MOLECULAR IDENTIFICATION AND PHYLOGENTIC ANALYSIS OF POTATO LEAF ROLL VIRUS IN EGYPT

ABDELMAKSOUD, H. M., A. M. MANDOUR and A. SH. GAMAL ELDIN
Plant Virology Research Department, Plant Pathology Research Institute, ARC, Giza - Egypt.

(Manuscript received 19 March 2013)

Abstract

Potato leaf roll virus (PLRV) was isolated from Egyptian grown potatos. The virus was identified on the basis of host range, symptomatology, insect transmission, electron microscopy, RTPCR, and PCR-ELISA. The complete nucleotide sequence of genomic PLRV-RNA was obtained from cloned cDNA and submitted in GenBank under Accession No. AY138970. This sequence is 5884 nucleotide long and encodes 5 ORF with an unique read-through protein suggested a conflict with the conceptual translation at amino acid 209. Comparison of PLRV sequence with that of other PLRV strains shows overall similarities of 97.02% and high genetic identity of 100\% (Polish Strain), 98.5\% (French Strain), 98.4\% (Wageningen Strain), 98.3\% (UK Strain), 98\% (Canadian Strain), and 93. 5\% (Australian Strain).

Keywords: Phylogentic analysis, PLRV similarities, Egypt PLRV

INTRODUCTION

PLRV is the most important aphid transmitted potato virus belonged to Luteovirus. The family Luteoviridae have long been recognized as a natural group they sharing biological characters and particle features, they also differ in molecular characteristics. The recent taxonomy creates a family Luteoviridae that contain 3 genera to accommodate this diversity Genus Luteovirus (Type species Barely yellow dwarf virus -PAV), Genus Pelerovirus (Type species Potato leaf roll virus), Genus Enamovirus (Type species Pea enation mosaic virus). PLRV particles is 25 nm in diameter, isometric and contain 5.3 to 9.5 kb ssRNA and a major 23 k coat protein with a "read through" proteins of 60 k to 90 k . The genomic comprise 5 or 6 large ORFs (Waterhouse et al 1988, and Gamal Eldin, A. S. et al 2004).

The aim of the present study was to compare the full genomic sequence of an Egyptian strain of PLRV with other PLRV strains from different countries and with other viruses belong to Luteoviridae using most up to date genetic software analysis DNASTAR Lasergene version 10 (DNASTAR Inc, MD).

MATERIALS AND METHODS

Virus isolation:-

Leaf samples of potato (Solanum tuberosum) showing leaf roll symptoms were collected from the potato fields at the Kaluboiua Governorate and were for virus isolation. The samples were serologicaly tested using PLRV- PAbs ELISA Kit (LOEWE Biochemical GmbH, Germany). The virus was transmitted by Myzus persicae Sulz using Physalis foloridana seedlings as a test plants and as a virus source for further studies.

RNA purification and RT-PCR

RNA was extracted by RNeasy Plant Mini Kit (Qiagene, Germany) as recommended by the manufacturer. After total RNA extraction, the PCR detection was carried out using QIAGEN OneStep RT-PCR Kit (Qiagene, Germany) utilized two PLRV-Specific pairs of primers. The foreword primer 5'AGCGCATAAACTCTACACTCATTG and the reverse primer 5'GTATCCTTCCACAGCCCTCTCATT (metabion GmbH, Germany) corresponding to positions 31-54 and 832-809 of PLRV genome. The PCR products were analyzed by gel electrophoresis on 1\% agarose gel prepared in 1X TBE buffer (Sambrook et al 1989). The gel was stained with ethidium bromide and examined using UV transilluminater and the PCR fragments of PLRVwas confirmed as 802 bp .

cDNA Library and PCR Cloning

The entire PLRV-RNA cDNA libraries was constructed using First Strand cDNA Synthesis Kit (Promega, USA) and each represented library was ligated directly into TA cloning vector (Plasmid PCR ${ }^{\text {m }} \mathrm{II}$). The ligation products were transformed into competent of E. coli (INV\& F' cells). White, ampicillin-resistant, colonies were selected and screened for correct inserts.

DNA Sequencing

The nucleotide sequence of PLRV clone liberary was determined by the method of Beck (1993). The sequence was performed with ALF DNA Sequencer based on an adaptation of Sanger dideoxy methodology (Sanger et al, 1977). The nucleotide sequence of PLRV was carried out at Molecular Virology Group-Biotechnology Group, Department of Plant Biology-The Royal Veterinary and Agricultural University (KVL), Copenhagen-Denmark. The PLRV sequence was computer translated with the program Fragment Manger Software (Amersham Inc) and further analyzed by DNASTAR Lasergene (DNASTAR Inc, MD).

RESULTS

The complete genomic nucleotide sequence is shown in Fig (1). It contains 5884 bp. The base comparison of PLRV RNA (22.37\% U, 25.24\% C, 27.88\% A and $24.31 G)$, while $(A+T)=50.45$ and $(C+G)=49.55 \%$ and the base count was 1640 A , $14850 \mathrm{C}, 1430 \mathrm{G}$, and 1328 U and the predicated translation of the amino acids is shown in Fig (1), below each triplet.

Fig. 1. The complete nucleotide sequence of PLRV-Egypt and its predicted encoded amino acid sequence

3496 tgc ttt agg att ctc atc cgc aat ccc att ttc agt agc cgg ttt ata ttt tgt tta cct
355 aad gat ttc ctc coa cot gcg atc at tgt taa tga gta cgg tcg tgg tta aag gaa atg

3616 tca atg gtg gtg tac aac aac caa gaa ggc gaa gaa ggc aat ccc ttc gca ggc gcg cta

3676 aca gag ttc agc cgg tgg tta tgg tca cgg ccc ctg ggc aac cca ggc gtc gaa gac gca

3736 gaa gag gag gca atc gcc gct caa gaa gaa ctg gag ttc ccc gag gac gag gct caa gcg
 3796 aga cat tcg tgt tha caa agg aca acc tca tgg gca act ccc aag gaa gtt tca cct tcg

 3856 ggc cga gtc tat cag act gtc cgg cat tca agg atg gaa tac tca agg cct acc atg agt
 3916 ata aga tca caa gca tct tac ttc agt tcg tca gcg agg cot ctt cca cct cct ccg gtt
 3976 cca tcg ctt atg agt tgg acc ccc att gca aag tat cat ccc tcc agt cct acg tca aca
 4036 agt tcc aaa tta cga agg gcg gcg cca aaa ctt atc aag cgc gga tga taa atg ggg tag
 4096 aat $g g c$ acg att ctt ctg agg atc agt gcc gga tac tgt gga aag gaa atg gaa aat ctt
 4156 cag ata ccg cag gat cct tca gag tca cca tca ggg tgg ctt tgc aaa acc cca aat agg
 4216 tag act cog gat cag agc ctg gtc caa gcc cac aac caa cac cca ctc caa ctc ccc aga 4276 agc acg agc gat tta ttg ctt acg ttg gca tac cta tgc taa cca ttc agg cca ggg aga
 4336 acg acg acc aga tca tat tgg gtt ctt tag gga gcc aaa gga tga aat ata tag agg acg 4396 aga acc aga act aca caa atg tta gtt ctg agt att act ctc aat cga gca tgc aag ccg
 4456 tcc cta tgt att act tta atg tcc cga aag ggc aat ggt cag tcg aca tca gct gcg aag 4516 ggt atc aac cca cta gca gca cct cgg atc caa acc ggg gta gga gtg acg ggg tga tcg

 4636 cga agc tac gca acg ata aca cct acc gcc aag gtc acc cag aac ttg aaa tta act cgt 4696 gtc att ttc gcg agg gcc aac tcc ttg aac ggg acg cta caa tta gct tcc acg ttg aag
 4756 cgc cta ctg atg ggc gat tct ttc tcg ttg gtc ccg cta tcc aga aaa ccg caa agt ata

 4876 tgg tgc ttg atg aac att tag aag gca ctg gtt cgg cta aca gag tgc ggc ggc ccc cac 4936 ggg agg gcc aca cet ata tgg cct cgc cgc gcg aac cgg aag gaa aac cgg ttg gaa ata
 4996 aac caa $g g g$ acg aaa ccc cga tac aaa cgc agg aaa gac aac ctg atc aaa ctc cgt ctg 5056 acg acg tat ccg atg ctg gtt cgg taa aca aca gcg gct caa ctg agt cgc tgc aat tgg 5116 agt tcg ggg taa act cag ata gta cot acg atg cta cag tcg atg gta cag act ggc cca
 5176 gaa ttc ctc cac caa ggc acc cac ctg aac cta gag ttt ccg gca att caa gaa ctg tta 5236 ttg act ttt ctc cga aag ccg atc tat tgg aga att ggg atg ccg aac act tcg acc ctg
 5296 gtt att cca aag aag atg tcg ctg ctg cta cta tta tag cgc acg gca gta ttc aag atg 5356 ggc gaa gta tgt tgg aga aga gag agg aaa gtg tca aga aca aaa cct cot cct gga agc

 5476 aac ccc tcg agg gag gga ccc tta aga aag acg cta ctg atg gtg tct cat cta ttg gca
 G \quad S L \quad T \quad G \quad G \quad T $\quad \mathrm{L} \quad \mathrm{K} \quad \mathrm{R} \quad \mathrm{K} \quad \mathrm{V} \quad \mathrm{T} \quad \mathrm{I} \quad \mathrm{E} \quad \mathrm{E} \quad \mathrm{R} \quad \mathrm{L} \quad \mathrm{L} \quad \mathrm{Q}$ 5596 aga cct taa caa ctg aac aaa ggc tgt ggt acg aga att tga aga aaa cta acc ctc cag 5656 ctg cta tcc aat ggc tgt atg aat atc agc cac ctc ccc aag tag ata gaa aca tag ctg
 K $\quad \mathrm{F}$ (cg act cac gac tta aaa ctg agt gtc cgc cgg 5776 aca tta agc gga acg aaa gcc gaa agg tga tta ggc tct caa cgc ctg cta gag acc gtc

Percentage of different bases are ($23 \% \mathrm{U}, 25 \% \mathrm{C}, 28 \%$ A and $24 \% \mathrm{G}$). These results are almost similar those of BWYV RNA and BYDV RNA ($22 \% \mathrm{U}, 24 \% \mathrm{C}, 29.5 \%$

A and 24.5% G). The Egyptian strain was compared with six PLRV sequences and the overall similarities for all genomic sequences were 100\%, 98.5\%, 98.4\%, 98.3\%, 98\% and 93.5% for polish, French, Wageningen, UK, Canada, and Australian strains, respectively as shown in \{Table 1 and Fig 2\}. Five substantial open reading frames (ORFs) are present in PLRV RNA (Fig 2). ORF1 started from nucleotide 70 till nucleotide 813 (AA1-247), ORF2 from 203 to 2122 (AA1-639), ORF3 from 1540 to 3390 (AA 1-617), ORF 4 from 3588 to 5741 (AA1-718), while ORF5 started at 3613 and ended at 4083 (AA1-156). The overall similarities between Egyptian strain and other strains in the intergenic regions are shown in \{Table 2 and Fig 3\}.

Table 1. Overall percent identity of PLRV- N with different PLRV isolates

Strain	Similarity \%
Egypt X Australia	93.5
Egypt X UK	98.3
Egypt X Polish	100
Egypt X French	98.5
Egypt X Canada	98
Egypt X Wageningen	98.4

Fig. 2. Phylogenetic tree determines dimensions of relationship between Egyptian PLRV and different PLRV strains

Table 2. Overall percent identity of PLRV- Egypt with different PLRV isolates in intergenic regions

Strain	Similarity \%
Egypt X Australia	90.5
Egypt X UK	97.4
Egypt X Polish	100
Egypt X French	97
Egypt X Canada	97.5
Egypt X Wageningen	97.5

Fig. 3. Phylogenetic tree determines dimensions of relationship between PLRV and different PLRV isolates in intergenic regions

Percent Identity										
		1	2	3	4	5	6	7		Wageningen isolateCanadian isolate
	1		97.0	97.5	97.5	97.5	26.9	36.5	1	
	2	3.1		97.5	96.5	97.5	26.9	36.5	2	
	3	2.5	2.6		97.0	100.0	26.9	35.5	3	Egyptian isolate
	4	2.6	3.6	3.1		97.0	26.4	36.5	4	French isolate
	5	2.5	2.6	0.0	3.1		26.9	35.5	5	Polish isolate
	6	278.3	275.5	278.3	301.1	278.3		25.4	6	UK isolate
	7	140.6	140.8	147.6	140.8	147.6	350.0		7	Australian isolate
		1	2	3	4	5	6	7		

Fig. 4A. Similarities between Luteoviruses RNA sequences in the intergenic regions, the sequence are following nucleotides 3368 (BWYV), 3473 (PLRV-EG) and 2745 (BYDV). Numbers in brackets are the length of intervening sequences in nucleotides, * indicates a match with PLRV-RNA sequences, - indicates that a gap has been inserted to enhance the degree of matching.

BWYV- GAUUAC-AAAUUCCUAGC-AGGCUUCG. (40). .UAUCUAUUCAUCUACC-U-AAGA (28). AUG

PLRV- GAUUAU-AAAUUUUUAGC-GGGAUUUG. (40) .UUUAGGAUUCTCATCC-U-AAGA (27). AUG

BYDV- UUACCAAAU-CUUAGCUGGG-UUG.. (44)UACUUUAUUUACAAUAAAGU (26). AUG

Fig. 4B. Sequence repeat in PLRV-RNA, the sequence start at 1577 (topleft) and ended at 1657 (bottom right). * indicated the same nucleotide in all three repeats. ! Indicates the same nucleotide in two of the three repeats

DISCUSSION

Number of different sources reported a very close values to our strain sequence as mentioned by Keese et al (1990) in Australia, Van der wilk et al., (1989) who determined the full genomic as 5882 nucleotide, while it was reported as 5885 nucleotides by Guyader and Durcray (2002). On the other hand, Mayo et al (1989)
mentioned that 5987 nucleotide is the full genomic sequence of PLRV UK strain. All the sequences of mentioned strains are similar to the value of 6 kb estimated by Rowhani and Stace-Smith (1979) and 6.1 kb obtained by restriction mapping of cDNA. The putative 3^{\prime} terminal sequence is coterminal with that obtained by Prill et al(1988) and differs from that determined by Mayo et al (1989) strain in that our strain has C at position 5820 instead of U at position 5871 instead of G at position 5976 .

Comparing our results with those of Mayo et al (1989), similar base ratios were obtained ($23 \% \mathrm{U}, 25 \%$ C, 28% A and 24% G), of PLRV RNA Egypt, these results are similar to those of BWYV RNA and BYDV RNA ($22 \% \mathrm{U}, 24 \%$ C, 29.5\% A and 24.5% G).

The sequence of PLRV Egyptian strain was compared the sequence of six different PLRV strains and the overall similarities for all genomic sequence are $100 \%, 98.5 \%$, 98.4\%, $98.3 \%, 98 \%$ and 93.5% for polish, French, Wageningen (Dutch), UK, Canada, and Australia strains respectively. Tthese results are in harmony with those mentioned by Keese et al (1990) who compared the nucleotides sequences of an Australian and Canadian strains of PLRV Luteoviruses.

Results showed that five substantial open reading frames (ORFs) are present in PLRV RNA Egyptian strain. ORF1 started from nucleotide 70 till nucleotide 813 (AA1247), ORF2 from 203 to 2122 (AA1-639), ORF3 from 1540 to 3390 (AA 1-617), ORF 4 from 3588 to 5741 (AA1-718), while ORF5 started at 3613 and ended at 4083 (AA1156). In our sequence during cloning ORF4 it doesn't split into two ORFs as in case of those stains of (Guyader and Ducary, 2002 and Mayo et a/ 1989).

In other sequences and in our ORF4 (3588-4214) AA 1-208 and ORF 6 (42155741) AA (1-508), suggesting a conflict with the conceptual translation at amino acid 204. There are three non-coding regions in PLRV RNA. These are the 5^{\prime} terminal (70 nucleotides), the 3^{\prime} terminal (143 nucleotides) and 200 nucleotides between ORF3 and ORF4\&5. The intergenic regions present in our strain are similar to those reported by (Van der wilk et a/ 1989, and Guyader and Ducray, 2002).

There are also some similarities in the intergenic regions of PLRV RNA, and BWYV RNA and BYDV RNA (Veidt et al 1988). These similarities suggested that these stretches may be functionally significant. The right-hand stretch contain repeated UnA sequences followed by AAGA, two features suggested by Marsh et al (1988) to play a role in the formation of subgenmoic RNA. The abundant subgenomic fragments of PLRV RNA lies between nucleotides 4085 and 4795 or 4695 and 5196 approximately, so it may be subgenmoic mRNA for ORF4 sequence and sequence reported by Mayo et al(1989).

Ribosomal framshfiting can be used by different organisms to produce some kinds of protein form overlapping readingframes. This can be done in both directions. A shift in 3^{\prime} direction (+1) framshfit as mentioned by Bbelcourt and Farabaugh (1990). The
other shift in 5^{\prime} direction (-1 framshift) has proven for Luteoviruses (Prufer et al., 1992, Garcie et al., 1993). In case of PLRV, the RNA dependent RNA polymerase is expressed by -1 ribosomal framshifting in the region of overlapping between ORF2 and 2 b as reported by Mayo et al (1989).

The signal responsible for efficient framshfiting in PLRV is composed of the slippery sequence uuuAAAu followed by a sequence that has the potential to adopt two alternative folding pattern, either a pseudoknot, or simple tem-loop structure as mentioned by Kujawa et al (1993) who confirmed that in PLRV-P, the -1 framshift in the overlap region depends on the slippery site and on the downstream positioned sequence. A proposed pseudoknot is needed for efficient framshifitng in the present study, the slippery sequences TTTAAAT (uuuAAAu) is located on position 1662 nt in the overlapping region between ORF2 and ORF3. This result is in agreement with those reported for BWYV by Garcie et al (1993). In retrospect, could be concluded that the identified PLRV Egypt is 100% genetic identity with PLRV Polish.

REFERENCES

1. Beck, S. 1993. DNA Sequencing by Chemiluminescent Detection. In H. and A. Griffin (Ed.). Methods in Molecular Biology Vol. 23: DNA Sequencing Protocols. pp. 235-242. Humana Press Inc., Totowa, NJ.
2. Belcourt, M. F., and P. J. Farabaugh. 1990. Ribosomal frameshifting in the yeast retrotransposon TY. tRNA induce slippage on a 7 nucleotides minimal site. Cell b2: 339-352
3. Garcie, A., Duin, J. and Van Pleij, and C. W. A. 1993. Differentional response to frameshift signal in Eukaryotic and Prokaroytic translational systems. Nucl. Acids Res. 21:401-406
4. Gamal Eldin, A. S., A. A. Sallam., H. M. Abdelmaksoud, and E. K. Fahimy. 2004. Complete Nucleotide Sequence of Potato leaf roll virus infects Potato in Egypt. Abst. (83) World Potato Congress, Kunming - China
5. Guyader, S. and D. G. Ducray. 2002. Sequence analysis of potato leaf roll virus isolates reveals genetic stability, major overlapping events and differential selection pressure between overlapping reading frame products. J. Gen. Virol. 83 (pt 7): 1799-1807
6. Keese, P., R. R. Martin, L. M. Kawchuk, P. M. Waterhouse and W. L. Gerleach. 1990. Nucleotide sequence of an Australian and Canadian isolate of potato leaf roll Luteeovirus and their relationship with two European isolates. J. Gen. Virol. 71 (pt 3): 719-724
7. Kujaw, A. B., G. Drugeon, D. Hulanicke and A. L. Haenni. 1993. Structural requirments for efficient translational frameshifitng in the synthesis of the
putative viral RNA dependent RNA polymerase of potato leaf roll virus. Nucl. Acids Res. 21(a): 2185-2171
8. Marsh, L. S., T. W. Dreher and T. C. Hall. 1988. Mutational analysis of the care and modulator sequence of the BMV RNA3 subgenomic promoter. Nucl. Acids Res. 1: 1385-1397
9. Palucha, A., E. Sadowy, A. Kujawa, M. Juszczuk, W. Zagorski, and D. Hulanicka. 1994. Nucleotide sequence of RNA of polish isolate of potato leaf roll Luteovirus. Acta Biochim. Pol. 41 (4): 405-414
10. Prufer, D., E. Tacke, J. Schmitz, B. Kull, A. Kaufmann, and W. Rodhe. 1992. Ribosomal frameshifitng in plants: a noval directs the -1 frameshift in the synthesis of the putative viral replicase of poato leaf roll Luteovirus. EMBO J. 11 (3): 1111-1117
11. Sangar, F., S. Nicklen and A.R. Coulson. 1977. DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463-546
12. Sambrook, J., E. F. Fritsch and T. Maniatis. 1989. Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory press, cold Spring Harbor. New York.
13. Rowhani, A., and R. Stace-Smith. 1979. Purification and Characterization of Potato leaf roll virus. Virology 98: 45-54
14. Waterhouse, P. M., F. E. Gildow and G. R. Johnstone. 1988. Luteovirus group. AAB Descriptions of Plant Viruses No. 339

التعريف الجزيئي والتحليل الجيني اللسلالي لفيروس التفاف اوراق البطاطس في مصر

 هشام محمدين عبد المقصود، ايمن محمد مندور، احمد شوقى جمال الاينقسم بحوث الفبيرس - معهز بحوث امراض النباتات - مركز البحوث النزراعية - الجيزة

تم عزل فيروس التفاف الاوراق في البطاطس من حقول البطاطس المصرية وتم تعريفة على اساس المدى العائلي، الاعزراض الظاهرية، الانتقال الحشري، الميكروسكوب الإلكتروني، تفاعل البى سى ار، و البى سى ار البزا. تم اجراء التحليل النيكلوتيدى الكامل للفبروس عن طريق مكملات الحض النووى دى ان اية وتم وضعة وحفظة في بنك الجينات الدولي تحت رقم تسلسلي AY138970. اظهرت نتائج التحليل النيكلوتيبى ان الفيزوس يحتوي على 5884 قاعدة نيكليوتيدية تترجم 5 مناطق مفتوحة للبروتين ما عدا منطقة مميزة تعارضيه للحمض الأميني رقم 209 2 تم اجراء التحليل النيكلوتدى المقارنى بالسلالات الدولية الاخرى من فيزوس التفاف اوراق البطاطس و المحفوظة لاى بنك الجينات اللولي واظهرت هذه التحليلات تتطابق عام بين كاف السلالات بنسبة 97.02 وطابق خاص بكل سلالة دولية كتالي 100\% (السلالة البولندية)، 98.5\% (السلالة الفرنسية)، 98.4\% (السلالة الهولندية)، 98.3 (السلالة الكندية)، واخيرا الأسترالية).

