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How to Build, Train, 
Test, and Deploy 

a Machine Learning 

   Building a machine learning (ML) model is excit-
ing. Arriving, after tweaks and changes and sleep-
less nights, at something you feel you can use in 
the real world is likely a relief. Unfortunately, that 
proof of concept you’ve just created marks the be-
ginning of your work, not the end. After establishing 
the baseline model, it’s time to build a more thor-
ough version, test, deploy, and maintain that model. 
The work of an ML team is never finished, it seems. 
Here are some considerations as your team turns 
its proof of concept into the real deal: a model that 
is the engine of a real-world application.
   If we think about an object-detection model for 
pedestrians, we can walk through the various steps 
required to turn the concept into production. Before 
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we get into the nitty-gritty details, teams will have to 
agree upon a few basics.
• What kind of programming language are you us-
ing? There are always new languages, like Julia, 
arriving on the scene. Many people work in R or 
Python since they have the largest support for ML 
frameworks.
• Then there is the mass of existing frameworks 
from which to choose. Some, like TensorFlow, have 
a large user base and existing tome of documen-
tation. Others might offer something more closely 
aligned with your vision but with less available sup-
port.
• Will your team run this model on your own ma-
chine with GPUs, some embedded target hardware, 
or will you run it entirely in the cloud?
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• What algorithm will the model require? In this ex-
ample, the team might opt to use the “You Only Look 
Once (YOLO)” real-time object detection algorithm, 
as it exists for your team’s explicit purpose.
These aren’t the only questions to ask yourself as 
you get started, but answering them is imperative to 
the success of your endeavor. More so than estab-
lishing specific answers to those questions, under-
standing how to arrive at an answer will be impor-
tant. The way that you approach building, testing, 
and deploying your model will change along with 
your confidence in how well you’re solving the busi-
ness problem in question. With a solid process in 
place, your team can start acquiring data, building, 
and training, and finally validating your model. Re-
member, structure your process for rapidly iterating 
rather than having a perfect end-to-end solution all 
at the start.
Data Acquisition and Gathering
For the hypothetical object-detection model, first, 
decide on the input and output. The input is a given 
image. The output is an image with bounding box-
es—boxes around pedestrians with X/Y coordinates 
and height and width parameters. To arrive at that 
basic input/output arrangement, the model will need 
annotated images for eventual training.
Yet, before training the model with the annotated 
data, you’ll need to consider where that data will 
reside. Where is your data warehouse and how is 
that data arriving at the warehouse and moving to 
the model? Will those inputs be available when you 
finally begin serving your model in the real world? In 
our example, if we use HD images for training and 
the images we get while serving are in lower resolu-
tion camera, the model is likely to fail. Are you us-
ing the same code base for the preprocessing phase 
of training and serving your model? Again, a litany 
of questions about your process will arise at this 
juncture, and it’s important to understand how you’ll 
answer them.

   If you have your data storage and movement ar-
chitecture arranged, it’s time to acquire the specific 
data you need. In this case, we’re looking for, say, 
a few thousand images of streets with pedestrians. 
Once you acquire the data necessary to build the 
model, you’ll have to, via randomization, separate 
them into three different sets. A good rule of thumb 
is to keep 80 percent for your training set, and 10 
percent each in your validation and test set. It’s im-
portant here to not look at the test set yet.
The goal is not to overfit the model to any one set 
of data. If your model works in training but doesn’t 
work in validation, it won’t work in production. If 
it works in training and validation but not testing, 
you’ve probably overfitted the model to the train-
ing and validation data. Next, we’ll examine how to 
best approach training, testing, and validating.
Building, Training, Testing, Validating
If you overfit the model to the training images, it may 
mean that the model only identifies pedestrians un-
der very specific circumstances. Maybe it detects 
pedestrians in photos taken outside but isn’t able to 
detect them in photos taken from behind windows. 
If you only have training data from rainy days, the 
model might not detect pedestrians in sunny-day 
photos from your validation or test set. For this pur-
pose, it’s important to establish a ground truth for 
your data based on human experience that ensures 
good coverage of all the important cases in each of 
the datasets.
Establishing a ground truth requires asking humans 
to annotate some of your data set. Because a hu-
man will know—regardless of whether or from where 
a photo was taken—what a pedestrian looks like, a 
group of annotators will be able to create bounding 
boxes more accurately than an algorithm alone can. 
By incorporating a ground truth into your training 
data, you’re likely to avoid the overfitting problems 
that arise. Creating a ground truth with a panel of 
skilled human annotators will also give your model 
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a level of accuracy to achieve: The goal is to reach 
human-level accuracy, not 100 percent accuracy.
After splitting your data and achieving a human-
created ground truth, it’s time to begin training the 
model with that annotated data. As you send train-
ing data through the model, you’ll have to deter-
mine if the incremental improvements you make 
are worth the investment. If more time training the 
model leads to a one percent increase in accura-
cy that will impact only about a thousand requests 
later, it probably isn’t worth the extra time. If more 
time spent training leads to a one percent increase 
for one million users or improving coverage of your 
edge-cases, then it’s likely worth even the small im-
provement.
As you hone the model through training, occasion-
ally leverage the test set of data as a benchmark 
for whether the model will work in production. As 
you work from test data—which can tell you if your 
model is trained appropriately—to validation data—
which helps ensure you haven’t overfitted your 
model—you’ll likely end up with a few more iterative 
changes to your model. Eventually, it will be time to 
launch your model in production.
Serving the Model in Production
You’ve tested and validated the model, and are 
ready to send it into the real world for consumption. 
Tools, such as Seldon, an ML deployment platform 
offer out-of-the-box serving capabilities. However, 
these types of frameworks lack business logic, 
which means your team will have to build rules to 
specify who can use the model or when to use this 
model rather than another model your organization 
may employ.
A model in production is a model that needs con-
stant management. Let’s say our object-detection 
model requires weekly updates. To perform regular 
updates, your team will need an infrastructure in 
place that supports that process. For example, the 
infrastructure you select should minimize loading 

and moving data for analysis, as your model in pro-
duction will require continuous improvement. This 
constant improvement is only possible when your 
team logs the model activity to look for signals of 
failure and incorporates analytics to ensure your 
model can meet the demand of requests it’s expe-
riencing.
One major issue to monitor and analyze for is con-
cept drift or shift. Drift happens when your data 
changes somewhere along the pipeline from when 
you trained your model to it being served live in 
production. To monitor for this, your team should 
track a signal that alerts you to model failure. As 
you monitor your model in production, you will end 
up with what amounts to a few different models, as 
you tweak and change your initial algorithm. As you 
arrive at each successful variation of a model, it will 
become your champion model, which you can use 
as a basis for subsequent models. Your champion 
model has gone through testing, validation, and 
monitoring in production, so it represents the most 
effective version of your ML journey.
Finally, during your build-to-serve process, keep in 
mind the final location of your model. If our pedestri-
an-detection model will be served in an embedded 
car camera, then building a model that only works 
on HD images in high compute-available software 
environments will be useless. Ensure you have the 
correct processing capacity available and that your 
architecture and framework are appropriate for the 
end goal.
Iterate and Collaborate
Building and deploying a machine learning model 
is an iterative process. Taking a proof of concept 
all the way through to a deployed product is pains-
taking and involves many stops and starts along 
the way. Have patience and lean on your team to 
deliver a truly collaborative effort. It’s the only way 
you’ll achieve the goals you set out to accomplish 
by building an ML model in the first place. 
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