COMPARATIVE STUDIES OF SOME LONG STAPLE COTTONS AT DIFFERENT LOCATIONS

EL-ADLY, H.H., H.S. KHALIFA and S.R.N. SAID

Cotton Research Institute, ARC, Giza, Egypt

(Manuscript received 8 October 2013)

Abstract

Comparative studies for thirty eight genotypes descending from twenty one crosses and the two check varieties Giza 90 and Giza 80 were included in Trial A at Seds Agricultural Experimental Station in 2012 season, eighteen genotypes descending from sixteen crosses and the two check varieties Giza 90 and Giza 80 were grown in Trial B at five locations in Middle and Upper Egypt in the same season. The results obtained from Trial A showed that the strains $H^{5}118/2011$ and $H^{5}124/2011$ of the cross (G 83 Rad. x Aust.) x G 91, H⁵128/2011 and H⁵129/2011 cross [(G 80 x Aust) x G 83], H⁵150/2011 cross (G 83rad x Kar) x [(G 83 x G 80) x G 89], H⁶198/2011 cross[[(G 83 x G 80) x G 89] x (G 83 x Delta Pine)]], H⁷215/2011 cross [(G 83 x G 80) x G 89] x Aust, H⁸238/2011 cross (Dand. Rad x Karsh), H⁹244/2011cross [G 90 x Pima S62 (24240)], H⁹253/2011 cross [G 91 x Pima S62 (24240)], H¹⁰268/2011 [G 83 x (G 72 x Dand.) x G 91], H¹¹281/2011[G 83 x (G 72 x Dand.) x G 85] and Breeder1 of the promising cross [G 83 x (G 72 x 5844)] x G 80] recorded significant higher seed cotton yield (SCY) and lint cotton yield (LY) compared with the check varieties Giza 90 and Giza 80. While the crosses [(G 85 x G 83) x G 90], [(G 83 x G 80) x G 89] x Aust, C.B 58 x G 90, H⁸249/2010 descending from the crosses G 91 x Pima S62 (24202), [G 83 x (G 75 x 5844) x G 91], [(G 83 x G 72) x Dand] x G 85 respectively and breeder2 of the promising cross (Giza90 x Aus) had higher seed and lint cotton yield (SCY and LY) compared with the check varities Giza 90 and Giza 80 in Trial B. The mean squares of the genotypes in Trial A were highly significant for all yield components traits. Combined mean squares results in Trial B of the genotypes (G) were highly significant and significant for all yield traits except for lint index (LI). Environments (E) mean squares were highly significant for all studied yield traits. Genotypes-environments interactions (G x E) mean squares were highly significant for all yield traits except for lint percentage (L%) which showed significant combined mean squares, indicating change in performance of genotypes from one location to another. In other words, the rank of a genotype differed from one location to another. High heritability estimates in broad sense (h.b.s %) were computed for all yield traits in Trial A, indicated that the environment had slightly influence on these traits. Broad sense heritability estimates (h. $_{\text{b.s}}$ %) for yield traits in Trial B were low for seed cotton yield (SCY), lint yield (LY) and boll weight (BW), indicated that the environmental factors had effect on these traits. On the other hand, lint percentage (L %), seed index (SI) and lint index (LI) recorded high heritability estimates in broad sense (h._{b.s} %) (more than 50%), indicating that environment had considerable effect on these traits.. The G.C.V %

values ranged from 2.54% for lint index (LI) to 61.65% for lint yield (LY) in Trial A and ranged from 3.98% for lint percentage (L%) to 50.0% for lint yield (LY) in Trial B. These values indicated variable environmental effects on all studied traits.

INTRODUCTION

The progress of any breeding programme depends on available genetic variation to produce new superior cotton varieties that can replace the existing ones. Introduction of new varieties are the most important objective of the cotton research programme carried out in the Cotton. Research Institute using artificial hybridization between the desired genotypes, followed by the pedigree method of selection.

The promising and desired families in the fifth generation of the different crosses were tested in the preliminary strain test (Trial A), along with the cultivars Giza 90 and Giza 80. The families selected in Trial A were tested through the advanced strain test Trial B beside the cultivated varieties Giza 90 and Giza 80 for comparison at different locations to study their performance under different environments. The superior crosses over cultivated varieties will be grown in another programme for increasing enough seeds to produce the breeder seed.

Several workers studied the performace of cotton genotypes under different environments, i.e El-Faki *et al* (2002), Mohamed *et al*. (2003), Nazmy *et al*. (2005), El-Adly *et al*. (2010) and Samia, E. Ali *et al*. (2012).

The main objective of this investigation was to evaluate the genotypes of 21 crosses in Trial A and 16 crosses in Trial B to recognize the promising cross which surpassed the commercial varieties for some major yield components and fiber quality traits.

MATERIALS AND METHODS

This investigation was conducted during 2012 season through the two experimental designs preliminary yield trait of trial A and the advanced yield trial B. Trial A consisted of 40 genotypes, 38 lines descended from 21 crosses and the two check varieties, Giza 90 and Giza 80. It was grown at Seds Experimental Station, Agricultural Research Center (Table 1). While Trial B was cultivated at five locations represented Middle and Upper Egypt regions i.e Seds, El-Fayoum, El-Menia, Assuit and Sohage. Each Trial consisted of 20 genotypes, 18 lines descending from 16 crosses and the two commercial varieties Giza 90 and Giza 80 (Table2).

Experimental design of Trial A and Trial B in all locations were randomized complete block design with six replications; each plot consisted of five rows. The row was four

meters long, 60 cm apart and 20 Cm between hills. Standard cultural practices were applied as recommended for growing cotton. The hills were thinned to two plants each. The middle three rows of each plot were hand harvested to determine seed cotton yield (SCY) in Kentar / feddan and lint yield (LY) in Kentar / feddan. A random sample of 50 bolls was harvested to estimate boll weight (BW), lint percentage (L %), seed index (SI) and lint index (LI).

The following traits were investigated:

A. Yield components:

- 1. Seed cotton yield (SCY.Kan/fed). estimated as weight of seed cotton yield in Kantar / faddan.
- 2. Lint cotton yield(LY. Can/fad).measured as average weight of lint yield in Kantar / faddan.
- 3. Boll weight (BW). the average weight estimated from 50 bolls picked at random from the first and fifth row of each plot.
- 4. Lint percentage (L%). calculated as the relative amount of lint in a seed cotton sample, expressed in percentage.

$$L\% = \frac{w \text{ eight of lint cotton in sample}}{w \text{ eight of seed cotton}} \times 100$$

- 5. Seed index (SI). estimated as average weight of 100 seeds in grams.
- 6. Lint index (LI). estimated as average weight in grams of lint born by 100.seed.

$$LI = \frac{SI \times L\%}{(100 - L\%)} = \frac{\text{seed index x lint percentage}}{(100 - \text{lint percentage})}$$

B- Fiber properties.

Fiber physical properties:

- 1- Upper half mean length (m.m) UHM and, Fiber uniformity index (UI) were determined using the fibrograph 630 according to (ASTM D: 1447-67).
- Fiber strength and elongation percentage (Y.St) were determined on the Stelometer Tester according to the standard methods of (ASTM D: 1445-67).
- 3- Micronaire reading (Mic). was estimated using Micronaire 275 instrument according to [ASTM D: 1448-2006].

All fiber properties were tested in Cotton Technology Research Division labs; Cotton Research Inst. (C.R.I.) under constant conditions of temperature $(20 \pm 2^{\circ}c)$ and relative humidity (65 \pm 5%) according to HVI Instrument.

The analysis of variance was calculated by using the methods mentioned by Sendecor (1965) and Le Clerg *et al.* (1962).

RESULTS AND DISCUSSION

The main objective of this study was to evaluate 38 new strains descended from 21 crosses in Trial A and 18 strains belonging to 16 crosses in Trial B. The check varieties were Giza 90 and Giza 80 as control through Trial A and Trial B. Differences between the tested strains were detected for yield, yield components and fiber properties compared with the check varieties Giza 90 and Giza 80.Table (1) showed that the mean squares of the genotypes in Trial A were highly significant for all yield components traits. These results are in agreement with those obtained by EI-Feki *et al.* (2005), Mohamed *et al.* (2005) and EI-Adly *et al.* (2006).

The results of the combined analysis of variance for all yield component traits in Trial B are shown in Table (2). Mean squares of the genotypes (G) were highly significant and significant for all yield traits except for lint index (LI), indicated the presence of large variations among these traits. Environments (E) mean squares were highly significant for all studied yield traits. Genotypes-environments interactions (G x E) mean squares were highly significant for all yield traits except for lint percentage (L%) which showed significant combined mean squares, indicating change in performance of genotypes from one location to another. In other words, the rank of a genotype differed from one location to another. These findings agree with those obtained by El-Amen *et al.* (2004) and El-Adly *et al.* (2010).

				Traits			
Sources	df	SCY	LY	BW	L%	SI	LI
Rep.	5	2326817.0**	332308.0**	104.71	1.3300	1.0402	0.4179
Genotypes (G)	39	448740.0**	67377.67**	234.78**	2.9043**	2.414**	1.094**
Error	195	229509.9	32865.7	82.29	1.5582	0.4855	0.2931

Table 1 Mean squares of genotypes for yield components under study.

*,** significant and highly significant at 0.5% and 0.1% levels of probability, respectively.

Comment	-16			Traits			
Sources	df	SCY	LY	BW	L%	SI	LI
Rep.W.	5	3949655.0**	601256.3**	154.09**	1.4	0.7**	0.4**
Genotypes (G)	19	522907.7**	95140.5**	160.10^{**}	4.9**	1.3^{*}	0.6
Environments (E)	4	1431669.8**	2435723.0**	10488.53**	26.5**	17.9**	5.1**
G x E.	76	312386.8**	53719.18**	150.37**	1.7^{*}	0.7**	0.3**
Error	495	207400.8	35041.0	81.70	1.1	0.2	0.1

Table 2. Mean squares of genotypes for yield components traits over locations under study.

*,** significant and highly significant at 0.5% and 0.1% levels of probability, respectively.

The preliminary strain test (trial A).

1- Seed cotton yield (SCY)

Table (3) shows that the strains $H^{5}118/2011$ and $H^{5}124/2011cross$ (G83Rad x Aust.) x G 91, $H^{5}129/2011$ cross [(G 80 x Aust.) x G 83], $H^{5}150/2011$ cross (G 83Rad x Kar.) x [(G 83 x G 80) x G 89], $H^{6}198/2011$ cross[[(G 83 x G 80) x G 89] x (G83 x Delta Pin)]], $H^{7}215/2011$ cross [(G 83 x G 80) x G89] x Aus, $H^{7}227/2011$ cross (C.B58 x G 90), $H^{8}238/2011$ cross (Dand.Rad x Kar), $H^{9}244/2011$ cross [G 90 x Pima S62 (24240)], $H^{9}253/2011$ cross [G 91 x Pima S62(24240)], $H^{10}268/2011$ [G 83 x (G 72 x Dand.) x G 91], $H^{11}281$ [G83 x (G 72 x Dand.) x G 83] and Breeder1 of the promising cross [G83 x (G 72 x 5844)] x G 80] recorded significant seed cotton yield (SCY) compared with the check varieties Giza 90 and Giza 80. However, all strains belong to the crosses in Trial A recorded significant seed cotton yield compared with the variety Giza 80 only, except the strains $H^{5}103/2011$ and H^{5} 107/2011 cross [(G 83 x Aus) x G 85], $H^{5}113/2011$ cross [(G 83Rad. x Kar.) x G90] and strain $H^{6}183/2011$ cross [(G 85 x G 83) x G 91] which showed insignificant seed cotton yield compared with Giza 80.

2- Lint cotton yield (LY)

Table (3) revealed that 17 out of 38 genotypes recorded significant values for lint yield (LY), these strains were H⁵118/2011 and 124/2011cross [(G 83 Rad x Aust.) x G 91], H⁵128/2011 and H⁵129/2011 cross [(G 80 x Aust.) x G 83], H⁵150/2011 cross (G83Rad x Kar.) x [(G 83 x G 80) x G 89], H⁶198/2011 cross [[(G 83 x G 80) x G 89] x (G83 x Delta pine)]], H⁷215/2011 cross [[(G83 x G80) x G89] x Aust.]], H⁷219/2011 and 222/2011 cross (C.B58 x G90), H⁸238/2011 cross (Dand. Rad. x Kar.), H⁹244/2011 cross [G90 x Pima S6 (24240)], H⁹ 253/2011 and 254/2011 cross G91 x Pima S6 (24202), H¹⁰268/2011 cross [(G 83 x G 72) x Dand.) x G 91], H¹¹281/2011 [(G 83 x G 72 x Dand) x G 85], Breeder 1 of the promising cross [G 83 x (G 75 x 5844) x G 80] and Breeder 2 of the promising cross (G 90 x Aust.). On the other hand G80 had the lowest lint cotton yield compared with all strains in Trial A.

3- Boll weight (B.W).

Table (3) showed that the strains $H^{5}109/2011$ and 113/2011cross [(G83Rad. x Kar.) x G90], $H^{5}118/2011$ and $H^{5}122/2011$ cross [(G83Rad x Aust) x G91], $H^{6}166/2011$ cross (G83Rad. x G91) $H^{6}189/2011$ cross [(G83 x G80)xG75 x G90], $H^{6}197/2011$ and $H^{6}198/2011$ cross [(G83 x G80) x G89] x (G83 x Delta pine), $H^{7}215/2011$ [(G83 x G80) x G89] x Aust.], $H^{7}219/2011$ and $H^{7}222/2011$ cross (C.B58 x G 90), ($H^{7}227/2011$ and $H^{7}228/2011$ cross [(G 80 x Pima S6) x G 91], $H^{8}238/2011$ cross (Dand Rad. x Kar.) and Breeder 2 of the promising cross (G90 x Aust.) didn't exceeded the check varieties G90 and G80 for boll weight. On the other hand, all other strains recorded insignificant mean performance in for boll weight compared with the check varieties Giza 90 and Giza 80.

4- Lint percentage (L %).

As shown in Table (3) mean performance for (L %) ranged from 36.7% to 39.2% for the strain H⁷222/2011 that was descending from the cross (C.B58 x G90) and H⁶183/2011 derived from the cross [(G 85 x G 83) x G 91], respectively. On the other hand, the strains H⁵109/2011cross [(G83Rad. x Kar.) x G90], H⁶160/2011 cross (G 83 Rad x G 91), H⁶189/2011 cross [(G 83 x G 80) x G 75 x G 90], H⁷222/2011 cross (C.B58 x G 90) and H¹⁰268/2011 cross [(G 83 x G 72) x Dand.) x G 91] showed lint percentage values lowest than the check variety Giza 80 while exceeded slightly Giza 90 variety.

5- Seed index (SI).

It appeared from Table (3) that means of genotypes ranged from 8.5 to 11.4 grams for the strain H⁶188/2011 cross [((G 83 x G 80) x G75)) x G90] and the strain H⁵109/2011 descending from the cross [(G83Rad. x Kar.) x G90]. Three strains H⁵113/2011, H⁵118/2011, H⁵122/2011, H⁹235/2011 and H¹¹281/2011 belonged to the crosses [(G83Rad. x Kar.) x G90], [(G83Rad x Aust.) x G91], [G91 x Pima S6 (24202)] and [(G 83 x G 72) x Dand.) x G 85] gaves the higher seed index compared with the check varieties Giza 90 and Giza 80, respectively. While insignificant only for the strain H⁵113/2011 of the cross (G 83 Rad. x Kar.) x G 90 which recorded significant and highly significant seed index (SI) compared with Giza 90 and Giza 80.

6- Lint Index (LI).

Table (3) shows mean of lint index (LI) ranged from 5.3 grams for $H^{6}109/2011$ to 7.7 grams for $H^{6}188/2011$. Seven strains produced significantly higher lint index than the check variety Giza 90, the strains were $H^{5}113/2011$ cross (G83Rad. x Kar.) x G 90, $H^{5}118/2011$ and $H^{5}122/2011$ cross [(G83Rad. x Aust.) x G 91], $H^{5}130/2011$ [(G 80 x Aust.) x G 83], $H^{6}183/2011$ and $H^{6}184/2011$ [(G 85 x G 83) x G 91] and $H^{9}244/2011$ cross G 90 x Pima S6 (24240). On the other hand three strains

recorded significant higher lint index (LI) than the another check variety Giza80, the strains were $H^{5}118/2011$, $H^{5}130/2011$ and $H^{6}184/2011$ belonged to the crosses [(G 83 Rad. x Aust.) x G 91], [(G 80 x Aust.) x G 83] and [(G 85 x G 83) x G 91], respectively.

Fiber properties.

1- Fiber fineness and maturity (Mic).

Fiber fineness and Maturity (Mic) reading presented in Table (4) showed that the breeder seed of the cross (G 90 x Aust) had 4.8 micronaire reading exceeded all genotypes and check varieties for these trait. Other genotypes in trial A showed micronaire values ranged from 3.7 to 4.4, while check varieties Giza 90 and Giza 80 recorded 4.0 and 4.2 micronaire values, respectively.

2- Length uniformity ratio (LUR).

It's appeared from Table (4) that means of this trait ranged from 82.3% to 88. $H^{7}228/2011$ that belonged to the cross [(G 80 x Pima S6) x G 91] and the strain $H^{5}122/2011$ descended from the cross [(G 83 Rad. x Aust.) x G 91], the check varieties Giza 90 and Giza 80 recorded length uniformity ratio (LUR) 84.2% and 85.3%, respectively.

3- Upper half mean length (UHM).

The genotypes of all crosses could be considered in long staple category (30m.m) (4), 10 genotypes revealed fiber length exceeded the check varieties Giza 90, Giza 80 and other genotypes in Trial A. The genotypes were H⁵103/2011 cross [(G 83 x Aust.) x G85], H⁵113/2011 cross (G 83 Rad. x Kar.) x G 90, H⁵150/2011 (G 83 rad x Kar.) x [(G 83 x G 80) x G 89], H⁶166/2011 cross (G 83 Rad. x G 91), H⁶189/2011 cross {(G 83 x G 80) x G 75] x G 90}, H⁶198/2011 cross [(G 83 x G 80) x G 89] x (G 83 x G 80) x G 75] x G 90}, H⁶198/2011 cross [(G 83 x G 80) x G 89] x (G 83 x G 80) x G 75] x G 90}, H⁶198/2011 cross [(G 83 x G 80) x G 89] x (G 83 x G 80) x G 75] x G 90}, H⁶198/2011 cross [(G 83 x G 80) x G 89] x (G 83 x G 80) x G 89] x (G 83 x G 80) x G 89] x (G 83 x G 80) x G 89] x (G 91 x Pima S62 24202) and H¹⁰257/2011 [G 83 x (G 75 x 5844) x G 91]. Other genotypes were slightly longer than the check varieties (Table 4).

4- Yarn strength (Y.St).

Most strains were nearly of the same strength or slightly stronger than the check variety Giza 80, while Giza 90 check variety recorded lowest Yarn strength (Y.St) value compared with the genotypes in trial A (Table 4).

The advanced strain test (Trial B).

The advanced strains which selected from Trial A are testing in Trial B, they carried out at five locations in Middle and Upper Egypt i.e. El-Fayoum, Seds, El-Minia, Assuit and Sohaag in order to study the breeding behavior of the genotypes grown under different environments to evaluate the genotype stabilities in different locations.

A- Yield components

1- Seed cotton yield (SCY).

From (Table 5), all genotypes in Trial B exceeded the check variety Giza80 in seed cotton yield. On the other hand seven genotypes out of eighteen genotypes exceeded insignificantly Giza 90 in seed cotton yield (SCY). These genotypes were H⁵136/2010 descending from the cross [(G 85 x G 83) x G 90], H⁶177/2010 for the cross [(G 83 x G 80) x G 89] x Aust., H⁶182/2010 belong to the cross C.B58 x G90, H⁸249/2010 descending from the cross G91 x Pima S62 (24202), H⁹262/2011 belong to cross [G 83 x (G 75 x 5844) x G 91], H¹⁰274/2011 [(G 83 x G 72) x Dend.] x G85 and breeder2 for the promising cross (G90 x Aust.).

2- Lint yield (LY).

Results in Table (5) revealed that the means of lint yield (LY) values ranged from 9.4 Ken/Fed for the strain H⁶212/2010 of the cross (G80 x Pima S6) x G91 and H⁷229/2010 of the cross (Denda Rad. x Kar.) to 11.2 Ken/fed for the strain H⁶177/2010 of the cross [(G 83 x G 80) x G 89] x Aus. All genotypes showed significant increase for lint yield (LY) compared with the check variety Giza 80. While the strain H⁶177/2010 of the cross [(G 83 x G 80) x G 89] x Aus revealed significant increases lint yield (LY) compared with Giza 90 variety. On the other hand the strains H⁵136/2010 descending from the cross [(G 85 x G 83) x G 91], H⁶182/2010 belong to the cross C.B58 x G90, H⁸249/2010 descending from the cross G91 x Pima S62 (24202), H⁹263/2011 belong to cross [G 83 x (G 75 x 5844) x G91], H¹⁰274/2010 of the cross [(G 83 x G 72) x Dend.] x G 85 and breeder2 for the promising cross (G 90 x Aust.) showed slightly increase lint yield but insignificant compared with the check variety Giza 90.

3- Boll weight (BW).

The data presented in Table (5) revealed that the two genotypes exceeded insignificant Giza90 and Giza80 in boll weight, $H^{9}262/2011$ belong to cross [G83 x (G 75 x 5844) x G 91] and $H^{10}271/2011$ of the cross [(G 83 x G 72) x Dend.] x G 85. Other genotypes were less or equal to the check varieties Giza 90 and Giza 80 for boll weight.

3- Lint percentage (L %).

Regarding lint percentage value (Table 5), the means of this trait ranged from 38.6% for the strain H⁸249/2010 descending from the cross G 91 x Pima S62 (24202) to 39.9% H⁵136/2010 descending from the cross [(G 85 x G 83) x G 91]. Five genotypes i.e H⁵136/2010, H⁵166/2010, H⁶177/2010, H¹⁰274/2010 and breeder2 descending from the crosses [(G 85 x G 83) x G 91]. [(G 83 x G 80) x G 89] x (G 83 x Deltapine), [(G 83 x G 80) x G 89] x Aust, [(G 83 x G 72) x Dend] x G 85 and G 90 x

Aust gave significantly higher lint percentage (L %) than the check varieties Giza 90 and Giza 80, respectively.

5- Seed index (SI).

The results of seed index (SI) in all genotypes under study (Table 5) ranged from 10.0gm to 12.9gm. The highest seed index (12.9gm) was recorded for strain $H^{6}212/2010$ of the cross (G 80 x Pima S6) x G91 followed by the check variety Giza 90 and $H^{10}271/2010$ [(G 83 x G 72) x Dend.] x G91. Five genotypes recorded seed index (10.6gm) equal to Giza 80, i.e $H^{5}112/2010$ and 126/2010 of the cross G83Rad. x G91, $H^{8}234/2010$ of the cross G 91 x Pima S62 (24240), $H^{10}271/2010$ [(G 83 x G 72) x Dend.] x G 85, and breeder1 of the promising cross [G 83 x (G 75 x 5844) x G 80], while the other genotypes recorded lowest seed index (SI) than the check varieties Giza 90 and Giza 80.

6- Lint index (LI).

As shown in Table (5) means of lint index ranged from 6.3gm for the strain $H^{5}132/2010$ of the [(G 83 x G 80) x G 75)) x Kar] to 8.4gm for the strain (G 80 x Pima S6) x G91. Seven strains had significantly higher lint index (LI) than the check variety Giza 90, the strains were $H^{5}112/2010$ and 126/2010 belonging to the cross G83Rad. x G91, $H^{5}136/2010$ belong to the cross (G 85 x G 83) x G 91, $H^{6}212/2010$ descending from the cross (G 80 x Pima S6) x G 91, $H^{8}234/2010$ of the cross G 90 x Pima S62 (24240), $H^{10}274/2010$ of the cross [(G 83 x G 72) x Dand.) x G 85] and breeder1 of the promising cross [G 83 x (G 75 x 5844) x G80].

Fiber properties.

1- Fiber fineness and Maturity (Mic).

Fiber fineness and maturity (Mic) reading presented in Table (6) showed that the micrnaire reading (Mic) for all genotypes ranged from 4.0 to 4.3. the genotypes $H^{5}136/2010$ belong to the cross (G 85 x G 83) x G91 and breeder2 of the promising cross G90 x Aus had higher micrnaire reading (Mic) than the check varieties Giza 90 and Giza 80. On the other hand the remaining genotypes in Trial B recorded higher micrnaire reading (Mic) than the commercial variety Giza 90 except for the strain $H^{5}156/2010$ belong to the cross [(G 83 x G 80) x G 89] x (G 83 x Delta pine) which had the same micrnaire reading (Mic) as Giza 90.

2- Length uniformity ratio (LUR).

Length uniformity ratio estimates (Table 6) showed nearly the same trend as the check varieties Giza 90 and Giza 80.

3- Upper half mean length (UHM).

All genotypes of all crosses could be considered in long staple category (Table 6). All strains didn't exceed the check variety Giza 80 for Upper half mean length

(UHM) trait, while it were higher in UHM compared with the check variety Giza 90 except the breeder2 of the promising cross (G 90 x Aust) which had lowest UHM compared with Giza 90 and all strains in Trial B.

4- Yarn strength (Y.St).

Table (6) showed that the genotypes of the crosses G83Rad x G91, [(G 83 x G 80) x Giza 75] x Kar, [(G 83 x G 80) x G 75] x G 90, [(G 83 x G 80) x G 89] x (G 83 x Delta pine), (Dand Red. x Kar), G 90 x Pima S62 (24240), [G 83 x (G 75 x 5844) x G 91]. [G83 x (G 72 x Dand.) x G 91] and [(G 83 x G 72) x Dand.) x G85], have higher fiber yarn strength than the commercial variety Giza 90, on the other hand all crosses in Trial B didn't exceed Giza 90 in Yarn strength (Y.St) trait.

Heritability estimates in broad sense ($h_{.b.s}$ %) and Genetic coefficient of variability (G.C.V %).

Table (7) showed heritability estimates in broad sense ($h_{\cdot b.s}$ %) and Genetic coefficient of variability (G.C.V) for yield components traits in Trials A and B. High heritability estimates in broad sense ($h_{\cdot b.s}$ %) were computed for all yield traits in Trial A, indicated that the environment slightly influence in these traits. Broad sense heritability estimates ($h_{\cdot b.s}$ %) for yield traits in Trial B were low for seed cotton yield (SCY), lint yield (LY) and boll weight (BW), indicated that the environmental factors had ore effect on these traits. On the other hand, lint percentage (L %), seed index (SI) and lint index (LI) recorded high heritability estimates in broad sense ($h_{\cdot b.s}$ %) (more than 50%), indicating that environment had considerable effect on these traits. The genetic coefficient of variability (G.C.V %) is important in plant breeding because it helps in the assessment of the range of genetic variability in traits, this parameter helps in comparing variance of various traits. The G.C.V % values ranged from 2.54% for lint index (LI) to 61.65% for lint yield (LY) in Trial A and ranged from 3.98% for lint percentage (L %) to 50.0% for lint yield (LY) in Trial B Table 7. These values indicated that the environmental effects on all studied traits were considerable.

N.O	Strain	Parent	Origin	SCY Can/fed	LCY Can/fed	BW	L%	SI	LI
1	H ⁵ 103/2011	H ⁴ 67/2010	(G83 X Aust.) X G85	5.62	6.66	154	37.6	10.6	6.3
2	H ⁵ 107/2011	H ⁴ 68/2010		5.43	6.41	154	37.5	10.2	6.1
3	H ⁵ 109/2011	H ⁴ 71/2010	(G83 Rad. X Kar.) X G90	7.07	8.27	143	37.1	9.9	6.2
4	H ⁵ 113/2011	H ⁴ 73/2010		6.49	7.69	149	37.6	11.4	6.8
5	H ⁵ 118/2011	H ⁴ 82/2010	(G83 Rad. X Aust.) X G91	8.19	9.81	144	38.0	11.0	6.9
6	H ⁵ 122/2011	H ⁴ 84/2010	711 57	7.18	8.66	148	38.3	10.9	6.8
7	H ⁵ 124/2011		TH TH	8.43	10.11	158	38.1	9.2	6.3
8	H ⁵ 128/2011	H ⁴ 94/2010	(G80 X Aust.) X G83	7.79	9.28	150	37.8	10.1	6.5
9	H ⁵ 129/2011		111 111	7.98	9.45	154	37.6	10.1	6.5
10	H ⁵ 130/2011	H ^₄ 95/2010	(G83 Rad X	7.09	8.56	159	38.3	10.7	7.2
11	H ⁵ 138/2011	H ⁴ 104/2010	(G83XG80) XG89]	7.07	8.62	156	38.7	9.7	6.0
12	H ⁵ 141/2011	100	****	6.49	7.79	161	38.1	10.0	6.4
13	H ⁵ 150/2011	H ⁴ 110/2010		8.02	9.68	158	38.3	9.7	6.0
14	H ⁵ 151/2011			7.54	8.96	155	37.7	10.0	6.4
15	H ⁶ 160/2011	H ⁵ 122/2010	G03 Rau A G91	7.25	8.50	158	37.2	10.6	6.4
16	H ⁶ 166/2011	H ⁵ 126/2010	[(G83XG80)	7.19	8.43	152	37.3	10.3	6.4
17	H ⁶ 176/2011	H ⁵ 132/2010	-`XG751 X ´	7.03	8.48	158	38.3	9.9	6.1
18	H ⁶ 183/2011	H⁵ 136/2010	Kar. (G85XG83) X G91	5.95	7.36	160	39.2	10.4	6.6
19	H ⁶ 184/2011	*** ***	"" "" F(CO2)(CO0)	6.93	8.27	159	37.9	11.1	7.7
20	H ⁶ 188/2011	H⁵152/2010	[(G83XG80) XG75] X G90	7.44	8.78	158	37.4	8.5	5.3
21	H ⁶ 189/2011	10	111 111 F(CO2)(COO)	7.64	8.96	152	37.2	9.5	5.7
22	H ⁶ 197/2011	H ⁵ 156/2010	[(G83XG80) XG89] X (G83X Deltapin)	7.53	8.98	151	37.9	9.7	6.4
23	H ⁶ 198/2011	*** ***		8.69	10.37	142	37.9	10.3	6.0
24	H ⁶ 213/2011	H⁵166/2010	···· ···	6.69	8.03	162	38.1	9.89	6.4
25	H ⁷ 215/2011	H ⁶ 177/2010	[(G83XG80) XG89] X Aust.	9.37	11.34	144	38.4	9.9	6.3
26	H ⁷ 219/2011	H ⁶ 182/2010	C.B 58 X G90	7.63	9.02	145	37.5	9.6	6.5
27	H ⁷ 222/2011	111 111	TH 17	8.02	9.26	147	36.7	10.6	6.0
28	H ⁷ 227/2011	H ⁶ 212/2010	(G80 X Pima S6) X G91	7.41	8.73	152	37.4	9.8	6.3
29	H ⁷ 228/2011	11	nn an	7.37	8.72	144	37.6	9.3	5.9
30	H ⁸ 238/2011	H ⁷ 229/2010	Dand Rad. X KAR.	7.91	9.50	140	38.1	9.5	6.0
31	H ⁹ 244/2011	H ⁸ 234/2010	G90 X Pima S62 (24240)	8.14	9.79	155	38.2	10.6	6.0
32	H ⁹ 253/2011	H ⁸ 249/2010	G91 X Pima	8.28	9.94	157	38.1	11.2	6.7
33	H ⁹ 254/2011	11 2 13/2010	S62 (24202)	8.14	9.73	158	37.9	10.3	6.1
34	H ¹⁰ 257/2011	H ⁹ 262/2010	[G83X (G75 X 5844)] X G91	7.09	8.57	161	38.3	10.1	6.5
35	H ¹⁰ 268/2011	H ⁹ 271/2010	[(G.83 xG.72) X Dand] X G91	8.40	9.86	160	37.3	10.4	6.0
36	H ¹¹ 281/2011	H ¹⁰ 274/2010	[(G.83 xG.72) X Dand] X 685	7.76	9.28	158	38.0	10.8	6.0
37	Bree	eder1	[G83X (G75 X 5844) X G80]	9.90	11.88	161	38.1	10.2	6.3
38	Bree	eder2	(G90 X Aust.)	7.73	9.48	143	38.9	9.0	6.0
39	Giz	a 90	(G.83 X Dand)	5.92	6.82	155	36.6	10.7	6.4
40	GIz	a 80	(G.66 X	4.70	5.52	154	37.3	10.5	6.7
10		Mean	`G.73)	7.41	8.84	154	38.4	10.3	6.4
		LSD5%		1.94	2.42	8.0	0.527	0.21	0.169
								6 0.28	
	1	LSD.1%		N.S	N.S	9.0	0.692	4	0.222

Table 3. Means performance of yield components for the strains and cultivated varieties grown in Trial (A) at Seds in 2012 season.

N.O 1 2 3 4 5 6 7 8	Strain H ⁵ 103/2011 H ⁵ 107/2011 H ⁵ 109/2011 H ⁵ 113/2011 H ⁵ 118/2011 H ⁵ 122/2011 H ⁵ 122/2011 H ⁵ 122/2011 H ⁵ 122/2011 H ⁵ 122/2011	Parent H ⁴ 67/2010 H ⁴ 68/2010 H ⁴ 71/2010 H ⁴ 73/2010 H ⁴ 82/2010 H ⁴ 84/2010	Origin (G83 X Aust.) X G85 "" "" (G83 Rad. X Kar.) X G90 (G83 Rad. X Aust.) X G91	Mic 4 3.9 3.9	LUR 85.9 86.0 84.5 84.0	UHM 31.5 30.4 30	Y.St 2255 2190 2240
2 3 4 5 6 7	H ⁵ 107/2011 H ⁵ 109/2011 H ⁵ 113/2011 H ⁵ 118/2011 H ⁵ 122/2011 H ⁵ 124/2011 H ⁵ 128/2011	H ⁴ 68/2010 H ⁴ 71/2010 H ⁴ 73/2010 H ⁴ 82/2010 H ⁴ 84/2010	(G83 Rad. X Kar.) X G90	4 3.9 3.9	86.0 84.5	30.4	2190
3 4 5 6 7	H ⁵ 109/2011 H ⁵ 113/2011 H ⁵ 118/2011 H ⁵ 122/2011 H ⁵ 124/2011 H ⁵ 128/2011	H ⁴ 71/2010 H ⁴ 73/2010 H ⁴ 82/2010 H ⁴ 84/2010	(G83 Rad. X Aust.) X G91	3.9 3.9	84.5		
4 5 6 7	H ⁵ 113/2011 H ⁵ 118/2011 H ⁵ 122/2011 H ⁵ 124/2011 H ⁵ 128/2011	H ⁴ 73/2010 H ⁴ 82/2010 H ⁴ 84/2010	(G83 Rad. X Aust.) X G91	3.9		30	2240
5 6 7	H ⁵ 118/2011 H ⁵ 122/2011 H ⁵ 124/2011 H ⁵ 128/2011	H ⁴ 82/2010 H ⁴ 84/2010	· · · · · · · · · · · · · · · · · · ·		84.0		
6 7	H ⁵ 122/2011 H ⁵ 124/2011 H ⁵ 128/2011	H ⁴ 84/2010	· · · · · · · · · · · · · · · · · · ·	4 2	-	31.3	2175
7	H ⁵ 124/2011 H ⁵ 128/2011		111 111	4.2	83.5	30.8	2110
	H ⁵ 128/2011			4	88.0	29.5	2150
8	· ·		911 148	4.1	83.0	29.7	2175
0	H ⁵ 129/2011	H 4 94/2010	(G80 X Aust.) X G83	4	85.7	30.8	2330
9	11 125/2011	111 111	111 111	4.1	80.0	29.6	2000
10	H ⁵ 130/2011	H ⁴ 95/2010	911 146	4.2	85.3	30.5	2160
11	H ⁵ 138/2011	H ⁴ 104/2010	(G83 Rad X Kar.) X (G83XG80)XG89]		83.0	29.8	2015
12	H ⁵ 141/2011	111 111	711 115	4.2	84.5	29.3	2130
13	H ⁵ 150/2011	H ⁴ 110/2010	111 1111	3.9	85.8	31	2100
14	H ⁵ 151/2011	1111 1110	1111 1111	4	82.7	29.6	2105
15	H ⁶ 160/2011	H ⁵ 122/2010	G83 Rad X G91	3.8	84.2	31.1	2175
16	H ⁶ 166/2011	H ⁵ 126/2010	111 118	3.9	86.1	30.7	2130
17	H ⁶ 176/2011	H ⁵ 132/2010	[(G83XG80)XG75] X Kar.	4.1	84.6	29.7	2150
18	H ⁶ 183/2011	H ⁵ 136/2010	(G85XG83) X G91	4.1	83.6	30.2	2015
19	H ⁶ 184/2011		111 111	4.3	84.2	29.6	2090
20	H ⁶ 188/2011	H ⁵ 152/2010	[(G83XG80)XG75] X G90	3.8	84.4	30.1	2200
21	H ⁶ 189/2011		111 111	3.8	84.1	31.4	2115
22	H ⁶ 197/2011	H⁵156/2010	[(G83XG80)XG89] X (G83X Deltapin)	3.8	84.4	29.8	2010
23	H ⁶ 198/2011		111 111	4	83.3	31.3	2350
24	H ⁶ 213/2011	H⁵166/2010	111 111	4	84.8	29.8	2085
25	H ⁷ 215/2011	H ⁶ 177/2010	[(G83XG80)XG89] X Aust.	3.8	85.7	31.2	2410
26	H ⁷ 219/2011	H ⁶ 182/2010	C.B 58 X G90	3.8	85.8	29.9	2110
27	H ⁷ 222/2011		111 115	4	85.3	30.2	2010
28	H ⁷ 227/2011	H ⁶ 212/2010	(G80 X Pima S6) X G91	3.7	85.4	29.5	2160
29	H ⁷ 228/2011		111 115	3.7	82.3	29.6	2105
30	H ⁸ 238/2011	H ⁷ 229/2010	Dand Rad. X KAR.	4	83.6	30.4	2255
31	H ⁹ 244/2011	H ⁸ 234/2010	G90 X Pima S62 (24240)	4	82.5	29.3	2135
32	H ⁹ 253/2011	H ⁸ 249/2010	G91 X Pima S62 (24202)	4.1	85.0	32.1	2445
33	H ⁹ 254/2011	111 115	111 111	4.3	85.0	31.2	2125
34	H ¹⁰ 257/2011	H ⁹ 262/2010	[G83X (G75 X 5844)] X G91	4.4	85.3	31.5	2375
35	H ¹⁰ 268/2011	H ⁹ 271/2010	[(G.83 xG.72) X Dand] X G91	4.3	83.8	29.3	2130
36	H ¹¹ 281/2011	H ¹⁰ 274/2010	[(G.83 xG.72) X Dand] X G85	4.2	83.3	30.4	2070
37	Bree		[G83X (G75 X 5844) X G80]	4.4	85.4	29.5	2010
38	Bree		(G90 X Aust.)	4.8	84.8	30.3	2100
39	Giza		(G.83 x Dand)	4.0	84.2	29.2	1990
40	GIza		(G.66 x G.73)	4.2	85.3	30.2	2200
	5110	100					

Table 4 . Means performance for fiber properties of the strains and cultivated varieties grown in Trial (A) at Seds in 2012 season.

NO	Strain	Parent	Origin	SCY Kan\F ed	LCY Kan\F ed	BW	L%	SI	LI
1	H⁵112/201 0	H⁴ 52/2009	G83 Rad. X G91	8.1	10.0	146	39.2	10.6	6.9
2	H⁵126/201 0	H ⁴ 56/2009	111 118	8.4	10.3	147	38.9	10.6	6.9
3	H⁵132/201 0	H ⁴ 68/2009	[(G83XG80)XG75] X Kar.	8.3	10.0	151	38.4	10.2	6.3
4	H⁵136/201 0	H ^₄ 72/2009	(G85XG83)XG91	8.6	10.8	146	39.9	10.4	7.0
5	H⁵152/201 0	H ⁴ 89/2009	[(G83XG80)XG75] X G90	8.1	9.8	146	38.6	10.5	6.7
6	H⁵156/201 0	H ⁴ 93/2009	[(G83XG80)XG89]X(G83X Delta Pine)	8.5	10.6	145	39.2	10.2	6.7
7	H⁵166/201 0	H ⁴ 101/2009	111 118	7.9	9.8	146	39.3	10.5	6.8
8	H ⁶ 177/201 0	H⁵ 112/2009	[(G83XG80)XG89] X Aust.	8.6	11.2	144	39.5	10.2	6.7
9	H ⁶ 182/201 0	H⁵ 118/2009	C.B 58 X G90	8.7	10.6	146	38.6	10.3	6.6
10	H ⁶ 212/201 0	H⁵ 150/2009	(G80 X Pima S6)X G91	7.6	9.4	147	38.9	12.9	8.4
11	H ⁷ 229/201 0	H ⁶ 186/2009	Dand Radi. X Kar.	7.7	9.4	150	39.2	10.1	6.6
12	H ⁸ 234/201 0	H ⁷ 190/2009	G90 X Pima S62 (24240)	8.1	9.9	148	38.7	10.6	7.1
13	H ⁸ 249/201 0	H ⁷ 216/2009	G91 X Pima S62 (24202)	8.8	10.6	149	38.3	10.3	6.7
14	H ⁹ 262/201 0	H ⁸ 240/2009	[G83X(G75X5844)]X G91	8.8	10.8	152	38.9	10.4	6.8
15	H ¹⁰ 271/20 10	H ⁹ 255/2009	[(G83xG72)xDand]X G91	8.1	9.8	152	38.2	10.7	6.7
16	H ¹⁰ 274/20 10	H ⁹ 264/2009	[(G.83 xG.72) x Dand]X G85	8.6	10.7	149	39.3	10.6	6.9
17	Bree	eder1	[G83X (G75 X 5844) X G80]	8.5	10.4	147	38.8	10.6	6.9
18	Bree	eder2	(G90 X AUS.)	8.7	10.8	147	39.4	10.0	6.6
19	Giz	a 90	(G.83 x Dand)	8.5	10.2	149	38.0	10.8	6.7
20	GIz	a 80	(G.66 x G.73)	6.8	8.3	151	38.8	10.6	70
		М	ean						
	LSD 5%				1.11	4.57	0.527	0.216	0.169
		LSI	D 1%	1.12	1.45	6.01	0.692	0.284	0.222

Table 5.Combined analysis for yield component of selected strains and cultivated
varieties in Trial B at six different locations in Upper Egypt in 2012 season.

COMPARATIVE	STUDIES O	F SOME LONG	STAPLE

				-			
NO	Strain	Parent	Origin	Mic	HW	2.5% SL	Y.St
1	H ⁵ 112/2010	H ⁴ 52/2009	G83 Rad. X G91	4.1	84.6	31.5	2265
2	H ⁵ 126/2010	H ⁴ 56/2009	111 111	4.2	84.5	31.2	2275
3	H ⁵ 132/2010	H ⁴ 68/2009	[(G83XG80)XG75] X Kar.	4.2	85.9	31.3	2205
4	H ⁵ 136/2010	H ⁴ 72/2009	(G85XG83)XG91	4.3	84.2	29.8	2155
5	H ⁵ 152/2010	H ⁴ 89/2009	[(G83XG80)XG75] X G90	4.1	85.2	30.6	2220
6	H⁵156/2010	H ⁴ 93/2009	[(G83XG80)XG89] X (G83X Delta Pine)	4.0	85.1	30.4	2200
7	H ⁵ 166/2010	H ⁴ 101/2009	110 110	4.2	85.1	30.4	2260
8	H ⁶ 177/2010	H ⁵ 112/2009	[(G83XG80)XG89] X Aust.	4.1	85.1	30.1	2155
9	H ⁶ 182/2010	H ⁵ 118/2009	C.B 58 X G90	4.1	83.9	30.2	2140
10	H ⁶ 212/2010	H ⁵ 150/2009	(G80 X Pima S6)X G91	4.2	83.0	29.8	2140
11	H ⁷ 229/2010	H ⁶ 186/2009	Dand Rad. X KAR.	4.2	85.1	30.3	2255
12	H ⁸ 234/2010	H ⁷ 190/2009	G90 X Pima S62 (24240)	4.2	84.2	30.2	2235
13	H ⁸ 249/2010	H ⁷ 216/2009	G91 X Pima S62 (24202)	4.2	84.4	30.2	2190
14	H ⁹ 262/2010	H ⁸ 240/2009	[G83X (G75 X 5844)]X G91	4.2	85.6	30.8	2245
15	H ¹⁰ 271/2010	H ⁹ 255/2009	[(G.83 xG.72) x Dand]X G91	4.1	85.9	30.7	2278
16	H ¹⁰ 274/2010	H ⁹ 264/2009	[(G.83 xG.72) x Dand]X G85	4.1	85.2	30.0	2255
17	Bree	eder1	[G83X (G75 X 5844) X G80]	4.1	84.1	30.0	2175
18	Bree	eder2	(G90 X Aust.)	4.3	85.2	29.5	2125
19	Giz	a 90	(G.83 x Dand)	4.0	84.8	29.8	2195
20	Giz	a 80	(G.66 x G.73)	4.2	86.9	31.6	2335
			Total				
			Mean				

Table 6. Combined analysis for yield component of selected strains and cultivated varieties In Trial B at six different locations in Upper Egypt in 2012 season.

Tue ite	Tria	al A	Trial B		
Traits	h _{.b.s} %	G.C.V%	h. _{b.s} %	G.C.V%	
SCY	63.705	15.867	23.33	11.66	
LY	64.913	61.646	26.18	50.041	
BW	72.626	36.939	14.00	18.072	
L%	62.460	4.025	52.006	3.98	
SI	82.675	38.053	64.290	21.408	
LY	77.930	2.543	62.111	14.433	

Table	7.	Heritability	Stamatas	in	broad	sense	(h. _{b.s%})	and	genetic	coefficient	of
variability (G.C.V%) for yield traits in Trials A and B.											

CONCLUSION

Results in Trials A and B indicated that the genotypes of the cross [(G83xG80) x G89] x Aust. exceeded all genotypes belonging to the different crosses and the check varieties for seed and lint cotton yield and they had a suitable fiber quality for long staple cotton which grown in Upper Egypt. Therefore, it could be considered as a promising material and to be followed in the breeding program.

Genotypes mean squares in Trial A were highly significant for all yield components traits. While in Trial B Combined mean squares results of the genotypes (G) were highly significant and significant for all yield traits except for lint index (LI). Environments (E) mean squares were highly significant for all studied yield traits. Genotypes-environment interaction (G x E) mean squares were highly significant for all yield traits except for lint percentage (L%) which showed significant combined mean squares, indicating change in performance of genotypes from one location to another. In other words, the rank of a genotype differed from one location to another

The G.C.V % values ranged from 2.54% for lint index (LI) to 61.65% for lint yield (LY) in Trial A and ranged from 3.98% for lint percentage (L %) to 50.0% for lint yield (LY) in Trial B. These values indicated that the environmental effects on all studied traits were considerable.

The promising strains that were selected from Trial A will be grown in Trial B in the next season with the check varieties Giza 90 and Giza 80. It should be noted that Trial A represents the descendant from the progenies of strains grown in Trial B in the same season, besides the strains that reached the fifth generation.

REFERENCES

- 1- A.S.T.M. 1998. American Society for Testing Materials. D 1445-95, vol. 07.Easton, MD, USA.
- 2- El-Adly, H.H., S.A.S. Mohamed and G.M. Hemaida. 2006. Genetic diversity of some cotton genotypes (Gossypium barbadense L). Egypt. J. Agric. Res., 84(5), 1549-1559.
- 3- El-Adly, H.H., and E.A.M.Eissa, 2010. Estimate of genotypic variance and covariance components in some Egyptian cotton genotypes. Egypt. J. of. Appl.Sci.25 (3): 80-90
- 4- El- Feki T.A., M.G.I. Beheary and A.A.A. El-Akhedar. 2005. Technological and genetical estimates for yield and fiber properties of some extra-long Egyptian cotton promising genotypes. J. Agric. Res. Tanta Univ., 31(1) 32-45.
- 5- El-Feki, T.A, M.A.A.Nagib, Sayeda S.H.El-Helow and M.A.M. Allam. 2002. The prediction for seed cotton and lint yield in different generations of cross cotton.Minia J.of Agric. Res of Develop.Vol (22) No.4 PP 369-380.
- 6- El-Ameen, T.M., M.N.A. Nazmey and A.E.M. Eissa. 2004. Genotype and genotypeenvironment components of variation in cotton breading lines of G. barbadense. Minia J. of Agric. Res. & Develop. Vol (24) No.2 pp 285-296.
- 7- Le Clerg, E.L., Leonard W.H. and A.G. Clark. 1962. Field Plot Techniques. Burgess Publishing Co.
- 8- Mohamed S.A.S, H.H. El-Adly and E.A.M.Eissa, 2003. Evaluation of some Egyptian cotton genotypes under different environments. Egypt. J.Agri.Res. 81 (4): 1997-1816.
- 9- Mohamed S.A.S, A.A. Mohamed and M.N.A. Nazmy. 2005. Mean performance and stability of some cotton genotypes (G. barbadense L) under six different locations in Egypt. Minia J. of Agric. Res. & Develop. Vol (25) No.3 pp 535-550.
- 10- Nazmy. M.N.A and Zeina. 2005. Genotype- environment interaction and genotypic stability for some long staple cotton genotypes. Egypt. J. of. Appl.Sci.
- Samia, E.Ali. Eman, M.R.M Saleh and M.S.M.Srour. 2012. Evaluation of some long staple cotton strains under different environments. Egypt. J. plant Breed.16 (1):41-50. 2012.
- 12- Snedecor, G.W. 1965. Statistical Method. Iowa Stat. Univ. Press, Ames, Iowa U.S.A.

تقييم بعض الأقطان طويلة التيلة

المنزرعة في بيئات مختلفة

حسن حسين العدلى – حسين صلاح خليفة – صلاح الدين رشاد نصر سعيد

معهد بحوث القطن – مركز البحوث الزر اعية

يهدف هذا البحث الى تقييم بعض سلالات هجن القطن طويل التيلة للوجه القبلى مفارنة بالصنفين التجارين المنزرعين جيزة 90 و جيزة 80 وذلك من خلال تجربة أختبار النسل بتجربة المحصول الاولية (أ) المقامة بمحطة البحوث الزراعية بسدس ونجارب المحصول المتقدمة (ب) المقامة بمحافظات الوجه القبلى: الفيوم – بنى سويف (سدس) – المنيا – أسيوط – سوهاج فى موسم 2012.

ويمكن تلخيص أهم النتائج فيما يلى : 1- سجلت سلالات الهجن [(جـ83 مشع × أسترالى) × جـ9] و [(جـ80 × أسترالى) × جـ83] 2 و [(جـ83 مشع × كاراشنكى) × (جـ80 × جـ80)] و [[(جـ83 × جـ80) × جـ89)] × (جـ83 × دلتاباين)] و [[(جـ83 × جـ80) × جـ89)] × أسترالى] و (دندرة مشع × كاراشنكى) 9 و (جـ90 × بيما س 62 (24240)) و (جـ91 بيما س 26(2420) و [(جـ83 × (جـ72 × دندرة)) × جـ91 و [(جـ83 × (جـ72 × دندرة)) × جـ83] و مربى 2 للهجين [(جـ83 × (جـ75 × 4844)) × جـ80] فروق معنويه فى محصول القطن الزهر و الشعر مقارنة ب صنفى المقارنة جيزة90 و جيزة80 فى تجربة المحصول الاولية (أ).

- ٣ أثبتت نتائج التحليل التجميعى لتجارب (ب) أن هاك تباين معنوى بين جميع التراكيب الوراثية للصفات المحصولية المدروسة عدا صفة معامل الشعر كذلك سجل التفاعل بين البيئة والتراكيب الوراثية تياين عالى المعنوية لكل الصفات المحصولية المدروسة عدا صفة تصافى الحليج حيث كان التفاعل معنوى بين البيئة والتراكيب الوراثية.
- ٤ سمجلت درجة التوريث فى المعنى الواسع قيم عالية للصفات المحصولية المدروسة فى تجربة (أ). بينما سجلت درجة التوريث فى المعنى الواسع للصفات المحصولية المدروسة فى تجربة (ب) قيم

الملائمه لطبقة الاقطان الطويلة التيله وبالتالى فقد خلصت الى أن الاستمرار فى تربية هذا الهجين يمكن أن يحقق استباط صنف مستقبلى طويل التيلة وملائم للصناعة المحلية.