expression.

same conditions. Therefore, at the early larval stages, the presence of the Gce

protein in the FB cells is required for JHmediated *br* suppression in these cells.

gce The gene is another candidate gene for mediating the JH action. The selection of gce for this purpose was based on the similarity between this gene and other candidate gene known as Met. The Met gene was proposed previously by different authors (Wilson and Fabian, 1986; Miura et al., 2005; Konopova and 2007). Our bioinformatics Jindra, analysis showed that, Met and Gce were found to have highly similar amino acids sequences especially in the three conserved domains; bHLH, PAS-A, and PAS-B (data not shown). RNAi technique is used to knock down specific gene in the living organism. It was used successfully by different authors to knock down target genes in different insects (Uhlirova et al., 2003; Konopova and Jindra, 2007; Miller, et al., 2008; Parthasarathy, et al., 2008; Baumann et al., 2010; Huang et al., 2011). The functions of gce in the larval stage have been examined by RNAi **RNAi-generating** experiments. transgenes were engineered from a fusion of genomic DNA and reverse complement cDNA. Kalidas and Smith (2002) used the same technique and they found that it gives high knockdown of the gene of interest. The two RNAi construct was integrated into the genomic DNA of the living flies. The expression of these structures formed dsRNA as hairpin RNA expression. The was hairpin structure previously described by May and Plasterk (2005). We confirmed the knocks down in the gene by qualitative RT-PCR analysis. It was found that the gce transcript was dramatically reduced in the heat shocked 2nd instar larvae and was undetectable on the gel. These results verify the success of silencing gce gene by the RNAi technique. Flies which have mutation in the Met gene are resistant to JHA. This because Met gene

is a candidate of JH receptor and mediate its function (Wilson and Fabian, 1986; Wilson and Ashok, 1998). Consequently, we hypothesized that if Gce is required as JH receptor and to mediate its function, the mutation in this gene would result in resistance to JHA as *Met* mutant flies. Our bioassay test revealed that flies with mutation in gce were resistant to JHA at high concentrations such as 0.1 and 0.3 ppm pyriproxyfen. The effect of knocking down gce on the appearance of metamorphosis precocious was This experiment addressed. was depending on the expression of broad (br) as a key gene connects the ecdysone signaling with the JH signaling. The broad (br) gene, an ecdysone-induced transcription factor, is the key regulator of the onset of metamorphosis, since amorphic D. *melanogaster* mutants of *br* can develop normally until the final larval instar but fail to begin metamorphosis (Kiss et al., 1988; DiBello, et al., 1991; Bayer, et al., 1996). It works as a key specifier of the pupal state. The expression of br is also regulated by JH (Zhou and Riddiford, 2002). In Tribolium castaneum, br is essential for promoting pupal development, and is inducible by exogenous JHA in the pupal stage (Konopova and Jindra. 2008: Parthasarathyet al., 2008; Suzuki et al., 2008). So, we decided to use *br* gene as an indicator for the initiation of the onset of metamorphosis. Accordingly we employed the Gal4-UAS system developed by Brand which and Perrimon (1993), which uses a D. melanogaster gene promoter ligated to yeast Gal4, resulting in Gal4 protein product to drive expression of GFP ligated to a UAS response element in flies. Transgenic transgenic flies (produced by Bourbon et al., 2002) carrying a specific Gal4-PG12 driver inserted near the br gene were used in this study. It resembled the temporal and spatial expression pattern of the endogenous br gene in tissues other than the salivary gland. The expression of Gal4-PG12 in the salivary gland is a common feature for most Gal4 lines derived from the $P\{GawB\}$ construct, which may carry a position-dependent, unidentified salivary gland enhancer (Brand et al., 1994). In this study, RNAi-mediated knockdown of gce precocious larval-pupal causes а transition which indicated by the precocious br expression. It is well documented by Riddiford et. al. (2003) that br is a molecular marker for pupal commitment and specifies the larvalpupal metamorphosis in a variety of holometabolous insect species. Also our study showed that, the precocious br expression was detected in the whole larvae by using the GFP as a reporter gene. It was also detected in the fat bodies and recognized by using specific Br-core anti bodies. The precocious br expression could not be prevented by treatment with pyriproxyfen (JHA) either in the whole larvae or in the fat bodies. This finding is in agreement with a reverse genetic study showed that precocious br expression was also detectable in Met mutant larvae (Huang et al., 2011). This study provides evidence that in D. melanogaster gce is mediators of the antiessential metamorphic action of JH. Therefore it is necessary to maintain the larval state.

REFERENCES

Allikian, M.J., Deckert-Cruz, D., Rose, M.R., and Landis, G.N. (2002).
Doxycycline-induced expression of sense and inverted-repeat constructs modulates *phosphogluconatemutase* (*Pgm*) gene expression in adult *Drosophila melanogaster*. Genome Biol. 3(5): 21.1–21.10.

- and Hormones (Litwack, G., ed.), pp. 1– 73, Academic Press.
- Baumann A.; Barry A.J., Wang S., Fujiwara Y. and Wilson T.G. (2010). Paralogous genes involved in juvenile hormone action in *Drosophila melanogaster*.Genetics. 185: 1327-1336.
- Bayer, C.A., Holley, B., and Fristrom, J.W. (1996). A switch in Broad-Complex zinc-finger isoform expression is regulated posttranscriptionally during the metamorphosis of *Drosophila* imaginal discs. Dev. Biol.177: 1-14.
- Bellés, X. (2010). Beyond *Drosophila*: RNAi In Vivo and Functional Genomics in Insects. Annual Review of Entomology. 55:111-128.
- Bourbon, H.M., Gonzy-Treboul, G., Peronnet, F., Alin, M.F., Ardourel, C., Benassayag, C., Cribbs, D., Deutsch, J., Ferrer, P., Haenlin, M., Lepesant, J.A., Noselli, S., and Vincent, A. (2002).A P-insertion screen identifying novel X-linked essential genes in *Drosophila*. Mech. Dev. 110(1-2): 71-83.
- Brand, A.H., and Perrimon, N. (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 118: 401-415.
- Brand, A.H., Manoukian, A.S. and Perrimon, N. (1994).Ectopic expression in *Drosophila*. Methods Cell Biol. 44: 635-654.
- Cornell, E., Fisher, W.W., Nordmeyer, R., Yegian, D., Dong, M., Biggin, M.D., Celniker, S.E., and Jin, J. (2008). Automating fruit fly *Drosophila* embryo injection for high throughput transgenic studies." Rev. Sci. Instrum. 79(1): 013705.
- DiBello, P.R., Withers, D.A., Bayer, C.A., Fristrom, J.W., and Guild, G.M. (1991). The *Drosophila Broad-Complex* encodes a family of

related proteins containing zinc fingers. Genetics., 129: 385-397.

- Dzitoyeva, S., Dimitrijevic, N., and Manev, H. (2001). Injectable RNA interference (RNAi) in adult *Drosophila* replicates a mutant phenotype. *Dros. Inf. Serv.* 85: 122-126.
- Hannon, G.J. (2002).RNA interference. Nature 418 (6894): 244-251.
- Huang, J., Tian, L., Abdou, M., Wen,
 D., Wang, Y., Li, S., and Wang, J. (2011). DPP-mediated TGF-β signaling regulates juvenile hormone biosynthesis by upregulating expression of JH acid methyltransferase. Development. 138: 2283-2291.
- Kalidas S., and Smith, D.P., (2002). Novel genomic cDNA hybrids produce effective RNA interference in adult *Drosophila*. Neuron.33: 177–184.
- Kiss, I., Beaton, A.H., Tardiff, J., Fristrom, D., and Fristrom, J. W. (1988). Interactions and developmental effects of mutations in the Broad-Complex of *Drosophila melanogaster*. Genetics.118: 247-259.
- Konopova, B., and Jindra, M.(2008). Broad-Complex acts downstream of Met in juvenile hormone signaling to coordinate primitive holometabolan etamorphosis. Development.135(3): 559-68.
- Konopova, B., and Jindra, M., (2007). Juvenile hormone resistance gene *Methoprene-tolerant* controls entry into metamorphosis in the beetle *Tribolium castaneum*. Proceedings of the National Academy of Sciences, USA. 10419:10488-10493.
- May, R.C. and Plasterk, R.H.A. (2005).RNA interference spreading in C. *elegans*. Methods in Enzymology 392: 308-315.

- Miller, S.C., Brown, S.J., and Tomoyasu, Y. (2008). Larval RNAi in *Drosophila*. Dev. Genes. Evol. 218: 505–510.
- Minakuchi, C., Namiki, T. and Shinoda, T. (2009).Krüppel homolog 1, an early juvenile hormone-response gene downstream of Methoprenetolerant, mediates its antimetamorphic action in the red flour beetle *Tribolium castaneum*. Dev. Biol. 325: 341-350.
- Miura, K., Oda, M., Makita, S., and Chinzei, Y. (2005).Characterization of the *Drosophila*Methoprenetolerant gene.FEBS J. 272(5):1169-78.
- Nishikura, K. (2001). "A short primer on RNAi: RNA-directed RNA polymerase acts as a key catalyst." Cell. 107(4): 415-8.
- Parthasarathy, R., Tan, A., and Palli, S.R., (2008).bHLH-PAS family transcription factor methoprenetolerant plays a key role in JH action in preventing the premature development of adult structures during larval-pupal metamorphosis. Mech. Dev. 125: 601-616.
- Parthasarathy, R., Tan, A., and Palli, S.R., (2008).bHLH-PAS family transcription factor methoprenetolerant plays a key role in JH action in preventing the premature development of adult structures during larval-pupal metamorphosis. Mech. Dev. 125; 601-616.
- Riddiford, L.M., Hiruma, K., Zhou, X., and Nelson, C.A.(2003). Insights into the molecular basis of the hormonal control of molting and metamorphosis from *M*, *anducasexta* and *Drosophila melanogaster*.Insect Biochem.Mol. Biol. 33: 1327-1338.
- Suzuki, Y., Truman, J.W. and Riddiford, L.M., (2008). The role of Broad in the development of

Tribolium castaneum: implications for the evolution of the holometabolous insect pupa. Development 135: 569-577.

- Uhlirova, M., Foy, B.D., Beaty, B.J., Olson, K.E., Riddiford, L.M., and Jindra, M. (2003).Use of Sindbis virus-mediated RNA interference to demonstrate a conserved role of Broad-Complex in insect metamorphosis. Proc. Natl. Acad. Sci. USA. 100: 15607–15612.
- Wang, J., Zugates, C. T., Liang, I. H., Lee, C. H. and Lee, T. (2002). Drosophila Dscam is required for divergent segregation of sister branches and suppresses ectopic bifurcation of axons. Neuron 33: 559-571.

- Wilson, T.G. and Ashok, M. (1998). Insecticide resistance resulting from an absence of target-site gene product.Proc. Natl. Acad. Sci. USA. 95:14040- 14044.
- Wilson, T.G. and Fabian, J. (1986). A *Drosophila melanogaster* mutant resistant to a chemical analog of juvenile hormone.Dev. Biol. 118(1): 190-201.
- Zhou, s.,Zhang, J., Hirai, M., Chinzei, Y., Kayser, H., Wyatt, G.R., and Walker, V.K. (2002). A locust DNA-binding protein involved in gene regulation by juvenile hormone. Mol. Cell. Endocrinol. 190: 177-185.

ARABIC SUMMARY

حشرة *الدر وسوفيلا ميلانو جستر* المهندسة وراثيا والتي تحمل تداخل للحمض الريبوز ومي الرنا لجين ال جي سي اي تثبت مشاركة هذا الجين في اداء هرمون الشباب

رضا فضيل على بكر^{1&2} - جيهان عبد العليم حافظ¹ - ثريا فهيم قطب النجار¹ - داليا عبد البديع سالم¹ علا حلمي محمد زيان¹

قسم علم الحشرات - كلية العلوم - جامعة عين شمس - القاهرة - جمهورية مصر العربية
 قسم الاحياء- كلية العلوم- جامعة الملك خالد- ابها- المملكة العربية السعودية

يعتبر هرمون الشباب هام في كثير من الجوانب لنمو وفسيولوجيا الحشرات وعلى الرغم من ان أدوار هذا الهرمون كانت محل العديد من الدر اسات، إلا ان آلية عمله علي المستوي الجزيئي لا تز ال غير مفهومة جيدا. يوفر جين ال م ي ت (Met) في الدروسوفيلا كثير من المتطلبات كمستقبل للهرمون. يوجد جين مشابه و هو ال جي سي اي (gce) و الذي يمثل شريك لجين ال م ي ت (Met) فيالتوسط لعمل هرمون الشبابولمعرفة دور هذا الجين (gce) قمنا بعمل منع لتمثيل هذا الجين في الحشرات المعدلة وراثيا بتقنية التداخال في الحامض الريبوسومي (RNAi). ولقد وجد ان منع التمثيل لجين ال جي سي اي (gce) قد احدث تمثيل مبكر لجين البرود (br) في اليرقات صغيرة العمر. وقد اوضحنا ايضا ان منع التمثيل لجين ال جي سي اي (gce) قد احدث مقاومة في الحشرات المعدلة وراثيا لمبيد البيروبروكسيفين التابع لمجموعة منظمات نمو الحشرات. أوضحت هذه الدراسة ان جين ال جي سي اي (gce) له دور اليرقي