Assessment of Cord Blood Vascular Endothelial Growth Factor Levels and Circulating CD34⁺ Cells in Preterm Infants with Respiratory Distress Syndrome

Azza Tawfeek Moawed, Nihad Ahmed El Nashar and Nesriene Mohamed El Margoushy Medical and Radiation Research Department, Nuclears Material Authority Health Radiation Research

Department, National Centre for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt

Abstract

Background:

Respiratory distress syndrome (**RDS**) secondary to surfactant deficiency is a common cause of mobility and mortality in premature infants. Vascular endothelial growth factor (**VEGF**) is a major angiogenic factor and prime regulator of endothelial cells proliferation. So, VEGF may contribute to surfactant secretion and pulmonary maturation. Additionally, circulating CD34⁺ stem – progenitor cells are elevated along with its mobilizing cytokines in neonatal RDS. **Aim of work:** This study aimed to elucidate the role of cord blood VEGF and the circulating CD34⁺ cells in preterm infants with and without RDS.

Patients & method:

This study was conducted on 55 preterm neonates divided into 25 preterm (15 males/ 10 females) without RDS with mean age of 31.60 ± 1.56 weeks and 30 preterm neonates with RDS (18 males/ 12 females) with mean age of 29.95 ± 1.09 weeks. Twenty healthy neonates (14 males/ 6 females) served as controls with mean age of 38.20 ± 3.57 weeks. All neonates were subjected to full history taking; thorough clinical examination and laboratory investigations including determination of VEGF levels in cord blood samples using ELISA and circulating CD34⁺ cells in peripheral blood by flowcytometery.

Results:

The results of this study revealed that cord blood VEGF levels were significantly decreased in preterms with RDS versus preterms without RDS and controls with p values of both < 0.0001. Furthermore, the circulating CD34⁺ cells were significantly increased in preterm infants with RDS versus preterm infants without RDS and controls (p < 0.05 & < 0.0001 respectively). Premature rupture of the membrane, gender of the newborn, birth weight and antenatal steroid administration had neither significant effect on the cord blood VEGF nor on the number of CD34⁺ cells. There was inverse significant correlation between GA and the number of CD34⁺ cells.

Conclusion:

It was concluded that low cord blood VEGF is associated with RDS and its level negatively correlated with the severity of the disease. Thus, it may play a role in recovery from acute lung injury in preterm infants. Moreover, the marked high level of circulating $CD34^+$ cells in preterms with RDS may give clear evidence of its promise therapeutic role in the future. **Key words:** VEGF- CD34⁺ - Respiratory distress syndrome

Introduction

Respiratory distress syndrome (RDS) previously known as hyaline membrane disease, is a common cause of morbidity and mortality in premature infants, the incidence is 56-60% in infants born between 27-28 weeks of gestation, and decreases with increasing gestational age (GA). (Hornurubia and stark, 2004). The development of RDS in premature infants is correlated with surfactant deficiency. (Avery

and Mead, 1995). The outcome of RDS has improved in recent years with the increased use of antenatal steroids to improve pulmonary maturity, early postnatal surfactant therapy to replace surfactant deficiency, and gentle techniques of ventilation to minimize damage to the immature lung, these therapies also had resulted in the survival of preterm infants who are smaller and more ill (**Pramanik, 2002**). Vascular endothelial growth factor (VEGF) is a specific mitogen for vascular cells and is a

Vascular endothelial growth factor (VEGF) is a specific mitogen for vascular cells and is a mediator of vascular permeability (Ferrara *et al.*, 1992). It is known to play a significant fetal and postnatal role in vascular development and participates in repair of lung injury in neonatal animals (Pardanud *et al.*, 2002).

In lung from control infants VEGF is present in bronchial epithelial cells and in arterial medial smooth muscle cells and it is more intense in hypoplastic lung. (Shehata *et al.*,1999).

Previously, **Lassus** *et al.*, (2002) demonstrated that infants with severe RDS had less vascular endothelial growth factor in their tracheal aspirate fluid during the early postnatal period than infants with milder RDS. They also mentioned that preterm infants with lower VEFG suffered prolonged and more severe RDS. These data suggested that VEGF might be a marker of pulmonary maturity.

Compernolle *et al.*, (2002) demonstrated that intrauterine delivery or postnatal intratracheal instillation of VEGF stimulated conversion of glycogen to surfactant and protected preterm mice against RDS.

Hematopoietic stem and progenitor cells as assessed by $CD34^+$ expression, have been noted in the peripheral blood of human term neonates in levels comparable to those in umbilical cord blood (UCB). (Li *et al.*, 2001). High levels of circulating CD34⁺ cells in the blood of premature neonates would be associated with hastened recovery from lung injury (Matthew *et al.*, 2006).

Previous data have suggested that circulating CD34⁺ cells have the ability to differentiate into nonhematopoietic cells which may be involved in the tissue repair and may have a therapeutic role in a variety of disease such as bronchopulmonary dysplasia (BPD), a chronic lung disease that results in significant morbidity and mortality (**Zhang** *et al.*, **2008**). This study aimed to determine the level of circulating CD34⁺ cells along with the cord blood concentration of VEGF in preterm infants with RDS during early postnatal life, and to determine whether they are associated with the disease severity and outcome or not.

Subjects and Methods

Fifty five preterm infants born at 25-34 weeks of gestation admitted to the neonatal intensive care unit (NICU) of Ain Shams University hospital were enrolled in this study (GA was estimated by last menstrual date or prenatal ultrasound).

Preterm neonates were be then followed up and then divided into 2 groups:

Group I- Preterm infants without RDS (n=25) Group II- Preterm infants with RDS (n=30)

All the RDS infants received mechanical ventilation or nasal continuous positive airway pressure (nCPAP). Exogenous surfactant was administered within 2 hr after birth to infants with RDS who remained ventilator-dependent and who required a fraction of inspired O2 (FiO2) of more than 0.4 to maintain pulse oximeter saturation (SpO2) >90%. The signs of respiratory distress must develop through the first 4 hours and persist beyond 24 hours of age (Rudolph & Smith, 1960).

Full term infants (n = 20) without diffuse lung diseases admitted to the neonatal ward during the same period served as controls.

Infants were excluded from the study if there was evidence of prenatal maternal infection, any infection within the first 3 days of life, major congenital anomalies, hemolytic jaundice, or blood transfusion which might influence the number of CD34⁺ cells.

All neonates will be subjected to:

• Patient information, including demographic characteristics.

• Perinatal, natal and family history, complications, medications taken by the mothers perinatally and mode of delivery.

• Duration of assisted ventilation and oxygen support, and length of hospital stay.

• Complete clinical, physical and neurological examination.

• APGAR score for neonates were obtained from medical records.

• Chest x rays and assessment for respiratory status.

• According to **Clementes** *et al.*(1972) respiratory distress was classified into 4 grades.

Laboratory investigations:

Cord blood was collected in heparinized syringes upon delivery and centrifuged within

15 minutes of collection. Plasma was kept at -70°C until analysis.

Assay of plasma vascular endothelial growth factor: The level of VEGF was assayed by standardized enzyme-linked immunosorbent assay (ELISA, R&D Systems) in duplicate, according to the protocol recommended by the manufacturer (**Rodriguez** *et al.*, **1998**). Flow cytometry for measuring numbers of CD 34⁺ cell/ µl:

Peripheral blood (1 ml) was collected in a tube containing heparin within 72 h after birth. About 0.1 ml blood was used for cytometric analysis. The expression of cell surface antigen CD34⁺ was analyzed by the gating strategy of a modified ISHAGE protocol (Barnett et al., 1999). 50 µl of peripheral blood was incubated with 10 µl of PE-conjugated anti-human CD34 and 10 µl of FITC-conjugated anti-human CD45 MAb (BD Biosciences, San Jose, CA, USA) at room temperature for 20 min. Antiisotype antibody served as a control. Subsequently, red cells were lysed, the remainders washed and were finally resuspended in 400 µl phosphate-buffered saline. Flow cytometry was performed using a FACSCalibur flow cytometer (BD Biosciences, Mountain View, CA, USA). In total, 70,000 events were acquired. Circulating CD34⁺ cells were expressed as absolute number and the percentage of total nucleated cells in peripheral blood. **Statistical analysis:**

Results were expressed as mean± standard deviation or medians and range for continuous variables (APGAR scores), or as number and percentage for categorical variables. For comparison between two variables. the student's t-test was applied. ANOVA test served for analyses between concentrations of VEGF and CD34⁺ in different RDS grades in preterms. P<0.05 was considered as statistically Pearson significant. and spearman's correlation test were used to correlate each parameter with different variants in the same group to differentiate between positive and negative correlations and to find significant difference (Daniel, 1991). **Results**

The results were demonstrated through the following tables and figures:

The mean gestational age in full terms was 38.20±3.57weeks, and mean birth weight was 2816.00±261.30 gm. However, in preterms, gestational age was ranged between 25-34 weeks. Birth weights of the infants with RDS 1780.25 ±168.93. They showed were statistically significant decrease as compared to full term infants and preterms without RDS. Twenty four infants in this study were delivered by CS. Thirty one neonates received antenatal steroid treatment. Table 1 concluded that 30 neonates suffered from RDS, had lower gestational age, lower birth weights, a incidence of endotracheal higher tube intubation, a longer duration of intubation, and 10 of them needed surfactant therapy.

Full term infants	Preterm infants	Preterm infants
(Controls) (n=20)	without RDS (n=25)	with RDS (n=30)
14/6	15/10	18/12
38.20±3.57	31.90±1.56	29.95±1.09
	< 0.001*	<0.001* NS**
2816.00±261.30	1975.25±224.94	1780.25 ± 168.93
	< 0.0001*	< 0.0001*
		<0.0001**
17 (85)	15 (60)	16 (53.3)
3 (15)	10 (40)	14(46.7)
0 (0)	7 (28)	8 (26.7)
0 (0)	14 (56)	17 (56.7)
0 (0)	4 (16)	18 (60)
0	2	14
0 (0)	0 (0)	10 (33.3)
	$(Controls) (n=20)$ $14/6$ 38.20 ± 3.57 2816.00 ± 261.30 $17 (85)$ $3 (15)$ $0 (0)$ $0 (0)$ $0 (0)$ $0 (0)$ $0 (0)$	(Controls) (n=20)without RDS (n=25) $14/6$ $15/10$ 38.20 ± 3.57 31.90 ± 1.56 <0.001*

Table (1): Characteristics of preterms infants with or without RDS and full term infants

*: Compared to Full term infants *: Compared to Preterm infants without RDS P<0.001, considered highly significant, P<0.0001, considered very highly significant

PROM: Premature rupture of membrane

As seen in table (2) preterm infants with RDS had very high significantly lower cord blood VEGF level than those without RDS and Full term infants (p<0.0001). However, the numbers of CD34⁺ in RDS infants had a significantly higher number than preterm controls without RDS (Mean, Range: 45.05 (10-115) vs 24.55 (2-99) cells/ μ l; p<0.05) and than full term infants (p<0.0001).

Table (2): Leve	els of serum	VEGF and	1 CD34+	cells in	preferms	and full	term infants
I able (ns of seruin	, The and		cens m	preterms	and run	term mants

	Full term infants (Controls) (n=20)	Preterm infants without RDS (n=25)	Preterm infants with RDS (n=30)
Plasma VEGF (pg/ml) Mean±SD p-values	48.08±6.53	46.61±10.21 NS*	17.85±3.30 <0.0001* <0.0001**
CD34+ (cells/µl) mean±SD p-values	12.90±5.48	24.55±19.09 <0.05*	45.05±30.92 <0.0001* <0.05**

*: Compared to Full term infants **: Compared to Preterm infants without RDS

NS: non significant (P>0.05) P<0.05, considered significant

P<0.0001, considered very highly significant

Lower APGAR score was observed in preterm infants with RDS at 1 minute (Median: 3) and 5 minute (Median: 7) compared to preterm infant without RDS and full term infants. 40% of preterm infants with RDS was grade 1, 30% grade II, 20% grade III and 10% was grade IV (table 3).

	Full term infants $(C_{ontrolo})$ $(n-20)$	Preterm infants	Preterm infants with $PDS(n-20)$
	(Controls) (n=20)	without RDS (n=25)	with RDS (n=30)
APGAR score(median:range)			
1 min	7 (5-9)	6 (1-9)	3 (0-7)
5 min	9 (7-10)	8 (4-10)	7 (3-9)
RDS grade (%)			
Ι	0	0	40%
II	0	0	30%
III	0	0	20%
IV	0	0	10%

Levels of VEGF were very significantly lower in preterms infants with RDS than preterms without RDS. The level of VEGF was decreased significantly with the grades of RDS (P<0.0001). However, levels of CD34⁺ were significantly higher in preterms with RDS than preterms without RDS. The levels of CD34⁺ were increased significantly with the grades of RDS (P<0.0001) (table 4).

	Preterm infant					
		with RDS (n=30)				
		VEGF CD34 ⁺ cells				
RDS grade(%)						
Ι	40	37.05 ± 5.07	28.95±13.65			
II	30	28.20 ± 5.09	0±5.09 45.00±29.09			
III	20	17.36±7.18	48.30±24.20			
IV	10	12.21±8.19	51.25±29.02			
p-values		< 0.0001*	< <0.0001*			

*: Compared RDS grades with each other using ANOVA test

Table (5) shows no significant differences between positive and negative maternal history of PROM, newborns delivered by different modes (vaginal or CS), and newborns whose mothers received steroids antenatally or not was observed.

ministration in both piete					
	Pretern	n infant	Preterm infant		
	without RDS (n=25)		with RDS (n=30)		
	VEGF	CD34 ⁺ cells	VEGF	CD34 ⁺ cells	
PROM					
Positive	40.25±8.21	25.50±16.00	12.95 ± 4.90	45.05±32.02	
negative	45.61±10.31	20.12±18.09	18.85 ± 2.30	40.95±30.00	
p-values	NS	NS	NS	NS	
Mode of delivery					
Vaginal	46.90±9.29	22.90±19.01	17.31±3.45	42.31±27.12	
ČS	42.00±11.25	26.55±14.11	13.85 ± 4.30	46.05±24.30	
p-values	NS	NS	NS	NS	
Steroid administration					
Positive	49.63±10.41	26.40±14.26	19.24±5.15	45.90±30.02	
negative	47.01±9.21	29.55±16.18	15.80±3.99	49.55±26.91	
p-values	NS	NS	NS	NS	

Table (5): Comparison of VEGF and CD34+ in different epidemiological data and steroid administration in both preterms infants

NS: non significant (P>0.05)

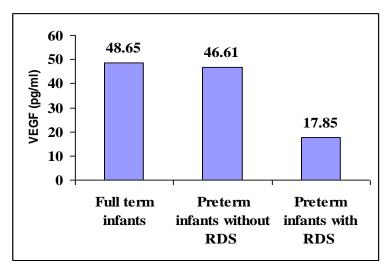
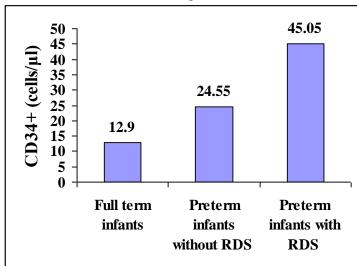

No significant correlations were observed between VEGF and both of gestational age and birth weights in both preterm infants. However, the number of CD34⁺ cells show significant inverse correlations with gestational age but not with birth weights in all preterm infants. Also, no significant correlation was observed between blood cord VEGF and number of CD34⁺ cells in all preterm infants with or without RDS (table 6).

Table (6): Correlations of VEGF and CD34⁺ with both of Gestational age and Birth weights in preterm infants


	Preterm infant without $PDS(n-25)$		Preterm infant with PDS $(n-20)$		
	without RDS (n=25)VEGFCD34+ cells		VEGF	with RDS (n=30) CD34 ⁺ cells	
Gestational age					
r	0.1145	-0.5651	0.2019	-0.4320	
p-value	NS	< 0.05	NS	<0.05	
Birth weights					
r	0.0958	0.1390	0.0119	0.1108	
p-value	NS	NS	NS	NS	
CD34 ⁺ cells					
r	0.1216		0.0988		
p-value	NS		NS		

NS: non significant (P>0.05) P<0.05, considered significant

Fig (1,2) show levels of VEGF and numbers of CD34⁺ cells in preterms with or without RDS compared to full term infants.

Fig(1): Levels of plasma VEGF in full terms infants and preterms with and without RDS

Fig(2): Numbers of CD34⁺ cells in full terms infants and preterms with and without RDS

Discussion

Preterm delivery and development of RDS continue to be one of the main cause of neonatal morbidity and mortality, despite exhaustive efforts the rate of prematurity and development of RDS had not decreased, however neonatal survival rates have increased (Lewis *et al.*, 1996).

incidence of RDS The is inversely proportionate to gestational age (GA) and affects about 50% of infants born at or less than 28 weeks of gestation, while the greatest risk factor is prematurity, maternal and fetal infection and asphexia (Pramanik, 2002). Increase evidence suggests that VEGF may contribute to surfactant secretion and pulmonary maturation (Po-Nien et al., 2005).

The present study demonstrated that cord blood VEGF levels are significantly lower in

preterm infants with clinically diagnosed RDS with mean gestational age of 29.95 ± 1.09 weeks and with body weight with a mean of 1780.25 ± 168.93 gm than preterm infants without respiratory distress, with mean gestational age of 31.90 ± 1.56 weeks and body weight with a mean of 1975.25 ± 224.94 gm and full term control. These results came in agreement of Compernolle et al. (2002) who showed that VEGF can regulate fetal lung maturation and suggested that the pneumotrophic effect of VEGF may have therapeutic potential for lung maturation in preterm infants, in addition.

Lassus *et al.*, (2002) concluded that VEGF levels in tracheal aspirate fluid was lower in infants with severe RDS, and the correlation existed between VEGF and the functional

maturity of alveolar type II cells indicated that VEGF contribute to lung maturation and surfactant production.

Infants with RDS may develop acute lung injury as bronchopulmonary dysplasia (BPD) and they had low cord blood VEGF levels not due to their lower gestational age but because who eventually developed BPD infants higher inspiratory required oxygen concentrations which has been reported to decrease VEGF expression by alveolar epithelial cells. The present study proved the same previous result since low cord blood VEGF levels were found in preterm infants with RDS especially those who needed high oxygen concentration.

The present study demonstrated no significant effect on the level of cord blood VEGF as regarding premature rupture of the membrane, use of antenatal steroid and mode of delivery **Abdel Hady** *et al.*, (2007) confirmed our result as they demonstrated that the cord blood VEGF levels in preterm infants with RDS not affected by the sex of the new born mode of delivery (although CS is a risk factor of developing RDS) maternal disease and PROM. However **Lassus** *et al.*, (2002) reported that higher levels of VEGF in tracheal fluid aspirate from preterm infants born to mothers suffering from chorioamnionitis.

Pio-Nien *et al.*, (2005) also concluded that antenatal steroid treatment was not associated with changes in cord blood VEGF levels **Tsao** *et al.*, (2005) reported that no correlation between antenatal steroid administration and cord blood VEGF levels, they also reported that pulmonary VEGF levels increased with low dose antenatal dexamethasone administration and suppressed with high dose of dexamethasone.

The present study demonstrated that the cord blood VEGF levels significantly decreased in infants with severe RDS. These data indicated that VEGF levels contribute to lung maturation and surfactant synthesis (**Compernolle** *et al.*, **2002**).

Hassan *et al.*, (2009) recorded that at birth levels of serum VEGF in infants who developed RDS and BPD were lower than those with no BPD at birth and remained lower, although not significantly until 3 weeks of age, so this finding at birth can be used as biological predictor for the development of BPD.

Abdel Hady *et al.*, (2007) also postulated that cord blood VEGF level was significantly lower in preterm infants with RDS as compared to preterm infants without RDS and controls. They also found that infants with sever RDS especially those with small gestational age, low birth weight and low APGAR score at 1 and 5 minutes had significantly lower cord blood VEGF levels than those with mild RDS.

Our results indicated no correlation between cord blood VEGF levels and both GA and BW. The same results were obtained by **Lassus** *et al.*, (2002) and **Pio-Nien** *et al.*, (2005) who reported that infants with severe RDS had lower tracheal aspirate concentration of VEGF with no correlations between it and birth weight or gestational age.

A small number of CD34⁺ cells normally circulate in peripheral blood; they directly reflect hematopoiesis and also believed to be involved in tissue repair (**Gupta** *et al.*, 2007). A previous study showed that extremely preterm neonates with RDS had high levels of CD34+ cells, and also they reported that the use of umbilical blood obtained from this population could increase the hematopoietic stem and progenitor cells(HSCP) as assessed by CD34⁺, yield thereby improving the potential for clinical applications (**Bizzaro** *et al.*, 2007).

Our data recorded that number of CD34⁺ cells are higher in preterm infants with severe RDS than preterm controls and full term healthy infants. The mean CD^{34+} stem cells counts in preterm RDS infants were significantly higher than those obtained from the peripheral blood of adults (2 cells/mL) this discrepancy is likely related to the prematurity of the patients populations (Li *et al.*, 2001). It's possible that fluctuation and subsequent discrepancies in the levels of the circulating CD34⁺ cells in each individual may coincide with the timing of transfer of hematopoiesis from liver to bone marrow, which varies from neonates to neonates.

In the present study, a significant inverse correlation between CD34+ cells and gestational age was observed. In accordance to this finding, **Yuanyuan** *et al.*, (2010) observed that the number of CD34⁺ cells was inversely

related to the age at sampling . Moreover,the percentage of CD^{34+} cells was significantly higher in control infants with GA < 32 weeks than those > 32 weeks (P < 0.01).

This study revealed that the circulating CD34⁺ cells levels increased in preterm infants with RDS than preterm infants without RDS and controls, **Bizzarro** *et al.*, (2007) explained this results on the fact that GA differed in their study. **Yuanyuan** *et al.*, (2010) reported that preterm infants with RDS had increased levels of circulating stem and progenitor cells in the early postnatal life which are mobilized into peripheral circulation early in post natal life.

No correlation was found between VEGF levels concentration and the number of CD34⁺

References

Abdel-Hady S, Abdel Ghafar E, Abdel-Rehim I and Abdel-Gawad ER (2007): Vascular endothelial growth factor in preterm infants with respiratory distress syndrome. Egypt J. Immunol; 14(2): 43-9.

Avery M, and Mead J. (1995): Surface properties in relation to atelectasis and hyaline membrane disease. An J dis child 97: 517-523.

Baker CD, Ryan SI, Ingram DA and Abman SH (2009): Endothelial colony-forming cells from preterm infants are increased and more susceptible to hyperoxia. Am. J. Resp. Crit Care Med; 180: 454-61.

Barnett D, Janossy G, Lubenko A, Matutes E, Newland A, Reilly JT. (1999): Guideline for the flow cytometric enumeration of CD34⁺ haematopoietic stem cells. Clin Lab Haematol.;21:301–8.

Bizzarro MJ, Bhandari V, Krause DS and Smith BR. (2007): Circulating stem cells in extremely preterm neonates. Acta Paediatr; 96(4): 521-5.

Clements JA, Piatzker ACG, Tiemey DF and Porter DY(1972): Assessment of the risk of respiratory distress syndrome by a a rapid new test for the surfactant in the amniotic fluid. N ENgl J Med ;226:1077.

Compernolle V, Brusse Lmass K, and Acker T. (2002): Loss of HIF-2 alpha and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fetal respiratory distress in premature mice. Nat Med; 8: 702-710.

Daniel, W. (1991) In Biostatistics: A foundation for analysis in the health. 5 th ed., 209- 365, John

cells in this study, which may related to the potential inadequacy of the study. Meanwhile, **Baker** *et al.*, (2009) didn't find any relationship between circulating CD^{34+} cells and plasma level of VEGF in premature neonates.

We concluded that low cord blood VEGF is associated with RDS and its level negatively correlated with the severity of the disease and the duration of ventilation.Thus, it may play a role in recovery from acute lung injury in preterm infants. Moreover, the marked high level of circulating CD34⁺ cells in preterms with RDS may give clear evidence of its promise therapeutic role in the future.

Wiley and Sons, N.York, Chichester, Brisbane, Toronto, Singapore

Ferrara N, Houck K, Jakeman L and Leung DW (1992): Molecular and Biological properties of the vascular endothelial growth factor family of proteins. Endocr Rev; 13: 18.

Gupta, X. Su, B. Popov, J.W. Lee, V. Serikov,

M.A. Matthay (2007). Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice J. Immunol.,

179: 1855–1863.

Hassan J, Kay D. Beharry, BS, Arwin M and Arthur S. (2009): Soluble vascular endothelial Growth factor receptor 1 in tracheal aspirate fluid of preterm neonates at birth may be predictive of branchopulmonary dysplasia / chronic lung disease. Pediarics Vol. No. 6 pp 1541-1547.

Hornurubia D and Stark AR. (2004): Respiratory disorders, Respiratory distress syndrome In cloherty J.P, Eichenwald E.C, Stark A.R. (eds) 5th edition. Manual of neonatal care. Lippincott Williams and Wilkins, Philadelphia, New York; 341-348.

Lassus P, Ristimaki A, Y Likorkata O, and Andersson S. (1999): vascular endothelial growth factor in human preterm lung. Am J. Respi Crit Care Med. 159: 1429-1433.

Lassus P, Turan Lahti M, Heikkila P and Andersson LC (2002): Pulmonary Vascular endothelial growth factor and flt-1 in fetuses in acute and chronic lung disease, and in persistent pulmonary hypertension of the new born. Am. J. Respir. Crit Care Med; 164: 1981-1987.

Lewis DF, Futayyeh S, and Towers CV (**1996**): Preterm delivery from 34 to 37 weeks of gestation Amj. Obst. Gynacol; 174(2): 525-528.

Li K, Fung Wy. Fok TF, So KW and Yuen PMP. (2001). Haematopoiesis stem and progenitor cells in human preterm neonatal blood. Vox sang, 80: 162-9.

Matthew JB, Vineet B, Diane SK and Lan G(2006): Circulating stem cells in extremely preterm neonates. Acta Paediatrca ISSN 0803-5243.

Pardanud L.F. Yassine F. and DieterlenLieter (2002):RelationshipVasculogenesis,angiogenesisduringavianontogeny.Development 105, 473-485.

Po-Nien T, Shu-Chen W, Hung-Chieh C and Wu-Shiun H (2005): Vascular endothelial growth factor in Preterm infants with respiratory distress syndrome. Pediatric Pulmonary 39: 461-465. **Pramanik A (2002):** Respiratory distress syndrome. Medicine journal, Volume 3, No. 7. **Rodriguez CR, Fei DT, Keyt B, Baly DL.(1998):** A sensitive fluorometric enzyme-linked immunosorbent assay that measures vascular endothelial growth factor 165 in human plasma. J Immunol Methods;219:45-55.

Shehata SM; Mooi W, Okazak T, El Banna IBR, and Sharma HS (1999): Enhanced expression of vascular endothelial growth factor in lung of newborn infants with congenital diaphragmatic hernia and pulmonary hypertension Thorax; 54: 427-437.

Tsao PN, Wei SC, Chou HC, Su YN and Hsieh WS (2005): Vascular endothelial growth factor in preterm infants with respiratory distress syndrome. Pediatr pulmonal. May; 39(5): 461-5.

Yuanyuan Q, Liling Q, Bo Sand Chao C(2010): Circulating cells are elevated with respiratory distress syndrome .Inflamm Res .Apr 30.[Epub ahead of print].

Zhang Y, Ehai C, Diang X Sand Leong KW: (2008) Co-culture of umbilical cord blood CD34+ cells with human mesenchymal stem cells. Tissue Eng;12:2161-70

قياس مستويات عامل النمو الوعائي البطاني في دم الحبل السري والخلايا الجزعية +CD34 في الأوعية الدموية الطرفية عند حديثى الولادة المبتسرين المصابين بمتلازمة صعوبة التنفس

عزة توفيق معوض – نهاد أحمد النشار – نسرين محمد سعيد المرجوشي قسم البحوث الصحية الاشعاعية – المركز القومي لبحوث وتكنولوجيا الاشعاع قسم البحوث الطبية – هيئة المواد النووية -القاهرة جمهورية مصر العربية

تعتبر الإصابة بمتلازمة صعوبة التنفس المعروف سابقًا بمرض الغشاء الزجاجي من الأسباب الشائعة لإصابة حديثي الولادة ناقصبي النمو باضطراب التنفس وكذلك ارتفاع معدلات الوفيات بينهم.

ولهذا فإن حدوث متلازمة صعوبة التنفس في الأطفال ناقصي النمو مرتبط بنقص عامل السرفاكتنت. إدخال عامل السرفاكتنت البديل أظهر قدرة واضحة على تقليل ومنعً حدوث مضاعفًات صعوبة التنفس في حديثي الولادة. وقد أوضحت كثير من الدراسات السابقة أن معامل النمو الوعائي البطاني له دور كبير في نمو وتكاثر الخلايا المبطنة للأوعية الدموية لكلاً من الجنين والأم أثناء الحمل وقد أشارت الدراسات أيضًا أن الخلايا الجزعية المتمثلة في +CD34 لها دور كبير في علاج ونمو خلايا الرئة في الأجنة.

وتهدف هذه الدراسة إلى عرض وتوضيح دور معامل النمو البطاني الرحمي في دم الحبل السري وكذلك الخلايا الجزعية +CD34 في الأوعية الدموية الطرفية لحديَّثي الولادة ناقصبي النمو سواء كانوا مصابين بمتلازمة صعوَّبة التنفس أم لا

وقد أجريت هذه الدراسة على 55 طفلاً ناقصبي النمو يتراوح عمرهم الرحمي ما بين 25-34 أسبوع وكذلك على 20 طفلاً كاملى النمو وغير مصابون بمتلازمة صعوبة التنفس ويتراوح عمرهم الرحمي ما بين 36-41 أسبوع كعينة ضابطة وقد تم اختيار الاطفال من وحدة الرعاية المركزة للأطفال المبتسرين بجامعة عين شمس.

ولقد تم استبعاد أي رضع مولودين لأمهات مصابات بالعدوى قبل الولادة وكذلك تم استبعاد أي رضع أصيبوا بالعدوى البكتيرية في أول ثلاثة أيام من الولادة.

وقد تم تقسيم الأطفال ناقصي النمو المشاركين في البحث إلى مجموعتين:

المجموعة الأولى: تشتمل على 25 طفلاً حديث الولادة 15 ذكر، 10 أنثى غير مصابون بمتلازمة صعوبة التنفس ويتراوح عمر هم الرحمي ما بين (31.9 ± 1.56) أسبوع ومتوسط أوازنهم (1975.25 ± 224.94 جرام)

ا**لمجموعة الثانية** وتشتمل على 30 طفلاً حديثى الولادة (18 ذكر 12 أنثى) مصابون بمتلازمة صعوبة التنفس ويتراوح عمر هم الرحمي بين (29.95 ± 1.09 أسبوعًا) ومتوسط أوز انهم (1780.25 ± 168.93 جر امًا).

ا**لمجموعة الضابطة**: تشتمل الأطفال كاملي النمو وعددهم 20 كعينة ضابطة ومتوسط عمر هم الرحمي 38.2 ± 3.57 أسبوعًا ومتوسط أوزانهم 2816 ± 261.3 جرامًا.

وقد خضع جميع المشاركون في البحث إلى:

دراسة التاريخ المرضى (تاريخ ما قبل الولادة – تاريخ الولادة – التاريخ لعائلي – طريقة الولادة).

2- تحديد معيار أبجر.

3- فحص أكلينكي وعصبي كامل.

4- أشعة سينية على الصدر.

اختبارات معملية وتشتمل على:

أخذ عينة من دم الحبل السري لقياس معامل النمو الوعائي البطاني بواسطة جهاز الإليزا.

أخذ عينة من الأوعية الدموية الطرفية لقياس عدد الخلايا الجزعية (+CD34) بواسطة جهاز الفلوسيتوميتر.

النتائج:

وجد نقص ذو دلالة إحصائية في مستوى عامل النمو البطاني في دم الحبل السري في الأطفال ناقصي النمو المصابين بمتلازمة صعوبة التنفس عنه في الأطفال ناقصبي النمو الذين لم يصابوا بالمرض والعينة الضابطة.

ما وجد أن عدد الخلايا (+CD34) في الأوعية الدموية الطرفية للأطفال المصابين بمتلازمة صعوبة التنفس تزيد زيادة كبيرة عنها في الأطفال ناقصي النمو الغير مصابون بالمرض وكذلك بالنسبة للعينة الضابطة.

الأطفال المصابون بمتلازمة صعوبة التنفس عند الولادة غالبًا ما يكونوا ناقصي النمو – وعمر هم الرحمي صغير وكذلك يعانون من انخفاض معيار أبجر ويحتاجون إلى أوكسجين أو أجهزة تنفسي خارجية لمساعدتهم في التنفسي.

ولقد لوحظ أن مستوى معامل النمو البطاني الوعائي ينقص نقصًا شديدًا كلما زادت شدة الإصابة بمتلازمة صعوبة التنفس عند ُ الولادة وكذلك يرتفع عدد خلايا +CD3 في الدم لنَّفس السبب. وقد أثبتت الدراسة أن عدد خلايا +CD34 في الأوعية الدموية الطرفية تتناسب تناسبًا عكسيًا مع العمر الرحمي لحديثي الولادة

في حين أن مستوى معامل النمو البطاني الوعائي في الحبل السري لا يتأثر بها.

كما أثبتت الدراسة أيضاً أن علاج الأمَّ بالكورتَّيزوَّن قبل الولادة وطريقة الولادة وكذلك نوع الجنين تعتبر كلها عوامل غير مؤثرة تماما على مستويات كل من معامل النمو البطاني الوعائي في الحبل السري وعدد خلايا +CD34 في الأوعية الدموية الطرفية للمبتسرين.

وقد خلص البحث إلى أن زيادة مستوى معامل النمو الوعائي البطاني في دم الأطفال حديثي الولادة يمكن استخدامه كمؤشر لكفاءة الرئتين للتأكد من عدم إصابة الأطفال بمتلازمة صعوبة التنفس . كما أن عدد الخلايا الجزعية المتمثلة في +CD34 يمكن الاستفادة منها في معالجة إصابات الرئة عند الأطفال حديثي الولادة المبتسرين.