print : ISSN 2356–9751 online : ISSN 2356–976x

http:// bjas.bu.edu.eg

On Stability of Nonlinear Differential System Via Cone-Perturbing Laipunov Function Method

A.A.Soliman and W.F.Seyam.

Mathematics Dept., Faculty of Science, P.O.Box 13518, Benha Univ., Benha, Egypt E-Mail: a_a_soliman@hotmail.com

Abstract

Totally *equ*istable, to*tally* ϕo – equistable, practically – equistable ,practically ϕ_o – equistable of system of differential equations are studied, Cone valued perturbing Liapunov functions method and comparison methods are our technique, Some results of these properties are given.

Keywords: Totally *equ*istable, to*tally* ϕ_0 – equistable, practically – equistable , practically ϕ_0 – equistable- Cone valued perturbing Liapunov functions method.

1. Introduction

Consider the non linear system of ordinary differential equations

 $\begin{aligned} \mathbf{x}' &= \mathbf{f}(\mathbf{t}, \mathbf{x}), \qquad \mathbf{x}(\mathbf{t}_0) = \mathbf{x}_0 \quad (1.1) \\ \text{and the perturbed system} \\ \mathbf{x}' &= \mathbf{f}(\mathbf{t}, \mathbf{x}) + \mathbf{R}(\mathbf{t}, \mathbf{x}), \qquad \mathbf{x}(\mathbf{t}_0) = \mathbf{x}_0. \quad (1.2) \end{aligned}$

Let \mathbb{R}^n be Euclidean n –dimensional real space with any convenient norm $\|.\|$, and scalar product $(...) \leq \|.\|\|.\|$.Let for some $\rho > 0$

 $S_{\rho} = \{ \boldsymbol{x} \in \mathbb{R}^n, \|\boldsymbol{x}\| < \rho \}.$

where

 $\begin{array}{l} f, R \in \pmb{C} \big[J \times S_{\rho}, R^{n} \big], J = [0, \infty) \text{ and } \pmb{C} \big[J \times S_{\rho}, R^{n} \big] \\ \text{denotes} & \text{the} \quad \text{space} \quad \text{of} \quad \text{continuous} \\ \text{mappings} \ J \times S_{\rho} \text{ into } R^{n} \end{array}$

Consider the scalar differential equations with an initial condition

 $u' = g_1(t, u) \qquad u(t_0) = u_0,$ (1.3) $\omega' = g_2(t, \omega) \qquad \omega(t_0) = \omega_0$ (1.4)

and the perturbing equations

$$\mathbf{u}' = \mathbf{g}_1(\mathbf{t}, \mathbf{u}) + \boldsymbol{\varphi}_1 \qquad \mathbf{u}(\mathbf{t}_0) = \boldsymbol{u}_0 \qquad (1.5)$$
$$\boldsymbol{\omega}' = \mathbf{g}_2(\mathbf{t}, \boldsymbol{\omega}) + \boldsymbol{\varphi}_2 \qquad \boldsymbol{\omega}(\mathbf{t}_0) = \boldsymbol{\omega}_0$$

(1.6)

where $g_1, g_2 \in C[J \times R, R]$, $\phi_1, \phi_2 \in C[J, R]$ respectively.

The following definitions [1] will be needed in the sequal .

Definition 1.1

A proper subset **K** of **R**ⁿ is called a cone if (i) $\lambda K \subset K, \lambda \ge 0$. (ii) $K + K \subset K$, (iii) $\overline{K} = K$, (iv) $K^0 \neq \emptyset$, (v) $K \cap (-K) = \{0\}$. where **K** and K^0 denotes the closure and interior of **K** respectively and ∂K denote the boundary of **K**.

Definition 1.2

The set $K^* = \{ \varphi \in \mathbb{R}^n , (\varphi, x) \ge 0 , x \in K \}$ is called the adjoint cone if it satisfies the properties of the definition 3.1.

$$x \in \partial K$$
 if $(\phi, x) = 0$ for some $\phi \in K_0^*$, $K_0 = \frac{K}{\{0\}}$

Definition 1.3

A function $g: D \to K$, $D \subset \mathbb{R}^n$ is called quasimonotone relative to the cone $K \text{ if } x, y \in D, y - x \in \partial K$ then there exists $\phi_0 \in K_0^*$ such that $\llbracket (\phi \rrbracket_0, y - x) = 0$ and $(\phi_0, g(y) - g(x)) > 0$.

Definition 1.4

A function a(.) is said to belong to the class \mathcal{K} if

 $a \in [R^+, R^+]$, a(0) = 0 and a(r) is strictly monotone increasing in r.

2. Totally equistable

In this section we discuss the concept of totally equistable of the zero solution of (1.1) using perturbing Liapuniv functions method and Comparison principle method.

We define for

$$V \in C[J \times S_{\rho}, \mathbb{R}^{n}]$$
, the function $D^{+}V(t, x)by$

 $\frac{1}{h\left(V\left(t+h,x+h\left(f(t,x)+R(t,x)\right)-V(t,x)\right)\right)}\right]$

The following definition [2-10] will be needed in the sequal.

Definition 2.1

sup-

The zero solution of the system (1.1) is said to be T_1 – totally equistable (stable with respect to permanent perturbations) , if for every $\epsilon > 0, t_0 \in J$ there exist two positive numbers $\delta_1 = \delta_1(\epsilon) > 0$ and $\delta_2 = \delta_2(\epsilon) > 0$ such that for every solution of perturbed equation (1.2), the inequality

 $\|\mathbf{x}(\mathbf{t},\mathbf{t}_0,\boldsymbol{x}_0)\| < \boldsymbol{\epsilon} \quad \text{for } \mathbf{t} \ge \mathbf{t}_0$

holds ,provided that $||\mathbf{x}_0|| < \delta_1$ and $||\mathbf{R}(\mathbf{t}, \mathbf{x})|| < \delta_2$.

Definition 2.2

The zero solution of the equation (1.3) is said to be $T_1 -$ totally equistable (stable with respect to permanent perturbations) , if for every $\epsilon > 0$, $t_0 \in J$, there exist two positive numbers $\delta_1^* = \delta_1^*(\epsilon) > \mathbf{0} \text{ and } \delta_2^* = \delta_2^*(\epsilon) > \mathbf{0}$ such that for every solution of perturbed equation (1.5).the inequality

 $u(t,t_0,u_0) < \epsilon$ $t \ge t_0$ holds provided that $u_0 < \delta_1^*$ and $\varphi_1(t) < \delta_2^*$.

Theorem 2.1

Suppose that there exist two functions $g_1, g_2 \in C[J \times R, R]$ with $g_1(t, 0) = g_2(t, 0) = 0$ and there exist two Liapunov functions $\begin{array}{l} V_{1} \in \textit{\textbf{C}}\left[J \times S_{\rho}, R^{n}\right] \text{ and } V_{2\eta} \in C\left[J \times S_{\rho} \cap S_{\eta}^{C}, R^{n}\right] \\ \text{with} \quad V_{1}(t, 0) = \textit{\textbf{V}}_{2\eta}(t, 0) = \textit{\textbf{0}} \qquad \text{where} \end{array}$ $S_{\eta} = \{ \textbf{\textit{x}} \in R^n, \|x\| < \eta \} \text{ for } \eta > 0 \text{ and } S_{\eta}^C$ denotes the complement of S_{η} satisfying the following conditions:

 $(H_1) V_1(t, x)$ is locally Lipschitzian in x. $\boldsymbol{D}^{+} \boldsymbol{V}_{1}(\boldsymbol{t}, \boldsymbol{x}) \leq \boldsymbol{g}_{1}(\boldsymbol{t}, \boldsymbol{V}_{1}(\boldsymbol{t}, \boldsymbol{x})) \quad \forall (\boldsymbol{t}, \boldsymbol{x}) \in \boldsymbol{J} \times \boldsymbol{S}_{\boldsymbol{\rho}}.$ $(H_2) \quad V_{2\eta}(t,x) \quad \ \ is \ locally \ \ Lipschitzian \ in \ x$

 $\mathbf{b}(\|\mathbf{x}\|) \le \mathbf{V}_{2n}(\mathbf{t}, \mathbf{x}) \le \mathbf{a}(\|\mathbf{x}\|) \quad \forall (\mathbf{t}, \mathbf{x}) \in \mathbf{J} \times \mathbf{S}_{\mathbf{p}} \cap \mathbf{S}_{\mathbf{p}}^{\mathbf{C}}.$

where $\mathbf{a}, \mathbf{b} \in \mathcal{K}$ are increasing functions. (H_3) $D^{+}V_{1}(t, \mathbf{x}) + D^{+}V_{2n}(t, \mathbf{x}) \le g_{2}\left(t, V_{1}(t, \mathbf{x}) + V_{2n}(t, \mathbf{x})\right) \quad \forall (t, \mathbf{x}) \in J \times S_{\rho} \cap S_{n}^{\mathcal{C}}.$

 (H_4) If the zero solution of (1.3) is equistable , and the zero solution of (1.4) is totally equistable

Then the zero solution of (1.1) is totally equistable.

Proof

Since the zero solution of the system (1.4) is totally equistable, given $b(\epsilon) > 0$, there exist two positive numbers

 $\delta_1^* = \delta_1^*(\epsilon) > \mathbf{0} \text{ and } \delta_2^* = \delta_2^*(\epsilon) > \mathbf{0} \text{ such that}$ for every solution $\omega(t, t_0, \omega_0)$ of perturbed equation (1.6) the inequality

$$\begin{aligned} \omega(t, t_0, \boldsymbol{\omega}_0) < \boldsymbol{\epsilon}, & t \ge t_0 \\ \text{holds} &, & \text{provided} \end{aligned}$$
 (2.1)

$$\omega_0 < \delta_1^*$$
 and $\varphi_2(t) < \delta_2^*$.
Since the zero solution of (1.3) is equisted

e zero solution of (1.3) is equistable $\frac{\delta_0(\epsilon)}{\epsilon}$ and $t_0 \in J$.

given 2 , there exists

$$\delta = \delta(t_0, \epsilon) > 0 \operatorname{such} that$$

$$u(t, t_0, u_0) < \frac{\delta_0(\epsilon)}{2}$$
(2.2)

holds, provided that $u_0 \leq \delta$

(H₂) we can find From the condition $\delta_1 = \begin{array}{c} \delta_1(\varepsilon) > 0 \\ \delta_2 \end{array} \quad \text{such that}$

$$a(\delta_1) + \frac{\delta_0}{2} < \delta_1^*$$
 (2.3)

To show that the zero solution of (1.1) is T_1 totally equistable , it must show that for $everv \in 0$, $t_0 \in J$ there exist two positive $\delta_1 = \delta_1(\epsilon) > 0$ and $\delta_2 = \delta_2(\epsilon) > 0$ numbers such that for every solution $\mathbf{x}(t, t_0, \mathbf{x}_0)$ of perturbed equation (1.2).the inequality

 $\|\mathbf{x}(\mathbf{t},\mathbf{t}_0,\boldsymbol{x}_0)\| < \boldsymbol{\epsilon} \quad \text{for } \mathbf{t} \ge \mathbf{t}_0$ $\|\mathbf{x}_0\| < \boldsymbol{\delta}_1$ and holds ,provided that $\|\mathbf{R}(\mathbf{t},\mathbf{x})\| < \boldsymbol{\delta}_2$

Suppose that this is false, then there exists a solution $\mathbf{x}(t, t_0, \mathbf{x}_0)$ of (1.2) with $t_1 > t_0$ such that

 $\|\mathbf{x}(\mathbf{t_0}, \mathbf{t_0}, \mathbf{x_0})\| = \delta_1$, $\|\mathbf{x}(\mathbf{t_1}, \mathbf{t_0}, \mathbf{x_0})\| = \epsilon$ (2.4) (2.4)

$$\begin{split} \delta_{1} &\leq \|\mathbf{x}(\mathbf{t}, \mathbf{t}_{0}, \boldsymbol{x}_{0})\| \leq \epsilon \quad \text{for } t \in [\mathbf{t}_{0}, \mathbf{t}_{1}]. \\ \text{Let} \quad \delta_{1} &= \eta \quad \text{and} \quad \text{settin} \end{split}$$
 $\mathbf{m}(\mathbf{t},\mathbf{x}) = \mathbf{V}_{1}(\mathbf{t},\mathbf{x}) + \mathbf{V}_{2\eta}(\mathbf{t},\mathbf{x})$

Since $V_1(t,x)$ and $V_{2\eta}(t,x)$ are Lipschitzian in x for constants M_1 and M_2 respectively. Then

 $\mathsf{D}^+\mathsf{V}_1(t,x)_1.2 + \mathsf{D}^+\mathsf{V}_{2\eta}(t,x)_1.2 \le \mathsf{D}^+\mathsf{V}_1(t,x)_1.1 + \mathsf{D}^+\mathsf{V}_{2\eta}(t,x)_1.1 + \mathsf{M}\|\mathsf{R}(t,x)\|$ where $M = M_1 + M_2$ From the condition

(H₃) we obtain the differential inequality

 $D^+V_1(t,x) + D^+V_{2\eta}(t,x) \le g_2(t,V_1(t,x) + V_{2\eta}(t,x)) + M ||R(t,x)||$ for $t \in [t_0, t_1]$ Then we have

$$m(t,x) \le g_2(t,m(t,x)) + M ||R(t,x)||$$

Let $\omega_0 = m(t_0, x_0) = V_1(t_0, x_0) + V_{2\eta}(t_0, x_0)$

Applying the comparison Theorem (1.4.1) of [7], it yields

 $m(t,x) \leq r_2(t,t_0,\omega_0)$ for $t \in [t_0, t_1]$. where $r_2(t, t_0, \omega_0)$ is the maximal solution of the perturbed equation (1.6)

Define $\varphi_2(t) = M \| \mathbf{R}(t, x) \|$ To prove that $r_2(t, t_0, \omega_0) < b(\epsilon).$ It must be show that $\omega_0 < \delta_1^*$ and $\varphi_2(t) < \delta_2^*$.

Choose $u_0 = V_1(t_0, x_0)$. From the condition (H₁) and applying the comparison Theorem of [7], it yields

 $V_1(t, x) \le r_1(t, t_0, u_0)$

where $r_1(t, t_0, u_0)$ is the maximal solution of (1.3).

From (2.2) at
$$t = t_0$$

 $V_1(t_0, x_0) \le r_1(t_0, t_0, u_0) < \frac{\delta_0(\epsilon)}{2}$
(2.5)

From the condition (H_2) and (2.4), at $t = t_0$

$$V_{2\eta}(t_0, x_0) \le a(||x_0||) \le a(\delta_1)$$
 (2.6)
From (2.3), we get

$$\begin{split} \omega_{0} &= V_{1}(t_{0}, x_{0}) + V_{2\eta}(t_{0}, x_{0}) \leq \frac{\delta_{0}(\epsilon)}{2} + a(\delta_{1}) < \delta_{1}^{*}.\\ \text{Since } \phi_{2}(t) &= M \| \textbf{R}(t, x) \| \leq \textbf{M} \delta_{2} = \delta_{2}^{*}\\ \text{From (2.1) , we get} \end{split}$$

Benha Jo Benha Journal Of Applied Sciences, Vol.(1) Issue (1) Jan.2016.

$$\mathbf{n}(\mathbf{t},\mathbf{x}) \le \mathbf{r}_2(\boldsymbol{t},\mathbf{t}_0,\boldsymbol{\omega}_0) < \boldsymbol{b}(\boldsymbol{\epsilon}) \tag{2.7}$$

Then from the condition (H_2) , (2.4) and (2.7) we get $t = t_1$

$$\begin{split} b(\epsilon) &= b(\|\mathbf{x}(\mathbf{t}_1)\|) \leq \mathbb{V}_{2\eta}(\mathbf{t}_1, \mathbf{x}(\mathbf{t}_1)) < m(\mathbf{t}_1, \mathbf{x}(\mathbf{t}_1)) \leq \mathbf{r}_2(\mathbf{t}_1, \mathbf{t}_0, \omega_0) < b(\epsilon). \\ \text{This is a contradiction , then it must be} \\ \| \mathbf{x}(\mathbf{t}, \mathbf{t}_0, \mathbf{x}_0) \| < \epsilon \quad \text{for } \mathbf{t} \geq \mathbf{t}_0 \end{split}$$

holds ,provided that $||\mathbf{x}_0|| < \delta_1$ and $||\mathbf{R}(\mathbf{t}, \mathbf{x})|| < \delta_2$.

Therefore the zero solution of (1.1) is totally equistable.

3. Totally Φ_0 – equistable.

In this section we discuss the concept of Totally Φ_0 – equistable of the zero solution of (1.1) using cone valued perturbing Liapunov functions method and Comparison principle method.

The following definition [3] will be needed in the sequal.

Definition 3.1

The zero solution of the system (1.1) is said to be totally Φ_0 – equistable (Φ_0 – equistable with respect to permanent perturbations), if for every $\epsilon > 0$,

 $t_0 \in J \ and \phi_0 \in K_0^*$ there exist two positive numbers $\delta_1 = \delta_1(\epsilon) > 0$ and $\delta_2 = \delta_2(\epsilon) > 0$ such that the inequality

 $(\phi_0, \mathbf{x}(t, t_0, \mathbf{x}_0)) < \epsilon \text{ for } t \ge t_0$

holds ,provided that $(\phi_0, x_0) < \delta_1$ and $||R(t, x)|| < \delta_2$ where $x(t, t_0, x_0)$ is the maximal solution of perturbed equation (1.2).

Let for some $\rho > 0$ $S_{\rho}^* = \{ x \in \mathbb{R}^n, (\phi_0, x) < \rho, \phi_0 \in K_0^* \}$

Theorem 3.1

Suppose that there exist two functions $g_1, g_2 \in C[J \times R, R]_{with}$ $g_1(t, 0) = g_2(t, 0) = 0$ and let there exist two cone valued Liapunov functions

$$\begin{aligned} \mathbf{V_1} \in \boldsymbol{C} \left[\mathbf{J} \times \mathbf{S}_{\rho}^*, \mathbf{K} \right] & \text{and} \quad \mathbf{V}_{2\eta} \in \mathbf{C} \left[\boldsymbol{J} \times \mathbf{S}_{\rho}^* \cap \mathbf{S}_{\eta}^{*C}, \boldsymbol{K} \right] \\ \text{with} & \mathbf{V_1}(t, 0) = \boldsymbol{V}_{2\eta}(t, 0) = \boldsymbol{0} \end{aligned}$$

where

 $S_{\eta}^* = \{ \mathbf{x} \in \mathbf{K}, (\phi_0, \mathbf{x}) < \eta , \phi_0 \in \mathbf{K}_0^* \}$ for $\eta > 0$ and S_{η}^{*C} denotes the complement of S_{η}^* satisfying the following conditions:

 (h_2) $V_{2\eta}(t, x)$ is locally Lipschitzian in x and

$$\mathbf{b}(\phi_0, \mathbf{x}) \leq \llbracket (\phi_0, \mathbf{V} \rrbracket_{2\eta}(\mathbf{t}, \mathbf{x}) \bigr) \leq \mathbf{a}(\phi_0, \mathbf{x}) \text{ for } (\mathbf{t}, \mathbf{x}_t) \in \mathbf{J} \times S_{\rho}^* \cap S_{\eta}^{*C}$$

where $a, b \in \mathcal{K}$ are increasing functions.

 $\begin{array}{ll} (\mathbf{h}_3) \quad \boldsymbol{D}^+[(\boldsymbol{\phi}_0, \mathbf{V}]_1(t, \boldsymbol{x})) + \boldsymbol{D}^+[(\boldsymbol{\phi}_0, \mathbf{V}]_{2\eta}(t, \boldsymbol{x})) \leq \mathsf{g}_2\left(t, \boldsymbol{V}_1(t, \boldsymbol{x}) + \boldsymbol{V}_{2\eta}(t, \boldsymbol{x})\right) \\ \text{for } (\mathbf{t}, \mathbf{x}) \in \boldsymbol{J} \times \boldsymbol{S}_{\boldsymbol{\rho}}^* \cap \boldsymbol{S}_{\boldsymbol{\eta}}^{*\boldsymbol{C}}. \end{array}$

 (h_4) If the zero solution of (1.3) is ϕ_0 – equistable, and the zero solution of (1.4) is totally ϕ_0 – equistable. then the zero solution of (1.1) is totally ϕ_0 – equistable.

Proof

 $(\varphi_0, r_2(t, t_0, \omega_0)) < \varepsilon, \qquad t \ge t_0$ (3.1)

holds , provided that $(\phi_0, \omega_0) < \delta_1^*$ and $\varphi_2(t) < \delta_2^*$ where $r_2(t, t_0, \omega_0)$ is the maximal solution of perturbed equation (1.6).

Since the zero solution of the system (1.3) is $\phi_0 - \text{equistable}$, given $\frac{\delta_0(\epsilon)}{2}$ and $t_0 \in J$

there exists $\delta = \delta(t_0, \epsilon) > 0$ such that

$$(\phi_0, \mathbf{r_1}(t, t_0, u_0)) < \frac{\delta_0(\epsilon)}{2}$$
(3.2)

holds ,provided that $[(\phi_0, u]_0) \le \delta$ where $r_1(t, t_0, u_0)$ is the maximal solution of (1.3)

From the condition (h_2) we can choose $\delta_1 = \delta_1(\epsilon) > 0$ such that

$$a(\delta_1) + \frac{\delta_0}{2} < \delta_1^* \tag{3.3}$$

To show that the zero solution of (1.1) is T_1 totally Φ_0 - equistable, it must be prove that for every $\epsilon > 0$, $t_0 \in J$ and $\phi_0 \in K_0^*$ there exist two positive numbers $\delta_1 = \delta_1(\epsilon) > 0$

and $\delta_2 = \delta_2(\epsilon) > 0$ such that the inequality $(\phi_0, \mathbf{x}(t, t_0, \mathbf{x}_0)) < \epsilon$ for $t \ge t_0$

holds ,provided that $(\phi_0, x_0) < \delta_1$ and $||R(t, x)|| < \delta_2$ where $x(t, t_0, x_0)$ is the maximal solution of perturbed equation (1.2).

Suppose that is false, then there exists a solution $\mathbf{x}(t, t_0, \mathbf{x}_0)$ of (1.2) with $t_1 > t_0$ such that $(\phi_0, \mathbf{x}(t_0, t_0, \mathbf{x}_0)) = \delta_1$, $(\phi_0, \mathbf{x}(t_1, t_0, \mathbf{x}_0)) = \epsilon$ (3.4) $\delta_1 \le (\phi_0, \mathbf{x}(t, t_0, \mathbf{x}_0)) \le \epsilon$ for $t \in [t_0, t_1]$. Let $\delta_1 = \eta$ and setting $\mathbf{m}(t, \mathbf{x}) = \mathbf{V}_1(t, \mathbf{x}) + \mathbf{V}_{2\eta}(t, \mathbf{x})$

Since $V_1(t, x)$ and $V_{2\eta}(t, x)$ are Lipschitzian in x for constants M_1 and M_2 respectively. Then

$$\begin{split} & D^+\left(\varphi_0, V_1(t, x)\right)_1 . \ 2 + D^+ \left[\!\left(\varphi_0, V\right]\!\right]_{2\eta}(t, x)\right)_1 . \ 2 \\ & \leq D^+\left[\!\left(\varphi_0, V\right]\!\right]_1(t, x)\right)_1 . \ 1 + D^+\left(\phi_0, \textbf{\textit{V}}_{2\eta}(t, x)\right)_1 . \ 1 + M \|\textbf{\textit{R}}(t, x)\| \end{split}$$

where $M = M_1 + M_2$ From the condition (h_3) we obtain the differential inequality $D^{+}[(\varphi_{0}, V]_{1}(t, x)) + D^{+}(\varphi_{0}, V_{2\eta}(t, x)) \le g_{2}(t, V_{1}(t, x) + V_{2\eta}(t, x)) + M \|R(t, x)\|$ for $t \in [t_0, t_1]$ Then we have $D^{+}(\phi_{0}, m(t, x)) \le g_{2}(t, m(t, x)) + M ||R(t, x)||$ Let $\omega_0 = m(t_0, x_0) = V_1(t_0, x_0) + V_{2\eta}(t_0, x_0)$ Applying the comparison Theorem of [7], yields $(\phi_0, m(t, x)) \le (\phi_0, r_2(t, t_0, \omega_0))$ for $t \in [t_0, t_1]$. Define $\varphi_2(t) = M || \mathbf{R}(t, x) ||$ To prove that $[(\phi_0, r]_2(t, t_0, \omega_0)) < b(\epsilon).$ It must be shown that $\llbracket (\phi_0, \omega \rrbracket_0) < \delta_1^* \quad \text{and} \quad \varphi_2(t) < \delta_2^*$ Choose $u_0 = V_1(t_0, x_0)$. From the condition (h_1) and applying the comparison Theorem [7], it yields $[(\phi_0, V]_1(t, x)) \le [(\phi_0, r]_1(t, t_0, u_0))$ From (3.2) at $t = t_0$ $(\varphi_0, V_1(t_0, x_0)) \leq \llbracket (\varphi_0, r \rrbracket_1(t_0, t_0, u_0)) < \frac{\delta_0(\varepsilon)}{2}$ (3.5) From the condition (h_2) and (3.4), at $t = t_0$ $(\phi_0, V_{2n}(t_0, x_0)) \le a(\phi_0, x_0) \le a(\delta_1)$ (3.6)From (3.3), we get
$$\begin{split} & \llbracket (\phi_0, \omega \rrbracket_0) = (\phi_0, \mathbb{V}_1(\mathsf{t}_0, \mathsf{x}_0)) + (\phi_0, \mathbf{V}_{2\eta}(\mathsf{t}_0, \mathsf{x}_0)) \leq \frac{\delta_0(\epsilon)}{2} + a(\delta_1) < \delta_1^*.\\ & \text{Since } \phi_2(\mathsf{t}) = \mathbf{M} \| \mathbf{R}(\mathsf{t}, \mathsf{x}) \| \leq \mathbf{M} \delta_2 = \delta_2^* \end{split}$$
From (3.1), we get $(\boldsymbol{\phi}_0, \mathbf{m}(\mathbf{t}, \mathbf{x})) \leq (\boldsymbol{\phi}_0, \boldsymbol{r}_2(\boldsymbol{t}, \mathbf{t}_0, \boldsymbol{\omega}_0)) < \boldsymbol{b}(\boldsymbol{\epsilon})$ (3.7)Then from the condition (h_2) , (3.4) and (3.7) we get at $t = t_1$ $\mathbf{b}(\boldsymbol{\epsilon}) = \boldsymbol{b}(\boldsymbol{\phi}_0, \boldsymbol{x}(\mathbf{t}_1))$

$$\leq (\phi_0, \mathbf{V}_2 \eta \left(\underline{t}_1, \mathbf{x}(\underline{t}_1)\right) < (\phi_0, \mathbf{m}(\underline{t}_1, \mathbf{x}(\underline{t}_1)) \leq [(\phi_0, \mathbf{r}]_2 \left(\underline{t}_1, \underline{t}_0, \omega_0\right)) < b(\epsilon).$$

This is a contradiction ,then

 $(\phi_0, \mathbf{x}(t, t_0, \mathbf{x}_0)) < \epsilon \text{ for } t \ge t_0$ provided that $(\phi_0, \mathbf{x}_0) < \delta_1$ and $\|\mathbf{R}(t, \mathbf{x})\| < \delta_2$ where $\mathbf{x}(t, t_0, \mathbf{x}_0)$ is the maximal solution of perturbed equation (1.2).

Therefore the zero solution of (1.1) is totally Φ_0 – equistable.

4. Practically equistable

In this section, we discuss the concept of practically equistable of the zero solution of (1.1) using perturbing Liapunov functions method and Comparison principle method.

The following definition [5] will be needed in the sequal.

Definition 4.1

Let $0 < \lambda < A$ be given . The system (1.1) is said to be practically equistable if for $t_0 \in J$ such that the inequality $||x(t, t_0, x_0)|| < A$ for $t \ge t_0$ (4.1)

 $\| \mathbf{x}(t, t_0, \mathbf{x}_0) \| < \mathbf{A} \quad \text{for } t \ge t_0 \quad (4.1)$ holds ,provided that $\| \mathbf{x}_0 \| < \lambda$ where $\mathbf{x}(t, t_0, \mathbf{x}_0)$ is any solution of (1.1).

In case of uniformly practically equistable ,the inequality (4.1) holds for any t_0 .

We define $S(A) = \{ \mathbf{x} \in \mathbb{R}^{n} : ||\mathbf{x}|| \le A, \qquad A > 0 \}$

Theorem 4.1

Suppose that there exist two functions $g_1, g_2 \in C[J \times R, R]_{with}g_1(t, 0) = g_2(t, 0) = 0$ and there exist two Liapunov functions $V_1 \in C[J \times S(A), R^n]$ and $V_{2\eta} \in C[J \times S(A) \cap S(B)^C, R^n]$ with $V_1(t, 0) = V_{2,n}(t, 0) = 0$

where
$$V_{1}(t, 0) = V_{2B}(t, 0) = 0$$

$$\begin{split} S(B) &= \{ x \in R^n, \|x\| < B \ , 0 < B < A \} \ \text{ and } \ S(B)^C \\ \text{denotes the complement of } S(B) \ \text{ satisfying the} \\ \text{following conditions:} \end{split}$$

 $\begin{array}{ll} (I) & V_1(t,x) & \text{is locally Lipschitzian in } x \\ \boldsymbol{D}^+ V_1(t,x) \leq g_1(t,V_1(t,x)) & \forall (t,x) \in \boldsymbol{J} \times \boldsymbol{S}(\boldsymbol{A}). \\ (II) & V_{2B}(t,x) & \text{is locally Lipschitzian in } x \\ \end{array}$

 $b(||\mathbf{x}||) \le V_{2B}(\mathbf{t}, \mathbf{x}) \le a(||\mathbf{x}||) \quad \forall (\mathbf{t}, \mathbf{x}) \in \mathbf{J} \times S(\mathbf{A}) \cap S(B)^{\mathsf{C}}.$ where $\mathbf{a}, \mathbf{b} \in \mathcal{H}$ are increasing functions.

(III)

 $\mathbf{D}^{+} \mathbb{V}_{1}(t, \mathbf{x}) + \mathbb{D}^{+} \mathbf{V}_{2\eta}(t, \mathbf{x}) \leq g_{2}(t, \mathbb{V}_{1}(t, \mathbf{x}) + \mathbb{V}_{2B}(t, \mathbf{x})) \quad \forall (t, \mathbf{x}) \in J \times S(\mathbf{A}) \cap S(\mathbf{B})^{C}.$

(IV) If the zero solution of (1.3) is equistable, and the zero solution of (1.4) is uniformly practically equistable.

Then the zero solution of (1.1) is practically equistable.

Proof

Since the zero solution of (1.4) is uniformly practically equistable, given $0 < \lambda_0 < A$ such that for every solution $\omega(t, t_0, \omega_0)$ of (1.4) the inequality

$$\omega(\mathbf{t}, \mathbf{t}_0, \boldsymbol{\omega}_0) < \boldsymbol{b}(\mathbf{A}) \tag{4.2}$$

holds provided $\omega_0 \leq \lambda_0$.

Since the zero solution of the system (1.3) is equistable , given $\frac{\lambda_0}{2}$ and $\mathbf{t}_0 \in \mathbf{R}_+$ there exist

 $\delta = \delta(\mathbf{t}_0, \boldsymbol{\epsilon}) > \mathbf{0} \text{ such that for every solution}$ $\mathbf{u}(\mathbf{t}, \mathbf{t}_0, \boldsymbol{u}_0) \text{ of } (1.3)$

$$\mathbf{u}(\mathbf{t},\mathbf{t}_0,\boldsymbol{u}_0) < \frac{\boldsymbol{\lambda}_0}{2} \tag{4.3}$$

holds provided that $\mathbf{u}_0 \leq \delta$.

From the condition (II) we can find $\lambda > 0$ such that

$$a(\lambda) + \frac{\lambda_0}{2} \le \lambda_0 \tag{4.4}$$

To show that The zero solution of (1.1) practically equistable, it must be exist $0 < \lambda < A$ such that for for any solution $x(t, t_0, x_0)$ of (1.1) the inequality $||x(t, t_0, x_0)|| < A$ for $t \ge t_0$ holds, provided that $||x_0||| < \lambda$.

Suppose that this is false, then there exists a solution $\mathbf{x}(\mathbf{t}, \mathbf{t}_0, \mathbf{x}_0)$ of (1.1) with $\mathbf{t_1} > \mathbf{t_0}$ such that

 $\begin{aligned} \|\mathbf{x}(\mathbf{t}_0, \mathbf{t}_0, \mathbf{x}_0)\| &= \lambda , \qquad \|\mathbf{x}(\mathbf{t}_1, \mathbf{t}_0, \mathbf{x}_0)\| = \mathbf{A} \\ (4.5) \\ \lambda &\leq \|\mathbf{x}(\mathbf{t}, \mathbf{t}_0, \mathbf{x}_0)\| \leq \mathbf{A} \qquad \text{for } \mathbf{t} \in [\mathbf{t}_0, \mathbf{t}_1]. \\ \text{Let } \lambda &= B \quad \text{and setting} \end{aligned}$

 $\mathbf{m}(\mathbf{t},\mathbf{x}) = \mathbf{V}_{1}(\mathbf{t},\mathbf{x}) + \mathbf{V}_{2\eta}(\mathbf{t},\mathbf{x})$

From the condition (III) we obtain the differential inequality for $t \in [t_0, t_1]$

 $\begin{array}{l} D^+m(t,x) \leq g_2(t,m(t,x)) \\ Let \ \omega_0 = m(t_0,x_0) = V_1(t_0,x_0) + V_{2B}(t_0,x_0) \\ \text{Applying the comparison Theorem [7], yields} \end{array}$

$$\begin{split} & \mathbf{m}(\mathbf{t}, \mathbf{x}) \leq \mathbf{r}_2(\mathbf{t}, \mathbf{t}_0, \boldsymbol{\omega}_0) \quad \text{for} \quad \mathbf{t} \in [\mathbf{t}_0, \mathbf{t}_1].\\ & \text{where } \mathbf{r}_2(\mathbf{t}, \mathbf{t}_0, \boldsymbol{\omega}_0) \text{ is the maximal solution of (1.4)}\\ & \text{To prove that} \end{split}$$

 $r_2(t, t_0, \omega_0) < b(A).$

It must be show that $\omega_0 \leq \lambda_0$.

Choose $\mathbf{u_0} = \mathbf{V_1}(\mathbf{t_0}, \mathbf{x_0}), \mathbf{f}$ rom the condition (II) and applying the comparison Theorem of [7] yields

$$V_1(t, x) \le r_1(t, t_0, u_0)$$

where $r_1(t, t_0, u_0)$ is the maximal solution of (1.3). From (4.3) at $t = t_0$

$$\mathbf{V}_{1}(\mathbf{t},\mathbf{x}) \leq \mathbf{r}_{1}(\mathbf{t},\mathbf{t}_{0},\mathbf{u}_{0}) < \frac{\lambda_{0}}{2}$$

 $\begin{array}{ll} \mbox{From the condition (II)} & \mbox{and } (4.5) \ , \mbox{at } t = t_0 \\ V_{2B}(t_0, x_0) \leq a(\| \textbf{\textit{x}}(t_0) \|) \leq \textbf{\textit{a}}(\lambda) \\ \mbox{From } (4.4), (4.6) \ \mbox{and} (4.7), \ \mbox{we get} \\ \omega_0 = V_1(t_0, x_0) + V_{2B}(t_0, x_0) \leq \lambda_0 \\ \mbox{From } (4.2) \ , \ \mbox{we get} \\ m(t, x) \leq r_2(\textbf{\textit{t}}, t_0, \omega_0) < \textbf{\textit{b}}(\textbf{\textit{A}}) \end{array}$

Then from the condition^(II), (4.5) and (4.8), we get at $t = t_1$

$$\begin{split} b(A) &= b(\|\mathbf{x}(t_1)\|) \leq V_{2B}(t_1, \mathbf{x}_1) < m(t_1, \mathbf{x}(t_1)) \leq r_2(t_1, t_0, \omega_0) < b(A). \\ \text{This is a contradiction , then} \\ \| \mathbf{x}(t, t_0, \boldsymbol{x}_0) \| &< A \quad \text{for } t \geq t_0 \\ \text{provided that } \|\mathbf{x}_0\| < \lambda \\ \text{Therefore, the zero solution of } (1, 1) \quad \text{is } \end{split}$$

Therefore the zero solution of (1.1) is practically equistable.

5. practically Φ_0 – equistable

In this section we discuss the concept of practically ϕ_0 – equistable of the zero solution of (1.1) using cone valued perturbing Liapunov functions method and Comparison principle method.

The following definitions [6] will be needed in the sequal .

Definition 5.1

Let $0 < \lambda < A$ be given. The system (1.1) is said to be practically ϕ_0 – equistable, if for $t_0 \in J$ and $\phi_0 \in K_0^*$ such that the inequality

 $\begin{aligned} (\varphi_0, \boldsymbol{x}(t, t_0, x_0)) < A & \text{for } t \geq t_0 \\ \text{holds , provided that } (\varphi_0, x_0) < \lambda \end{aligned} \tag{5.1}$

where

 $\mathbf{x}(\mathbf{t}, \mathbf{t}_0, \mathbf{x}_0)$ is the maximal solution of (1.1)

In case of uniformly practically ϕ_0 – equistable ,the inequality (5.1) holds for any t_0 . We define

 $S^*(A) = \{x \in K, (\phi_0, \boldsymbol{x}) < A, \boldsymbol{\phi}_0 \in \boldsymbol{K}_0^*\}$

Theorem 5.1

Suppose that there exist two functions $g_1, g_2 \in C[J \times R, R]$ with $g_1(t, 0) = g_2(t, 0) = 0$ and let there exist two cone valued Liapunov functions $V_1 \in C[J \times S^*(A), K]$ and $V_{2B} \in C[J \times S^*(A) \cap S^*(B)^C, K]$

with $V_1(t,0) = V_{2B}(t,0) = 0$ where

 $S^*(B) = \{x \in K, (\phi_0, x_0) < B, 0 < B < A, \phi_0 \in K_0^*\}$ and $S^*(B)^C$ denotes the complement of $S^*(B)$ satisfying the following conditions:

(i) $V_1(t, x)$ is locally Lipschitzian in x relative to K.

 $\begin{array}{ll} \mathsf{D}^{+}(\boldsymbol{\phi}_{0},\mathsf{V}_{1}(t,x)) \leq \mathsf{g}_{1}\big(t,\mathsf{V}_{1}(t,x)\big) & \forall (t,x) \in \mathsf{J} \times \mathsf{S}^{*}(\mathsf{A}).\\ (\mathrm{ii}) \quad \mathsf{V}_{\mathsf{2B}}(t,x) & \mathrm{is \ locally \ Lipschitzian \ in \ x} \end{array}$

 $\begin{array}{l} \mbox{relative to } K \ . \\ b(\varphi_0, \textbf{\textit{x}}) \leq (\textbf{\phi}_0, V_{2B}(t, x)) \leq a(\varphi_0, x) \quad \forall (t, x) \in J \times S^*(A) \cap S^*(B)^{\mathcal{C}}. \end{array}$

where $\mathbf{a}, \mathbf{b} \in \mathcal{K}$ are increasing functions.

(iii) (4.6) $D^{+}(\phi_{0}, V_{1}(t, x)) + D^{+}(\phi_{0}, V_{2B}(t, x)) \le g_{2}(t, V_{1}(t, x) + V_{2B}(t, x))$ (4.7)

$$f(\mathbf{t},\mathbf{x}) \in \mathbf{J} \times S^*(\mathbf{A}) \cap S^*(\mathbf{B})^{\mathsf{C}}$$

(iv) If the zero solution of (1.3) is ϕ_0 – equistable, and the zero solution of (1.4) is uniformly practically ϕ_0 (3) equistable.

Then the zero solution of (1.1) is practically ϕ_0 – equistable.

Proof

Since the zero solution of the system (1.4) is uniformly practically ϕ_0 – equistable, given given $0 < \lambda_0 < a(B)$ for a(B) > 0 such that the inequality $(\phi_0, r_2(t, t_0, \omega_0)) < a(B)$ (5.2) holds provided $[(\phi_0, \omega]_0] \le \lambda_0$ where

 $r_2(t, t_0, \omega_0)$ is the maximal solution of (1.4). Since the zero solution of the system (1.3) is

 ϕ_0 – equistable, given $\overline{2}$ and $t_0 \in \mathbb{R}_+$

there exist $\delta = \delta(t_0, \lambda_0)$ such that the inequality

$$(\phi_0, r_1(t, t_0, u_0)) < \frac{\lambda_0}{2}$$
 (5.3)

To show that the zero solution of (1.1) is practically ϕ_0 – equistable. It must be show that

for $0 < \lambda < A$, $t_0 \in J$ and $\phi_0 \in K_0^*$ such that the inequality

 $(\phi_0, \mathbf{x}(t, t_0, x_0)) < A$ for $t \ge t_0$ holds ,provided that $(\phi_0, x_0) < \lambda$ where $\mathbf{x}(t, t_0, \mathbf{x}_0)$ is the maximal solution of (1.1).

Suppose that is false, then there exists a solution $x(t, t_0, x_0)$ of (1.1) with $t_2 > t_1 > t_0$ such that for $(\phi_0, x_0) < \lambda$ where $\lambda = \min n(\lambda_0, \lambda_1)$ $(\phi_0, x(t_1, t_0, x_0)) = \lambda_1$. $(\phi_0, x(t_0, t_0, x_0)) = A$

$$\begin{array}{c} (\psi_0, x(t_1, t_0, x_0)) = x_1, \quad (\psi_0, x(t_2, t_0, x_0)) = x_1 \\ (5.6) \\ \lambda_1 \leq (\phi_0, x(t, t_0, x_0)) \leq A \quad \text{for } t \in [t_1, t_2] \end{array}$$

 $\lambda_{1} \leq (\phi_{0}, \mathbf{x}(t, t_{0}, \boldsymbol{x}_{0})) \leq \mathbf{A} \quad \text{for } t \in [t_{1}, t_{2}]$ Let $\lambda_{1} = \mathbf{B}$ and setting

 $\mathbf{m}(\mathbf{t},\mathbf{x}) = \mathbf{V}_{1}(\mathbf{t},\mathbf{x}) + \mathbf{V}_{2B}(\mathbf{t},\mathbf{x})$

From the condition (iii) we obtain the differential inequality

 $D^{+} (\phi_0, m(t, x)) \le (\phi_0, g_2(t, m(t, x)))$ for $t \in [t_1, t_2]$

$$\omega_{0} = m(t_{1}, x(t_{1})) = V_{1}(t_{1}, x(t_{1})) + V_{2B}(t_{1}, x(t_{1}))$$

Applying the comparison Theorem of [7], yields

$$\begin{split} & \llbracket(\boldsymbol{\varphi}]_{0}, m(t, x)) \leq (\boldsymbol{\phi}_{0}, \boldsymbol{r}_{2}(t, t_{0}, \omega_{0})) \\ & \text{To prove that} \\ & (\boldsymbol{\phi}_{0}, \boldsymbol{r}_{2}(t, t_{0}, \omega_{0})) < a(B) \\ & \text{It must be show that} \\ & \llbracket(\boldsymbol{\varphi}_{0}, \omega]_{0}) \leq \lambda_{0} \\ & \text{Choose } \mathbf{u}_{0} = V_{1}(t_{0}, x_{0}) \quad \text{From the condition} \end{split}$$

(i) and applying the comparison Theorem [7] it yields

$$\begin{aligned} & (\phi_0, V_1(t, x)) \le (\phi_0, r_1(t, t_0, u_0)) \\ & \text{From (5.3) at } t = t_1 \\ & (\phi_0, V_1(t, x)) \le (\phi_0, r_1(t, t_0, u_0)) < \frac{\lambda_0}{2} \end{aligned}$$
(5.8)

From the condition (ii) and (5.6), at $t = t_1$ $(\phi_0, V_{2B}(t_1, x(t_1))) \leq (\phi_0, x(t_1)) \leq a(\lambda_1)$ (5.9) From (5.5),(5.8) and(5.9), we get $\phi_0, V_{2B}(t_1, x(t_1)) \leq \lambda_0$ From (5.2), we get $([(\phi]_0, m(t, x)) \le (\phi_0, r_2 (t, t_0, \omega_0)) < a(B)$ (5.10)Then from the condition (ii), (5.4), (5.6) and (5.10), we get at $t = t_2$ $\mathbf{b}(\mathbf{A}) = \boldsymbol{b}(\boldsymbol{\varphi}_0, \mathbf{x}(\mathbf{t}_2))$ $\leq (\phi_0, m(t_2, x(t_2)))$ $<(\phi_0, r_2(t_2, t_0, \omega_0))$ < a(B) $\leq a(A)$. which leads to a contradiction ,then it must be $(\phi_0, \mathbf{x}(\mathbf{t}, \mathbf{t}_0, \mathbf{x}_0)) < \mathbf{A}$ for $t \ge t_0$ holds , provided that $(\phi_0, x_0) < \lambda$ Therefore the zero solution of (1.1) is practically ϕ_0 – equistable.

References

- E.P.Akpan, O.Akinyele ,On *Φ*0⁻ stability of comparison differential systems J.Math.Anal. Appl. Vol.164, pp.307-324, 1992.
- [2] M.M.A.El Sheikh, A.A.Soliman, M.H.Abd-Alla ,On Stability of non linear systems of ordinary differential equations, Applied Mathematics and Computation, vol.113, pp.175-198, 2000.
- [3] A.A.Soliman, On Total \$\vec{\phi_0}\$ stability Of Non linear Systems Of Differential Equations. Applied Mathematics and Computation, vol.130, pp.29-38, 2002.
- [5] A.A.Soliman, On Total Stability Of Perturbed System Of Differential Equations. Applied Mathematics Letters 16, pp.1157-1162, 2003.
- [6] J.O.Adeyeye, On Cone-Valued Lyapanov Functions and Stability in Two Measures For Integro-Differential Systems. Nonlinear Analysis 47 (2001) 4835-4843.
- [7] A.A.Soliman, On Practical Stability of Perturbed Differential Systems. AppliedMathematics and vol.163, pp.1055-1060, 2005.
- [8] V.Lakshmikantham, S.Leela, differential and Integeral Inequalities, AcademicPress, New York, Vol.I, 1969.
- [9] V.Lakshmikantham, S.Leela, differential and Integeral Inequalities, Academic Press, New York, Vol.II, 1969.
- [10] V.Lakshmikantham, S.Leela,On perturbing Liapunov functions, J. Systems Theory, vol.10, pp.85-90, 1976.