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ABSTRACT y

Quality of conformance s defined as the degree to which a product or
service conforms to its design specifications. In thlis paper, random assembly
products are considered, and the degree of conformity of a random assembly is
defined as the probability that the assembly wlll meet its specified
tolerance. Furthermore, Models of inequalities are formulated to show the
relationships between assembly total tolerances, individual part tolerances,
and assembly degree of conformity for a random assembly consisting of two or
more parts (components). These inequalities can serve as a tool to set up
parts dimensional tolerances and/or assembly dimenslional tolerances so that a
predetermined assembly degree of conformity 1s met, and vise versa.

INTRODUCTION AND BACKGROUND

The purpose of a manufacturing system is to produce saleable goo
saleable the goods must function satlsfactortly, and must fur
customers demands. Manufacturing ls based on productlon specific
costs. Production specifications usually incorporate dimensional
materials to be used, surface flnishes, any heat treatments, etc.
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Interchangeable manufacturing systems for quantity preduction have
recently been widely used because they have certain economic advantages: (1)
parts can be produced in quantity with less demand on laber skill and effort,
(2) parts can be assembled instead of fitted, (3) assemblies so made can be
serviced by a simple system of replacement parts drawn from stock. This is
more convenient for the user and cheaper than product reconditioning which may
involve the manufacture of new parts (6].

Dimensional tolerance has been defined as the permissible or acceptable
variation in the dimensions such as height, width, length, depth, angles, and
diameter of a part or an assembly of parts [5]. Tolerances are unavoidable in
production. This is because it is virtually impossible to manufacture two
parts precisely of the same dimension. It is well accepted that in most cases,
the smaller the tolerance, the better will be the quality of the product.
However, smaller tolerances require the use of high precision machine tools in
manufacturing the parts therefore increase production cost. Figure 1 indicates
the relatlonship between the tolerance and the production costs.

Relative
cost

Tolerance

Figure 1: The relationship between tolerance and production costs.

As can be seen, very small tolerances result in very high production cost.
Therefore, small tolerances should not be specified when designing components
unless they serve a certain purpose in that design [11].

There are three different attlitudes involving tolerance specification. The
first concerns the designer, whose gocal is to ensure proper function. The
second are those who must see the part is manufactured; their goal is to
produce the part as economically as possible. Finally, those responsible for
assembling individual parts into components and units; their major concern is
to complete the assembly without problems [7].

The quality of design of a product, whether a part or an assembly, is
determined by the product technical specifications, whlle the quality of
conformance of a product depends solely upon the manufacturing process ability
to meet the product specifications requirements [1]. It is management’s
responsibility, with respect to the setting of specifications, to ensure that
compatibility exists among those who design products, those who manufacture
them, and those who will use them. Whether this compatibility is achieved or
not, the sultability of a particular process or equipment will be assessed on
the basis of existing product specifications. Quality, on the other hand, has
been defined in terms of "quality of conformance" [(2). The use of the term and
the context within which the word "quallty" is used is defined as the degree
to which a product or service conforms to its design specifications
(tolerances). Thus, the degree of conformity of a product may be expressed as
the probability that it will satisfy its specified tolerance for its quality
characteristic. When dealing with a quality characteristic that can be
expressed as measurement, it is customary to exercise control over both the
average (mean) value of the quallty characteristic and its wvariablility
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(variance). Such control is made by the statistical control charts for means
and varlance.

Statistically, a process is sald to be under statistlcal control if its
mean value (the mean value of the quality characteristic being controlled) is
centered on the desired value and its wvariability is totally attributed to
chance causes. When this is the case, the process can be sald to be
functioning at the predetermined level of accuracy. For more detalls refer to
statistical quality control bocks such as [1], [2], and [9].

A main purpose of Iinterchangeable manufacturing systems is to produce
parts in large quantities. If the manufacturing process 1s under statistlcal
control, then the varlations of this process ls assumed to be normally
distributed. Thls leads to the assumption that dimensional varlation in parts
produced is normal. Furthermore, the sampling distributlon of the process
variables are considered to be normally distributed based on the "Central
Limit Theorem" of statistics. Hence, indlvidual part dimension and part mean
dimension may be considered as independent, normally distributed random
variables. Therefore, most quality control practitioners set production
process natural tolerance limits at +3 standard devliatlons from the mean to
cover 99.78%4 of the area under the curve. Figure 2 shows the %o, *2¢, and 13c
intervals from the mean of the normal distribution, with their corresponding
%age areas under the curve, where X, ¢ are the mean and standard deviation of
the distribution. For more details see [1], (2], (3], [6].

99.78 %

95.45 %

68.26 %
I | L -
~3 =20 -lc¢ X +lo +20¢ +30¢

Figure 2: The normal probabillty dlstributlion.

One way of determining a dimensional tolerance of an assembly is by
algebralc sum of the dimensional tolerances of its constituent parts or
components., But due to the random wvariation 1n the varlables of the
manufacturing process, the dimensional tolerances of the parts produced may
vary from part to part. Hence, when extreme values of part dimensional
tolerances occur within an assembly, the resulting assembly dimensional
tolerance will fall outside the tolerance range prescribed for the assembly.
This occurs because of the tolerance "build up" effect in assemblies due to
the algebraic accumulation of individual part tolerances [6], (2]. Therefore,
If parts and assembly dimensional tolerances are based on algebraic sum
relationshlp, replacement parts cannot then be suppllied separately. To avolid
tolerance bulld up in random assemblles, statistical tolerance ls used to
assign assembly and constlituent parts dimensional tolerances.

In the following sectlon, models of lnequallties are formulated to show
the relatlionships between assembly total tolerances, Individual part
tolerances, and assembly degree of conformlty for a random assembly product
consisting of two or more parts (components). These lnequalities can serve as
a tool to set up parts and/or assembly dimensional tolerances, so that a
prescribed degree of conformity for the assembly 1s achlieved, and vise versa.
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FORMULATION OF MODELS
The following assumptions are considered In the formulation of the models:

(1) The variation of sizes for each dimension considered 1is normally

distributed.

(2) The individual part dimensions are completely independent of each
other.

(3) Individual parts to be assembled are randomly selected from large
quantities.

(4) The basic (neminal) size of each part is equal to the mean of all
such parts, and the tolerance range is equal to 6 standard
deviations. That is, If a bilateral tolerance is given as #0.003,
then the standard deviation is equal to 0.001.

Consider two randomly selected parts A, and B, as shown in Figure 3 ,
whose basic sizes (mean dimensions) are ia and ib respectively, with upper and
lower tolerance limits of (Ua. La} and (Ub. Lbl respectively, are to be

stacked together in an assembly. Let the resulting dimension of the assembly
be Y with upper and lower tolerance limits of Uy and Ly' respectively.

Part A Part B

¢ X, e G—

Y 3

o

Figure 3: An assembly conslsting of two parts A and B.

Based on the randomness of the selection and the "Central Limit Theorem"
ia, ib are lndependent, normally distributed random variables, while Y 1s the

dependent random variable. The dimension of the assembly Y can be found by
the following equation:

Y=X+ Xb ..................................... (1)

a

since }‘ca and ib are independent, normally distributed random variables, then
by the reproductive property of the normal distribution [3], the dimension of

the assembly Y is normally distributed with a mean of Y and a standard
deviation cy glven by

where % and % are the standard deviations of ia and ib respectively.

Assuming a tolerance range of 3 standard deviations for the assembly
tolerance limits, the assembly standard deviation can be found in terms of the
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assembly tolerance limits as follows:

Y o
0y = et R PR R R EERRE (3)
U-~L ,
and, OB B B g e s SOMNASIREENNS SR RIS S 3 (4)
a &
c, = Ub_ Lb (3)
b e PR R P P e

An important Iinequality in statistics is the Camp and Meiddle Iinequallity
(2]. It is an adaptation of Tchebycheff's inequality [3]. Camp and Meliddle

state that wunder certain circumstances more than 1-(1/2.25t2] of any

distribution will fall within the closed range X*te, where X, and o are the
mean and standard deviatlon of the distribution, and t>1. These circumstances
are that the distributlon must have only one mode, and the mode must be the
same as the arithmetic mean, and that the frequencies must decline
continuously on both sides of the mode.

As can be seen, the Camp-Meiddle Inequality can be applied to the
distribution of Y (the dimension of the assembly) since it is normally
distributed and satlsfies the conditions stated for the Inequality. Hence, the
degree of conformity of the assembly, that is the probability that the basic
size of the assembly falls within its upper and lower tolerance limits can be
denoted by DC and expressed as,

DC = 1= (17 2.25t%) e (6)

Now, consider the f{ollowing two cases in which the basic size of the
assembly (Y) 1is centered, and 1s not centered, between the lower (Ly) and

upper (Uy] specification limits as shown in Figure 4.

lower upper lower upper
limit limit limit limit
I
&1
ot ot
yile Ty
{ 1 6—9 Y
5 y ¥ Y
Case (A) Case (B)

Figure 4: Upper and lower specification limits of Y

Case (A): If the upper and lower tolerances limits of the assembly are at equal
distances from the basic (nominal} size {(dimension) Y.

Since the range specifled by Camp-Meldlle lnequality is fct, then t can be

found in terms of wy, Uy, and Ly as follows:
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Uu-1=L
Y ¥
t =0.5 {______——— ] ........................... (7)

o
y

by substitution for t in Inequality (6) it follows:

2
o

4.0 y

DC=1 - 2
2.25 |(U-1L1L)
y ¥

then, substituting for U: from Equation (2) In Inequality (8), we get

B g

4.0 B (9)

nC = 1 - i | e | e s ME e e RS e e el 9
3.25 W, 1 2

and substituting for o, and ¢, from Equations (4) and (5) in Inequality (9),

b
it results that,

2 2
o (Ua~ La} + (Ub— Lb]
DC =1 - — 7 | creeeeeeieiiinn. (10)
81.0 (U-1L)
y ¥y

Case {B): If the upper and lower tolerance limits of the assembly are not at
equal distances from the basic (nominal) size (dimension) Y.

In this case, instead of having [wyt) at both sides of ¥, the tolerenc
range of Y is decomposed into (¢Ytl) and [wytz} on the left and the right

gsides of Y respectively, as shown in Figure 4 (note, t1+t2=2t). Hence, the

degree of conformity of the assembly becomes:

1 1
DC = 0.5|1- ————=| + 0.5 |1- ————| i (1t)

2 2
2.25 t1 2.25 tz

substituting for t1=(?-Ly)/c§ and t2=(Uy—?)/vy in Inequality (11), we get

- 1 1
DC21- (¢ /7 4.5)| — 5+ | BT (12)
y (¥ -1)° -9
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but from Equations (2), (4), and (S) we have,
2. ~ 2 _ 2
oy -[{Ua La) + (Ub Lb) ]/ 36.0

and by substitution for 0-5 in Inequality (12), the following resultant
inequality is obtalned,

1

= L. (13)
(uy- Y)

1
oc 2 1- —— [@,- L)% - 1) |= 5+
(Y - Ly)

162.0

Generalization of Models

Consider an assembly of n parts. Part 1 has a mean (nominal) dimension (of
a quallty characteristie variable) 21 with wupper and lower tolerance
(specification) limits U, and L, respectively, for 1=1,2,...,n. Let the total
assembly resulting dimension be T, then the mean (nominal) dimension of the

i X
assembly will be T, with upper and lower tolerance (specification) limits of
UT‘ and Lr respectively.

The general form of Inequality (10) becomes as follows:

) 4o v, piy ]

e p? |

cnt - g8

or,

40% 0 w-1)?

pDcC=z1 - Py LR F Y g ¥ ¥ )

81.0 (U.r- 'I-T}
and, the general form of Inequality (13) becomes as follows:

1 1

1 i=n 2 r
DC = 1~ L s W= L) - + ~
1620 |“1=1 "1 M1 I.{T_‘ )2 (U~ )2

or,
i=n " 2
ntm_[zmwl L) [ 2 el
162.0 lt'? S h0% « thr T*

It can be observed from Inequalities (14) and (15) that the maximum
possible degree of conformity of the assembly can be better achieved when the
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upper and lower specification limits of the assembly dimension are both
specified (l.e. bilateral tolerance), and placed at equal distances from the
mean (baslc) dimension (size) of the assembly. It can also be verified that
Inequality (15) yields to Inequality (14) if tolerance limits LT and UT are

placed at equal distances from the mean T. This can be done by substituting
{UT—LT)/z for both [T—LTJ and [UT—T ), since each term will count for half of

the tolerance range in this case.

However, unilateral specification (tolerance) limits may also be used.
This still can be facilitated by Inequality (15), by excluding the term which
is related to the unspecified limit from the inequality. This exclusion can be
made by assigning a value of infinity to the unspecified limit. For example,
L\f only the upper specificatlion limit for the assembly (UT] is specifled, then

the lower specification 1limit for the assembly (LT) is assigned a value of
inflnity, and therefore the term 1/(T~LT) will equate to zero and be
eliminated from the Inequality.

Other cases may arise when using Inequalities (14) and (15). Such cases
and the accompanying manipulations in the inegualities may be identified as
follows: .

1. A lower bound on the degree of conformity (DC) of the assembled
product may be found by substituting the lnequality sign by an equallty sign
in Inequalities (14) and (15).

2. Suppose the degree of conformity of the assembly is specified, and
the specification limits of each constituent part is known, and it is required
to find the specification limits of the assembly. In this case, all |is
required is simple mathematical manipulations on the mocdels so that the terms

containing UT and LT are expressed in terms of DC, U1 and Li‘

3. On the other hand, when the assembly degree of conformity and the
assembly specificatlon limits are known, and it 1s required to determine the
specification limits of each component part, i.e. U,,and L,. In this case, the

1? i
summation term of the U1 and L1 needs to be expressed in terms of DC, UT and
LT' Furthermore, the specification limits Ui‘ and L1 could be the same for all

constituent parts, if not, then they can be expressed as ratios of each other.

In all cases a viable and rational tool for solving these models is a
computer program that Incorporates some search methods of engineering
optimization [10].

CONCLUSIONS

Quality and relliabllity are important attributes of products and systems
{4]. Interchangeable manufacturing facilitates quantity production of parts,
assembly and replacement of parts, at lower costs and higher quality of
conformance. Quality of conformance of parts and assemblies may be expressed
in terms of the degree to which manufactured products, consisting of one part
or assemblies of parts. adhere to their prescribed specification (tolerance)
limits. Assembly product specification limits should be related statistically,
not algebraically, to the speciflcation limits of its constituent parts or
components.
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The quality of conformance, or the degree of conformity of a random
assembly product in terms of the specification (tolerance) limits of lts
guality characteristic was defined as the probablility that the product will
meet such specifications. As noted before, this conformance is essential to
facilitate parts assembly and replacement. The models of inequalitles
presented in this paper can serve as a tool for relating specification limits
incorporated in product design and manufacturlng. They are applicable for both
random assembly products and their assoclated components and/or parts.
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