
Compunet 24 (May - 2021)

How to Build, Train,
Test, and Deploy

a Machine Learning

 Building a machine learning (ML) model is excit-
ing. Arriving, after tweaks and changes and sleep-
less nights, at something you feel you can use in
the real world is likely a relief. Unfortunately, that
proof of concept you’ve just created marks the be-
ginning of your work, not the end. After establishing
the baseline model, it’s time to build a more thor-
ough version, test, deploy, and maintain that model.
The work of an ML team is never finished, it seems.
Here are some considerations as your team turns
its proof of concept into the real deal: a model that
is the engine of a real-world application.
 If we think about an object-detection model for
pedestrians, we can walk through the various steps
required to turn the concept into production. Before

23

we get into the nitty-gritty details, teams will have to
agree upon a few basics.
• What kind of programming language are you us-
ing? There are always new languages, like Julia,
arriving on the scene. Many people work in R or
Python since they have the largest support for ML
frameworks.
• Then there is the mass of existing frameworks
from which to choose. Some, like TensorFlow, have
a large user base and existing tome of documen-
tation. Others might offer something more closely
aligned with your vision but with less available sup-
port.
• Will your team run this model on your own ma-
chine with GPUs, some embedded target hardware,
or will you run it entirely in the cloud?

Compunet 24 (May - 2021)

• What algorithm will the model require? In this ex-
ample, the team might opt to use the “You Only Look
Once (YOLO)” real-time object detection algorithm,
as it exists for your team’s explicit purpose.
These aren’t the only questions to ask yourself as
you get started, but answering them is imperative to
the success of your endeavor. More so than estab-
lishing specific answers to those questions, under-
standing how to arrive at an answer will be impor-
tant. The way that you approach building, testing,
and deploying your model will change along with
your confidence in how well you’re solving the busi-
ness problem in question. With a solid process in
place, your team can start acquiring data, building,
and training, and finally validating your model. Re-
member, structure your process for rapidly iterating
rather than having a perfect end-to-end solution all
at the start.
Data Acquisition and Gathering
For the hypothetical object-detection model, first,
decide on the input and output. The input is a given
image. The output is an image with bounding box-
es—boxes around pedestrians with X/Y coordinates
and height and width parameters. To arrive at that
basic input/output arrangement, the model will need
annotated images for eventual training.
Yet, before training the model with the annotated
data, you’ll need to consider where that data will
reside. Where is your data warehouse and how is
that data arriving at the warehouse and moving to
the model? Will those inputs be available when you
finally begin serving your model in the real world? In
our example, if we use HD images for training and
the images we get while serving are in lower resolu-
tion camera, the model is likely to fail. Are you us-
ing the same code base for the preprocessing phase
of training and serving your model? Again, a litany
of questions about your process will arise at this
juncture, and it’s important to understand how you’ll
answer them.

 If you have your data storage and movement ar-
chitecture arranged, it’s time to acquire the specific
data you need. In this case, we’re looking for, say,
a few thousand images of streets with pedestrians.
Once you acquire the data necessary to build the
model, you’ll have to, via randomization, separate
them into three different sets. A good rule of thumb
is to keep 80 percent for your training set, and 10
percent each in your validation and test set. It’s im-
portant here to not look at the test set yet.
The goal is not to overfit the model to any one set
of data. If your model works in training but doesn’t
work in validation, it won’t work in production. If
it works in training and validation but not testing,
you’ve probably overfitted the model to the train-
ing and validation data. Next, we’ll examine how to
best approach training, testing, and validating.
Building, Training, Testing, Validating
If you overfit the model to the training images, it may
mean that the model only identifies pedestrians un-
der very specific circumstances. Maybe it detects
pedestrians in photos taken outside but isn’t able to
detect them in photos taken from behind windows.
If you only have training data from rainy days, the
model might not detect pedestrians in sunny-day
photos from your validation or test set. For this pur-
pose, it’s important to establish a ground truth for
your data based on human experience that ensures
good coverage of all the important cases in each of
the datasets.
Establishing a ground truth requires asking humans
to annotate some of your data set. Because a hu-
man will know—regardless of whether or from where
a photo was taken—what a pedestrian looks like, a
group of annotators will be able to create bounding
boxes more accurately than an algorithm alone can.
By incorporating a ground truth into your training
data, you’re likely to avoid the overfitting problems
that arise. Creating a ground truth with a panel of
skilled human annotators will also give your model

24

Compunet 24 (May - 2021)

a level of accuracy to achieve: The goal is to reach
human-level accuracy, not 100 percent accuracy.
After splitting your data and achieving a human-
created ground truth, it’s time to begin training the
model with that annotated data. As you send train-
ing data through the model, you’ll have to deter-
mine if the incremental improvements you make
are worth the investment. If more time training the
model leads to a one percent increase in accura-
cy that will impact only about a thousand requests
later, it probably isn’t worth the extra time. If more
time spent training leads to a one percent increase
for one million users or improving coverage of your
edge-cases, then it’s likely worth even the small im-
provement.
As you hone the model through training, occasion-
ally leverage the test set of data as a benchmark
for whether the model will work in production. As
you work from test data—which can tell you if your
model is trained appropriately—to validation data—
which helps ensure you haven’t overfitted your
model—you’ll likely end up with a few more iterative
changes to your model. Eventually, it will be time to
launch your model in production.
Serving the Model in Production
You’ve tested and validated the model, and are
ready to send it into the real world for consumption.
Tools, such as Seldon, an ML deployment platform
offer out-of-the-box serving capabilities. However,
these types of frameworks lack business logic,
which means your team will have to build rules to
specify who can use the model or when to use this
model rather than another model your organization
may employ.
A model in production is a model that needs con-
stant management. Let’s say our object-detection
model requires weekly updates. To perform regular
updates, your team will need an infrastructure in
place that supports that process. For example, the
infrastructure you select should minimize loading

and moving data for analysis, as your model in pro-
duction will require continuous improvement. This
constant improvement is only possible when your
team logs the model activity to look for signals of
failure and incorporates analytics to ensure your
model can meet the demand of requests it’s expe-
riencing.
One major issue to monitor and analyze for is con-
cept drift or shift. Drift happens when your data
changes somewhere along the pipeline from when
you trained your model to it being served live in
production. To monitor for this, your team should
track a signal that alerts you to model failure. As
you monitor your model in production, you will end
up with what amounts to a few different models, as
you tweak and change your initial algorithm. As you
arrive at each successful variation of a model, it will
become your champion model, which you can use
as a basis for subsequent models. Your champion
model has gone through testing, validation, and
monitoring in production, so it represents the most
effective version of your ML journey.
Finally, during your build-to-serve process, keep in
mind the final location of your model. If our pedestri-
an-detection model will be served in an embedded
car camera, then building a model that only works
on HD images in high compute-available software
environments will be useless. Ensure you have the
correct processing capacity available and that your
architecture and framework are appropriate for the
end goal.
Iterate and Collaborate
Building and deploying a machine learning model
is an iterative process. Taking a proof of concept
all the way through to a deployed product is pains-
taking and involves many stops and starts along
the way. Have patience and lean on your team to
deliver a truly collaborative effort. It’s the only way
you’ll achieve the goals you set out to accomplish
by building an ML model in the first place.

25

	Ar_Cover_24
	Compunet Page 2 Ar Final 5
	Compunet 24 AR
	Compunet 24 EN.
	Compunet Page 2 En Final 5
	En_Cover_24

