# **Journal of Plant Production**

Journal homepage: <u>www.jpp.mans.edu.eg</u> Available online at: <u>www.jpp.journals.ekb.eg</u>

# Combining Ability aAnd Genetic Variance Components of Yield and Yield Components in F<sub>1</sub> And F<sub>2</sub> Diallel Crosses of Soybean

# Waly, F. A.\* and R. A. Ibrahim



Food Legumes Research Department, Field Crops Research Institute, ARC, Giza, Egypt

# ABSTRACT



Combining ability and genetic components of six soybean parents and their  $F_1$  and  $F_2$  half-diallel crosses were measured in Etay El-Baroud Agriculture Research Station during 2017, 2018 and 2019. mean square due to genotypes; parents, crosses and parent vs. crosses were significant for all studied traits in both generations, except parent vs. crosses for protein and oil contents in  $F_1$  and both number of seeds/pod and 100-seed weight in  $F_2$ . Mean squares due to general and specific combining ability were significant for all studied traits in  $F_1$  and  $F_2$ , except SCA for number of seeds/pod in  $F_2$ . The ratios of GCA/SCA were higher than the unit for all studied traits in both  $F_1$  and  $F_2$  generations. Mean squares due to additive (a) and dominance (b) components were significant for all studied traits in both  $F_1$  and  $F_2$  mean squares due to additive (a) and dominance (b) components were significant for all studied traits in both  $F_1$  and  $F_2$ . The two parents Dr101 and Giza111 and the three crosses Giza111 x Giza83, Dr101 x Giza83 and Dr101 x Giza111 gave the highest seed yield/plant. Dr101 expressed negative  $\hat{g}_i$  effect for maturity period and positive  $\hat{g}_i$  effect for most yield traits in both generations. The cross combinations of Giza111 and Dr101 with Giza83 had the significant positive  $\hat{S}_{ij}$  effect for seed yield/plant in both  $F_1$  and  $F_2$ . The additive genetic variance (D), dominance genetic variations (H1) and (H2) were highly significant for all traits in both  $F_1$  and  $F_2$  hybrids except additive type for number of seeds/pod in  $F_1$ . Pedigree method consider an excellent method to select superior lines in the early segregated.

Keywords: Combining ability, Genetic variation, Seed yield, Soybean.

# INTRODUCTION

Soybean [Glycine max (L.) Merrill] is one of the most important summer leguminous crops in the world, as it is a great source for food oils, as the oil content in dry seeds is 16-20%. It is also an important source of protein that reached 36:40% in dry seeds (Soybean meal. 2019), which makes it participate in many industries such as the production of poultry and animal feed and some human foods like baby milk and soy sauce. The area of sovbeans cultivated in the world was estimated at about 120.50 million hectare in 2019, while its area in Egypt did not exceed 14000 hectare in the same year (FAOSTAT, 2019). Due to the importance of soybeans, it has won a lot of interest from plant breeders in the world with the aim of increasing the yield of seeds and raising their quality characteristics. The estimation of the components of genetic variation is one of the most important elements of the success of improving the characteristics of soybeans through breeding programs, as knowledge of genetic variance provides a lot of information about the relationship between parents and offspring and determining the appropriate selection method in isolated generations, which saves time and effort of the breeder during his pursuit of his goals (Cruz et al., 2012). To reach these goals, several genetic designs are available, highlighting the diallel crosses. Diallel method is considered a good method as it allows plant breeders to obtain a lot of

genetic information related to the parents and their offspring through which it is possible to allows inferring about heterosis (Gardner & Eberhart, 1966), estimate the general and specific combining ability (Griffing, 1956) and determined the genetic control of traits (Hayman, 1954a, b). According to Cruz *et al.*, (2012), this last analysis provides information about the genetic control, genetic values of parents and the limits of selection of traits under study.

The present study aimed to determine the genetic control of the seed yield and its components as well seed content of protein and oil traits in a half diallel with six soybean parents, with the main objective of obtaining statistical genetic inferences which helps soybean breeder to the implementation of soybean breeding programs in the future.

# MATERIALS AND METHODS

The present study was conducted at Etay EL-Baroud Agriculture Research Station, EL-Behaira, Egypt during three summer agriculture season of 2017, 2018 and 2019.

Six parental varieties and/or lines of soybean (*Glycine max* (L.) Merrill) 2n=40 namely; (D89-8940, Hardin, Giza 83, Gza 111, Dr 101 and Line105 were used in the present study. The names, country of origin, maturity group and pedigree of the parental genotypes of soybean used in the present study are shown in table 1.

<sup>\*</sup> Corresponding author. E-mail address: moza.bean@gmail.com DOI: 10.21608/jpp.2021.169636

| No. | Name     | Country of<br>origin | Maturity<br>group | Pedigree                 |  |  |  |
|-----|----------|----------------------|-------------------|--------------------------|--|--|--|
| 1   | D89-8940 | United States        | V                 | Introduced from USA      |  |  |  |
| 2   | Hardin   | United States        | Ι                 | Introduced from USA      |  |  |  |
| 3   | Giza 83  | Egypt                | Ι                 | Selected from<br>MBB.133 |  |  |  |
| 4   | Gza 111  | Egypt                | IV                | Crawford x Celest        |  |  |  |
| 5   | Dr 101   | Egypt                | V                 | Selected from Elgin      |  |  |  |
| 6   | Line 105 | Egypt                | 1V                | Giza 35 x Lamar          |  |  |  |

Table 1. The names, country of origin, maturity groupand pedigree of the six soybean parentalgenotypes used in the present study.

#### Methods:

In 2017 season, the six parental genotypes were used in a half-diallel cross mating design. During this season, all the possible cross combinations (without reciprocals) among all parental genotypes (fifteen crosses) were made by hand. In 2018 season, all F1 hybrid seeds of the fifteen crosses were sown. The F1 plants were selfpollinated to obtain the F2's seeds. In this season also, another cycle of half-diallel mating was made between the six parents to obtain the seeds of F<sub>1</sub> hybrids seeds again. In 2019 season, all the diallel mating progenies (6 parents, 15 F1 seeds and 15 F2 seeds) were evaluated in an experiment designed in a Randomized Complete Block Design (RCBD) with three replications. The plot size was one ridge for F<sub>1</sub> and, four ridges for parents and F<sub>2</sub>. Each ridge was three meters long and 70 cm apart. Seeds were planting on one side of the ridge at 20 cm hill spacing with one seed per hill. The wet planting method called (Herati) was used and all the other agricultural practices were followed as recommended. Data for the all traits studied were recorded on 10 and 60 individual guarded plants, chosen at random from each plot for  $F_1$  and  $F_2$ , respectively. The studied traits were; maturity period (day), plant height (cm) number of pods /plant, number of seeds/pod, number of seeds/plant, 100-seed weight (g), seed weight /plant (g), seed content of protein% and seed content of oil %.

Seed content of protein (%) was calculated by determined total nitrogen using the modified Micro-Kjeldahl method (AOAC, 1988). Then the total protein was calculated by multiplying the values of total nitrogen by 6.25. While, seed content of oil (%) was extracted the oil quantity (g) in 100-gram of dry seeds (%) in the laboratory using Sokselt apparatus.

# Statistical and genetically analysis

The ordinary analysis of variance of all genotypes, parents, crosses and parents vs crosses was made in one way ANOVA for RCBD according to Gomez and Gomez (1984). Heterosis for each trait computed as parents *vs*. hybrids sum of squares. Heterosis was also determined according to Paschal and Wilcox (1975) for individual crosses as the percentage deviation of  $F_1$  means performance from the better parent means (BP). General and specific combining ability estimates were obtained by employing Griffing's (1956) diallel cross analysis designated as a method-2, model-1 (fixed model). DIAL Win 98 software revised 22 September 2002 were used to estimate several genetic variance components and some genetic ratios in addition to Wr/Vr graph based on diallel cross analysis according to Hayman (1954a and b) as follows. Heritability in both broad and narrow senses were calculated according to Mather and Jinks (1971).

# **RESULTS AND DISCUSSIONS**

# Griffing approach.

#### Analysis of variance:

The ordinary analysis of variance and analysis of variance of combining ability of both  $F_1$  and  $F_2$  diallel crosses are presented in Table 2. The obtained data indicated that mean square due to genotypes; parents and crosses were highly significant for all studied traits in both F1 and F2 as a clear indicator of the wide diversity between all parents in their pedigree and country of origin. Similar results were obtained before by Iqbal et al., (2003) who found highly significant differences between parents and their hybrids were shown by analysis of variance, for all growth, seed yield and seed quality traits. Also, these significant confirmed that all genotypes (parents and crosses) will differ in their performances in both F1 and F2 for all studied traits. Mean square due to parent vs. crosses were highly significant for all studied traits in both F<sub>1</sub> and F<sub>2</sub> except for seed content of protein and oil% in F<sub>1</sub> as well as number of seeds/pod and 100-seed weight in F<sub>2</sub>. The significant of parent vs crosses may a clear evidence for the presence of hybrid vigor in both  $F_1$  and  $F_2$  crosses (the progeny will superior their parents). Mean squares due to both general and specific combining ability were highly significant for all studied traits in both F1 and F2, except SCA for number of seeds/pod in F2, indicated that both additive and non-additive genetic effects involving these traits. The ratios of GCA/SCA were higher than the unit for all studied traits in both  $F_1$  and  $F_2$  indicated that the additive genetic variation is the major part in the total genetic variation that involving these traits. In this concern, Agrawal et al., (2005) found that yield attributing characters in soybean might be governed by additive gene effects, whereas the non-additive and complex of additive and non-additive gene effects played an important role in the expression of yield attributing characters. Similarly, Shiv, et al., (2011) found that in soybean general combining ability and specific combining ability mean square were significant for seed yield and its related traits.

Table 2. Analysis of variance of ordinary and combining ability data associated with F1 and F2 soybean diallel cross.

| SOV            | DE | Maturity period (day) |                | Plant he       | Plant height (cm) |                | pods/plant     | Number of se   | eds/pod        |
|----------------|----|-----------------------|----------------|----------------|-------------------|----------------|----------------|----------------|----------------|
| 5. <b>U</b> .V | Dr | F1                    | $\mathbf{F}_2$ | $\mathbf{F}_1$ | $\mathbf{F}_2$    | $\mathbf{F}_1$ | F <sub>2</sub> | $\mathbf{F}_1$ | $\mathbf{F}_2$ |
| Genotypes      | 20 | 279.27**              | 289.11**       | 1362.27**      | 1908.06**         | 2505.52**      | 2197.87**      | 0.09**         | 0.05**         |
| Parents        | 5  | 893.56**              | 893.56**       | 1568.46**      | 1568.46**         | 1450.77**      | 1450.77**      | 0.04**         | 0.05*          |
| Crosses        | 14 | 75.47**               | 86.69**        | 1107.74**      | 2150.18**         | 2268.43**      | 2559.36**      | 0.09**         | 0.05**         |
| P V Cross      | 1  | 60.98**               | 100.80**       | 3894.87**      | 216.40**          | 11098.42**     | 872.50**       | 0.21**         | 0.03           |
| Error          | 40 | 2.35                  | 1.45           | 25.51          | 21.92             | 18.64          | 10.75          | 0.01           | 0.01           |
| GCA            | 5  | 309.34**              | 241.13**       | 1125.18**      | 1772.37**         | 1481.38**      | 1579.73**      | 0.05**         | 0.03**         |
| S CA           | 15 | 21.01**               | 48.12**        | 230.40**       | 257.24**          | 619.77**       | 450.25**       | 0.02**         | 0.01**         |
| Error          | 40 | 0.78                  | 0.48           | 8.50           | 7.31              | 6.21           | 3.58           | 0.001          | 0.001          |
| GCA/SCA        | -  | 14.72                 | 5.01           | 4.88           | 6.89              | 2.39           | 3.51           | 2.50           | 3.00           |

| DF | Number of seeds/plant                                  |                                                                                                                                                                                                                                                                                                     | 100-seed weight (g)                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Seed yield/plant (g)                                   |                                                        | Seed content of<br>protein %                           |                                                        | Seed content of oil %                                  |                                                        |
|----|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| -  | $\mathbf{F}_1$                                         | $\mathbf{F}_2$                                                                                                                                                                                                                                                                                      | F1                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\mathbf{F}_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\mathbf{F}_1$                                         | $\mathbf{F}_2$                                         | $\mathbf{F}_1$                                         | $\mathbf{F}_2$                                         | $\mathbf{F}_1$                                         | $\mathbf{F}_2$                                         |
| 20 | 13435.19**                                             | 9847.56**                                                                                                                                                                                                                                                                                           | 10.21**                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.82**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 423.06**                                               | 318.28**                                               | 52.12**                                                | 43.72**                                                | 13.29**                                                | 11.59**                                                |
| 5  | 8722.30**                                              | 8270.55**                                                                                                                                                                                                                                                                                           | 9.66**                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.66**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 235.08**                                               | 222.07**                                               | 41.04**                                                | 25.82**                                                | 18.18**                                                | 18.18**                                                |
| 14 | 10602.33**                                             | 10721.13**                                                                                                                                                                                                                                                                                          | 11.09**                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.57**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 396.46**                                               | 365.14**                                               | 59.35**                                                | 52.35**                                                | 12.36**                                                | 9.47**                                                 |
| 1  | 76659.61**                                             | 5502.54**                                                                                                                                                                                                                                                                                           | 0.57**                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1735.20**                                              | 143.36**                                               | 6.19                                                   | 12.46*                                                 | 1.74                                                   | 8.27**                                                 |
| 40 | 206.06                                                 | 199.27                                                                                                                                                                                                                                                                                              | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.63                                                   | 4.45                                                   | 2.86                                                   | 2.79                                                   | 0.52                                                   | 0.51                                                   |
| 5  | 8403.02**                                              | 7706.24**                                                                                                                                                                                                                                                                                           | 10.26**                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.29**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 321.42**                                               | 272.78**                                               | 47.71**                                                | 30.85**                                                | 7.22**                                                 | 6.19**                                                 |
| 15 | 3170.19**                                              | 1807.94**                                                                                                                                                                                                                                                                                           | 1.12**                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.93**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 80.89**                                                | 50.53**                                                | 7.26**                                                 | 9.15**                                                 | 3.50**                                                 | 3.09**                                                 |
| 40 | 68.69                                                  | 66.42                                                                                                                                                                                                                                                                                               | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.21                                                   | 1.48                                                   | 0.95                                                   | 0.93                                                   | 0.17                                                   | 0.17                                                   |
|    | 2.65                                                   | 4.26                                                                                                                                                                                                                                                                                                | 9.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.97                                                   | 5.40                                                   | 6.57                                                   | 3.37                                                   | 2.06                                                   | 2.00                                                   |
|    | <b>DF</b><br>20<br>5<br>14<br>1<br>40<br>5<br>15<br>40 | Number of           F1           20         13435.19**           5         8722.30**           14         10602.33**           1         76659.61**           40         206.06           5         8403.02**           15         3170.19**           40         68.69           2.65         2.65 | Number of seeds/plant           F1         F2           20         13435.19**         9847.56**           5         8722.30**         8270.55**           14         10602.33**         10721.13**           1         76659.61**         5502.54**           40         206.06         199.27           5         8403.02**         7706.24**           15         3170.19**         1807.94**           40         68.69         66.42           2.65         4.26 | Number of seeds/plant         100-seed           F1         F2         F1           20         13435.19**         9847.56**         10.21**           5         8722.30**         8270.55**         9.66**           14         10602.33**         10721.13**         11.09**           1         76659.61**         5502.54**         0.57**           40         206.06         199.27         0.07           5         8403.02**         7706.24**         10.26**           15         3170.19**         1807.94**         1.12**           40         68.69         66.42         0.02           2.65         4.26         9.16         1.16 | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ |

|--|

\* and \*\* referred to significant at both 5 and 1% levels of probability, respectively.

#### Mean performances.

Mean performances of all studied traits for the six parental genotypes and their F1 and F2 diallel crosses are shown in Table 3. For maturity period the two parents Hardin and Giza 83 showed the lowest maturity periods (69.33 and 73.00 days) while, D89-8940 expressed the highest maturity period with averages of 117.33 days. Also, the six cross combinations Giza 83 x Hardin, Giza 111 x Hardin, Dr 101x Hardin, Line 105 x D89-8940, Line 105 x Giza 111 and Line 105 x Dr 101 had the lowest desirable maturity periods in both F<sub>1</sub> and F<sub>2</sub>. Respect to plant height the two parents Dr 101 and Giza 111 were the tallest among all tested parents. Moreover the two crosses Giza 111 x Hardin and Giza 111 x Giza 83 were the tallest among all crosses in both F1 and F2. Respect to number of pods/plant the parental genotypes Dr 101, Giza 111 and D89-8940 gave the highest pods number/plant (122.31, 115.33 and 107.67). While, the three crosses Hardin x D89-8940, Giza 111 x Giza 83 and Dr 101 x Giza 83 had the highest number of pods/plant in both F1 and F2. For number of seeds/pod, the parental genotype Dr101 had the highest number of seeds/pod. In the same way the five crosses Giza 83 x Hardin, Giza 111 x Hardin, Dr 101 x Hardin, Dr 101 x Giza 111 and Line 105 x Dr 101 had the highest number of seeds/pod in both F<sub>1</sub> and F<sub>2</sub>. Regard to number of seeds/plant, the two parental genotypes Giza 21 and Dr101 had the highest number of seeds/pod. In the same way the five crosses Hardin x D89-8940, Dr 101 x Hardin, Giza 111 x Giza 83, Dr 101 x Giza 83 and , Dr 101 x Giza 111 had the highest number of seeds/plant in both F<sub>1</sub> and F<sub>2</sub>. The two parents Giza 83 and Giza 111 had the highest 100-seed weight (16.45 and 14.73 g) while the two crosses Giza 111 x Giza 83 and Dr101 x Giza 83 showed the highest 100-seed weight in both F1 and F2 among all crosses. For seed yield/plant the results revealed that the parental genotypes Dr101 gave the highest seed yield/plant (41.98 g) followed by Giza 111 (36.23 g) while the three crosses Giza 111 x Giza 83, Dr 101 x Giza 83 and Dr 101 x Giza 111 had the highest seed yield /plant among all crosses in both F1 and F2. The two parents Giza 83 and Giza 111showed the highest seed content of protein (45.00 and 41.87 %). In the same line, the six crosses Giza 83 x D89-8940, Giza 111 x D89-8940, Giza 83 x Hardin, Giza 111 x Hardin, Giza 111 x Giza 83 and Dr 101 x Giza 111 gave the highest seed content of protein in both F1 and F2. Regard to oil percentage, the results revealed that, both Hardin and Line 105 among all parents showed the highest seed content of oil with averages of 20.66 and 20.95% while, the three crosses Hardin x D89-8940, Line 105 x D89-8940 and Dr 101 x Giza 111 had the highest seed content of oil in both F1 and F2 among all tested crosses. The results are in agree with those reported by EL-Garhy et al., (2008), Perez et al., (2009) and Waly (2015), which found highly significant differences in mean performances of growth, seed yield and oil percentage on different genotypes of soybean.

|                     | Maturity   | Maturity period |                | height         | Number         | of pods/       | Nu     | mber           | Number         | of seeds/      |
|---------------------|------------|-----------------|----------------|----------------|----------------|----------------|--------|----------------|----------------|----------------|
| Genotype            | (dag       | ys)             | (cı            | n)             | pla            | nt             | of see | ds /pod        | pla            | ant            |
|                     | <b>F</b> 1 | $\mathbf{F}_2$  | $\mathbf{F}_1$ | $\mathbf{F}_2$ | $\mathbf{F}_1$ | $\mathbf{F}_2$ | F1     | $\mathbf{F}_2$ | $\mathbf{F}_1$ | $\mathbf{F}_2$ |
| D89-8940            | 117        | .33             | 88.            | 92             | 107.           | 67             | 2      | .01            | 216            | 5.26           |
| Hardin              | 69.        | 33              | 70.            | 46             | 89.0           | 00             | 2      | .13            | 189            | 9.00           |
| Giza 83             | 73.        | 00              | 91.            | 22             | 70.6           | 57             | 2      | .17            | 153            | 3.00           |
| Giza 111            | 80.        | 00              | 107            | .82            | 115.           | 33             | 2      | .13            | 245            | 5.93           |
| Dr 101              | 81.        | 00              | 129            | .00            | 122.           | 31             | 2      | .37            | 289            | 0.11           |
| Line 105            | 88.        | 67              | 69.            | 10             | 73.0           | )7             | 2      | .09            | 152            | 2.63           |
| Hardin x D89-8940   | 89.00      | 86.00           | 103.13         | 87.96          | 177.98         | 143.67         | 2.10   | 2.03           | 373.66         | 291.97         |
| Giza 83 x D89-8940  | 85.33      | 89.67           | 119.77         | 105.28         | 122.25         | 112.33         | 2.17   | 2.10           | 265.04         | 235.67         |
| Giza 111 x D89-8940 | 88.00      | 89.00           | 123.70         | 110.21         | 139.76         | 126.00         | 2.07   | 2.03           | 288.55         | 256.67         |
| Dr 101 x D89-8940   | 87.33      | 92.33           | 115.67         | 89.47          | 133.77         | 109.33         | 2.23   | 2.17           | 298.80         | 236.63         |
| Line 105 x D89-8940 | 93.00      | 74.33           | 73.24          | 60.48          | 110.62         | 89.33          | 1.95   | 1.93           | 215.41         | 173.20         |
| Giza 83 x Hardin    | 74.00      | 74.33           | 127.26         | 93.77          | 114.33         | 80.00          | 2.40   | 2.30           | 274.67         | 184.00         |
| Giza 111 x Hardin   | 78.00      | 80.00           | 132.91         | 116.73         | 133.33         | 110.00         | 2.40   | 2.30           | 320.20         | 253.07         |
| Dr 101 x Hardin     | 79.33      | 79.33           | 111.95         | 115.74         | 141.00         | 123.00         | 2.50   | 2.37           | 352.80         | 291.23         |
| Line 105 x Hardin   | 85.00      | 86.00           | 74.86          | 58.65          | 82.00          | 61.00          | 2.27   | 2.17           | 185.83         | 132.00         |
| Giza 111 x Giza 83  | 80.33      | 80.00           | 130.69         | 133.63         | 147.33         | 135.42         | 2.27   | 2.10           | 333.40         | 284.73         |
| Dr 101 x Giza 83    | 80.33      | 81.33           | 127.59         | 129.15         | 161.00         | 145.67         | 2.07   | 2.03           | 332.50         | 296.20         |
| Line 105 x Giza 83  | 80.00      | 80.00           | 105.13         | 94.91          | 100.00         | 86.81          | 2.37   | 2.33           | 236.67         | 202.27         |
| Dr 101 x Giza 111   | 80.67      | 80.00           | 119.32         | 132.72         | 140.27         | 132.67         | 2.53   | 2.30           | 355.41         | 277.40         |
| Line 105 x Giza 111 | 80.00      | 79.33           | 95.50          | 61.01          | 95.43          | 59.33          | 2.37   | 2.23           | 226.08         | 132.53         |
| Line 105 x Dr 101   | 80.33      | 79.33           | 91.66          | 63.13          | 86.73          | 66.00          | 2.47   | 2.27           | 214.06         | 149.57         |
| LSD 5%              | 2.11       | 1.65            | 6.94           | 6.44           | 5.94           | 4.51           | 0.14   | 0.16           | 19.74          | 19.41          |
| LSD 1%              | 3.03       | 2.38            | 9.99           | 9.26           | 8.54           | 6.49           | 0.20   | 0.24           | 28.40          | 27.93          |

Table 3. Mean performances for all studied traits of the six parents and their F1 and F2 diallel crosses.

# Waly, F.A. and R. A. Ibrahim

Table 3. Cont.

| Constring           | 100-seed       | weight (g)     | Seed yield     | Seed yield /plant (g) |                | of protein %   | Seed content of oil % |                |  |
|---------------------|----------------|----------------|----------------|-----------------------|----------------|----------------|-----------------------|----------------|--|
| Genotype            | $\mathbf{F}_1$ | $\mathbf{F}_2$ | $\mathbf{F}_1$ | F2                    | $\mathbf{F}_1$ | $\mathbf{F}_2$ | $\mathbf{F}_1$        | $\mathbf{F}_2$ |  |
| D89-8940            | 13             | .67            | 29.            | 56                    | 40.            | 11             | 17                    | .49            |  |
| Hardin              | 11             | .37            | 21.49          |                       | 33.98          |                | 20.60                 |                |  |
| Giza 83             | 16.45          |                | 25.17          |                       | 45.            | 00             | 16.22                 |                |  |
| Giza 111            | 14             | 14.73          |                | 23                    | 41.            | 87             | 15                    | .95            |  |
| Dr 101              | 14             | .52            | 41.            | 98                    | 40.            | 68             | 15                    | .25            |  |
| Line 105            | 12.47          |                | 19.            | 02                    | 38.            | 22             | 20                    | .95            |  |
| Hardin x D89-8940   | 10.70          | 11.40          | 39.93          | 33.27                 | 31.04          | 32.57          | 21.80                 | 19.90          |  |
| Giza 83 x D89-8940  | 15.33          | 15.13          | 40.61          | 35.68                 | 43.17          | 42.50          | 15.43                 | 15.23          |  |
| Giza 111 x D89-8940 | 15.33          | 15.17          | 44.23          | 38.94                 | 43.65          | 43.14          | 15.69                 | 15.52          |  |
| Dr 101 x D89-8940   | 13.70          | 12.91          | 40.90          | 30.49                 | 37.83          | 35.82          | 16.27                 | 15.33          |  |
| Line 105 x D89-8940 | 11.83          | 11.39          | 25.48          | 19.74                 | 34.68          | 33.52          | 21.44                 | 20.64          |  |
| Giza 83 x Hardin    | 15.00          | 15.21          | 41.21          | 28.01                 | 41.04          | 41.29          | 15.42                 | 15.64          |  |
| Giza 111 x Hardin   | 15.97          | 15.24          | 51.12          | 38.56                 | 43.32          | 41.37          | 15.37                 | 14.95          |  |
| Dr 101 x Hardin     | 13.80          | 13.23          | 48.66          | 38.54                 | 38.44          | 36.79          | 16.27                 | 15.60          |  |
| Line 105 x Hardin   | 12.23          | 12.34          | 22.73          | 16.31                 | 34.20          | 34.22          | 17.31                 | 17.46          |  |
| Giza 111 x Giza 83  | 17.27          | 17.05          | 57.58          | 48.55                 | 47.38          | 39.01          | 17.76                 | 17.53          |  |
| Dr 101 x Giza 83    | 16.80          | 16.27          | 55.85          | 48.21                 | 39.99          | 44.07          | 16.51                 | 15.99          |  |
| Line 105 x Giza 83  | 13.13          | 13.43          | 31.08          | 27.17                 | 38.88          | 39.53          | 16.47                 | 16.84          |  |
| Dr 101 x Giza 111   | 14.99          | 15.39          | 53.26          | 42.70                 | 43.51          | 43.93          | 18.61                 | 19.11          |  |
| Line 105 x Giza 111 | 12.83          | 12.21          | 29.00          | 16.19                 | 36.61          | 34.78          | 18.54                 | 17.64          |  |
| Line 105 x Dr 101   | 12.27          | 11.57          | 26.25          | 17.30                 | 35.50          | 33.33          | 17.73                 | 16.72          |  |
| LSD 5%              | 0.36           | 0.44           | 2.62           | 2.90                  | 2.33           | 2.30           | 0.99                  | 0.98           |  |
| LSD 1%              | 0.52           | 0.63           | 3.77           | 4.17                  | 3.35           | 3.30           | 1.43                  | 1.41           |  |

## Heterosis relative to better parent.

Heterosis relative to better parent of 15  $F_1$  and  $F_2$ crosses is presented in Table 4. For maturity period the results revealed that among all tested crosses the three crosses Dr 101 x Giza 111, Line 105 x Giza 111 and Line 105 x Dr 101 expressed lowest desirable heterotic effect relative to better parent in both F1 and F2 but these values were not significant. In the same way the cross Line 105 x D89-8940 showed the lowest significant negative desirable heterosis for maturity period in F2 only. Seven crosses in F1 and three crosses in F<sub>2</sub> showed significant positive heterotic effect for plant height. Only the three crosses Giza 83 x D89-8940, Giza 111 x Hardin and Giza 111 x Giza 83 expressed significant positive heterosis for plant height in both generations. Eleven crosses in F1 and five crosses in F2 had significant positive heterotic effect relative to better parent for number of pods/plant. The highest desirable positive significant heterosis in this trait were obtained by the four crosses Hardin x D89-8940, Giza 111 x D89-8940, Giza 111 x Giza 83, Dr 101 x Giza 83 and Line 105 x Giza 83 in both  $F_1$  and  $F_2$ . Only the five crosses Giza 83 x Hardin, Giza 111 x Hardin, Line 105 x Giza 83, Dr 101 x Giza 111 and Line 105 x Giza 111 in F<sub>1</sub> showed positive significant desirable heterotic effect relative to better parent for number of seeds/pod. On the other side, there is no any crosses expressed positive and significant heterotic effect for this trait in F<sub>2</sub>. For number of seeds/plant, ten crosses in F1 and three crosses in F2 expressed significant positive heterotic effect relative to better parent. The highest positive desirable heterosis for seed yield/plant was showed in the two crosses Hardin x D89-8940 and Line 105 x Giza 83 in both F1 and F2. Only the cross Giza 111 x Giza 83 in  $F_1$  and the cross Dr 101 x Giza 83 in  $F_2$  had significant positive heterosis for seed content of protein among all tested genotypes. The two crosses Giza 111 x Giza 83 and Dr 101 x Giza 111 in both generation and the cross Hardin x D89-8940 in F<sub>1</sub> expressed significant positive heterotic effect for oil percentage among all tested crosses.

The significant negative heterotic effect for maturity and the positive effect in seed yield and seed content of protein and oil for hybrids over their better parents were reported by many authors before such as, Mansour (2002), Mansour et al (2002 a&b) and El-Shaboury et al. (2006), also EL-Garhy et al. (2008), Fayiz (2009) and Perez et al. (2009) found highly significant positive heterotic effect relative to better parent in soybean for plant height, pods number/plant and seed yield/plant.

| Fable 4. Heterosis relative to better parent for all the studied traits of $F_1$ and $F_2$ crosses. |                |                 |                |                |                |                |                |                |                 |                |  |  |
|-----------------------------------------------------------------------------------------------------|----------------|-----------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------|----------------|--|--|
|                                                                                                     | Maturit        | Maturity period |                | height         | Numbe          | r of pods      | Number         | of seeds       | Number of seeds |                |  |  |
| Cross                                                                                               | (da            | (day)           |                | (cm)           |                | /plant         |                | od             | /plant          |                |  |  |
|                                                                                                     | $\mathbf{F}_1$ | $\mathbf{F}_2$  | $\mathbf{F}_1$ | $\mathbf{F}_2$ | $\mathbf{F}_1$ | $\mathbf{F}_2$ | $\mathbf{F}_1$ | $\mathbf{F}_2$ | $\mathbf{F}_1$  | $\mathbf{F}_2$ |  |  |
| Hardin x D89-8940                                                                                   | 28.37**        | 24.04**         | 15.98**        | -1.08          | 65.29**        | 33.44**        | -1.22          | -4.39          | 72.78**         | 35.01**        |  |  |
| Giza 83 x D89-8940                                                                                  | 16.89**        | 22.83**         | 31.30**        | 15.41**        | 13.55**        | 4.33           | 0.00           | -3.08          | 22.56**         | 8.97           |  |  |
| Giza 111 x D89-8940                                                                                 | 10.00**        | 11.25**         | 14.73**        | 2.22           | 21.18**        | 9.25**         | -3.13          | 0.00           | 17.33**         | 9.34           |  |  |
| Dr 101 x D89-8940                                                                                   | 7.81**         | 13.99**         | -10.33**       | -30.64**       | 9.37**         | -10.61 **      | -5.63          | -8.45 *        | 3.35            | -18.15 **      |  |  |
| Line 105 x D89-8940                                                                                 | 4.88**         | -16.17          | -17.63**       | -31.98**       | 2.75           | -17.03 **      | -6.71          | -7.35          | -0.39           | -19.91 **      |  |  |
| Giza 83 x Hardin                                                                                    | 6.74**         | 7.21**          | 39.51**        | 2.80           | 28.46**        | -10.11 **      | 10.77**        | 6.15           | 45.33**         | -2.65          |  |  |
| Giza 111 x Hardin                                                                                   | 12.51**        | 15.39**         | 23.26**        | 8.26*          | 15.61**        | -4.62          | 12.50**        | 8.15           | 30.20**         | 7.81           |  |  |
| Dr 101 x Hardin                                                                                     | 14.42**        | 14.42**         | -13.21**       | -10.27**       | 15.28**        | 0.57           | 5.63           | 0.00           | 22.03**         | 0.74           |  |  |
| Line 105 x Hardin                                                                                   | 22.60**        | 24.04**         | 6.25           | -16.76**       | -7.87          | -31.46 **      | 6.58           | 1.88           | -1.68           | -30.16 **      |  |  |
| Giza 111 x Giza 83                                                                                  | 10.04**        | 9.5**           | 21.21**        | 23.93**        | 27.75**        | 17.63**        | 4.62           | -3.08          | 35.57**         | 21.30**        |  |  |
| Dr 101 x Giza 83                                                                                    | 10.04**        | 11.41**         | -1.09          | 0.12           | 31.64**        | 19.10**        | -12.68 **      | -14.08 **      | 15.01**         | 2.45           |  |  |
| Line 105 x Giza 83                                                                                  | 9.59**         | 9.5**           | 15.25**        | 4.05           | 36.86**        | 18.61**        | 9.23*          | 7.69           | 54.68**         | 32.20**        |  |  |
| Dr 101 x Giza 111                                                                                   | 0.84           | 0.00            | -7.50*         | 2.88           | 14.68**        | -1.34          | 7.04*          | -2.82          | 22.93**         | -4.05          |  |  |
| Line 105 x Giza 111                                                                                 | 0.00           | -0.84           | -11.43**       | -43.42**       | -17.25 **      | -48.55 **      | 10.94**        | 7.03           | -8.07           | -43.54 **      |  |  |
| Line 105 x Dr 101                                                                                   | -0.83          | -2.06           | -28.95**       | -51.06**       | -29.09 **      | -46.04 **      | 4.23           | -4.23          | -25.96 **       | -48.27 **      |  |  |

| 1 able 4. ( | Joni. |
|-------------|-------|
|-------------|-------|

| Cross               | 100-seed weight (g) |                | Seed yield/    | plant (g)      | Seed content   | of protein %   | Seed content of oil % |                |  |
|---------------------|---------------------|----------------|----------------|----------------|----------------|----------------|-----------------------|----------------|--|
| Closs               | $\mathbf{F}_1$      | $\mathbf{F}_2$ | $\mathbf{F}_1$ | $\mathbf{F}_2$ | $\mathbf{F}_1$ | $\mathbf{F}_2$ | $\mathbf{F}_1$        | $\mathbf{F}_2$ |  |
| Hardin x D89-8940   | -21.71 **           | -16.61 **      | 35.07**        | 12.55*         | -22.62**       | -18.81**       | 5.79*                 | -3.39          |  |
| Giza 83 x D89-8940  | -6.79 **            | -8.02 **       | 37.38**        | 20.69**        | -4.07          | 2.66           | -11.77**              | -12.92**       |  |
| Giza 111 x D89-8940 | 4.07**              | 2.96           | 22.08**        | 12.55*         | 4.24           | 3.04           | -10.28**              | -11.22**       |  |
| Dr 101 x D89-8940   | -5.67 **            | -11.11 **      | -2.57          | -27.38 **      | -6.99*         | -11.95**       | -6.96*                | -12.33**       |  |
| Line 105 x D89-8940 | -13.41 **           | -16.68 **      | -13.81 *       | -33.22 **      | -13.55**       | -16.43**       | 2.32                  | -1.48          |  |
| Giza 83 x Hardin    | -8.81 **            | -7.52 **       | 63.72**        | 11.27          | -8.81**        | -0.25          | -25.14**              | -24.09**       |  |
| Giza 111 x Hardin   | 8.37**              | 3.46           | 41.10**        | 11.47*         | 3.47           | -1.20          | -25.41**              | -27.43**       |  |
| Dr 101 x Hardin     | -5.00 **            | -8.93 **       | 15.90**        | -8.20          | -5.50          | -9.56**        | -21.02**              | -24.28**       |  |
| Line 105 x Hardin   | -1.87               | -0.99          | 5.77           | -24.12 **      | -10.53**       | -10.47**       | -17.39**              | -16.65**       |  |
| Giza 111 x Giza 83  | 4.96**              | 3.63*          | 58.94**        | 40.32**        | 5.30*          | -6.83*         | 9.48**                | 8.08*          |  |
| Dr 101 x Giza 83    | 2.13                | -1.07          | 33.03**        | 14.82**        | -11.13**       | 6.46*          | 1.78                  | -1.44          |  |
| Line 105 x Giza 83  | -20.16 **           | -18.34 **      | 23.45**        | 7.92           | -13.60**       | -4.51          | -21.40**              | -19.60**       |  |
| Dr 101 x Giza 111   | 1.74                | 4.48*          | 26.86**        | 1.71           | 3.91           | 4.92           | 16.70**               | 19.82**        |  |
| Line 105 x Giza 111 | -12.90 **           | -17.10 **      | -19.96 **      | -53.19 **      | -12.57**       | -16.94**       | -11.50**              | -15.78**       |  |
| Line 105 x Dr 101   | -15.54 **           | -20.34 **      | -37.47 **      | -58.79 **      | -12.73**       | -18.06**       | -15.37**              | -20.20**       |  |

\* and \*\* referred to significant at both 5 and 1% levels of probability, respectively.

#### Combining ability.

# General combining ability effects ( $\mathbf{\hat{g}}_i$ ).

The results of general combining ability effects are which presented in Table 5 revealed that the parental genotypes Dr 101 expressed negative significant gi effect for maturity period in addition to highly positive significant gi effect for plant height, number of pods/plant, number of seed/pod, number of seed/plant, 100-seed weight and seed yield/plant in both  $F_1$  and  $F_2$ . In the same way, Giza cv. showed highly positive significant desirable  $\hat{g}_i$  effect for plant height, number of pods/plant, number of seeds / plant, 100-seed weight, seed yield/plant and seed content of protein% in addition to the same cultivar showed significant negative desirable gi effect for maturity period in both F1 and F2. So, both Dr101 and Giza 111 seemed to be excellent combiners for earliness, seed yield, protein and oil%. The results also indicated that Giza 83 had significant desirable  $\hat{g}_i$  effects for maturity period, plant height, 100-seed weight, seed yield/plant and seed content of protein in both  $F_1$  and  $F_2$  generations. Moreover, Hardin cv seemed to be excellent combiner for oil percentage and maturity period while, Line 105 consider excellent combiner for oil percentage in both  $F_1$  and  $F_2$ .

In this study a significant differ in general combining ability of all parental genotypes were detected in the same way Shiv, *et al.*, (2011) found highly significant differ between soybean parents and crosses for general combining ability and specific combining ability effects in growth and yield traits. The previous results were in the same way with those by El-Shaboury *et al.*, (2006), Chen *et al.*, (2008), Perez *et al.*, (2009) and Waly (2015) which they found highly positive significant general combining ability for branches number/plant, pods and seeds number/plant and seed yield/plant and negative one for flowering and maturity date in soybean. In the same way Nassar, (2013) reported that GCA effect were significant positive for pod and seed yield/plant and negative for some crosses in flowering and maturity.

| -        |           | -      | •       | -                   | •                                |    |
|----------|-----------|--------|---------|---------------------|----------------------------------|----|
| Table 5. | Estimates | of gca | effects | (ĝi) for individual | parent for all the studied trait | s. |

| Dononta      | Maturity per | Maturity period (day) |          | Plant height (cm) |                | No. of pods/plant |         | No. of seeds/pod |                | No. of seeds/plant |  |
|--------------|--------------|-----------------------|----------|-------------------|----------------|-------------------|---------|------------------|----------------|--------------------|--|
| rarents      | F1           | F <sub>2</sub>        | F1       | F <sub>2</sub>    | $\mathbf{F}_1$ | $\mathbf{F}_2$    | F1      | F <sub>2</sub>   | $\mathbf{F}_1$ | F <sub>2</sub>     |  |
| D89-8940     | 11.75**      | 10.72**               | -2.87**  | -4.82**           | 9.80**         | 10.05**           | -0.14** | -0.11**          | 4.29           | 10.34**            |  |
| Hardin       | -4.92**      | -4.44**               | -5.66**  | -7.00**           | 0.67           | -2.49**           | 0.03    | 0.03             | 5.69*          | -1.71              |  |
| Giza 83      | -4.67**      | -3.61**               | 7.07**   | 8.67**            | -4.38**        | -1.74**           | -0.01   | 0.01             | -11.42**       | -4.39              |  |
| Giza 111     | -2.04**      | -1.49**               | 10.18**  | 12.52**           | 8.19**         | 8.35**            | 0.03    | -0.01            | 21.98**        | 16.24**            |  |
| Dr 101       | -1.67**      | -0.74**               | 10.99**  | 14.80**           | 10.76**        | 11.71**           | 0.11**  | 0.09**           | 36.51**        | 35.66**            |  |
| Line 105     | 1.54**       | -0.44                 | -19.71** | -24.17**          | -25.04**       | -25.89**          | -0.01   | -0.01            | -57.05**       | -56.14**           |  |
| LSD gi 5%    | 0.58         | 0.45                  | 1.90     | 1.76              | 1.63           | 1.23              | 0.04    | 0.05             | 5.41           | 5.32               |  |
| LSD gi 1%    | 0.77         | 0.61                  | 2.55     | 2.36              | 2.18           | 1.65              | 0.05    | 0.06             | 7.23           | 7.11               |  |
| LSD gi-gj 5% | 1.58         | 1.24                  | 5.22     | 4.84              | 4.47           | 3.39              | 0.10    | 0.12             | 14.85          | 14.60              |  |
| LSD gi-gj 1% | 2.12         | 1.66                  | 6.99     | 6.48              | 5.97           | 4.54              | 0.14    | 0.17             | 19.87          | 19.54              |  |

\* and \*\* referred to significant at both 5 and 1% levels of probability, respectively.

#### Table 5. Cont.

| Domente      | 100-seed       | Weight (g)     | Seed yield     | l /plant (g)   | Seed content   | of protein %   | Seed conte | ent of oil %   |
|--------------|----------------|----------------|----------------|----------------|----------------|----------------|------------|----------------|
| Farents      | $\mathbf{F}_1$ | F <sub>2</sub> | $\mathbf{F}_1$ | F <sub>2</sub> | $\mathbf{F}_1$ | F <sub>2</sub> | F1         | F <sub>2</sub> |
| D89-8940     | -0.49**        | -0.47**        | -1.27**        | 0.01           | -0.72*         | -0.37          | 0.40**     | 0.18           |
| Hardin       | -0.96**        | -0.86**        | -1.73**        | -2.44**        | -2.55**        | -2.06**        | 0.63**     | 0.57**         |
| Giza 83      | 1.54**         | 1.62**         | 2.03**         | 2.60**         | 3.01**         | 2.31**         | -1.04**    | -0.82**        |
| Giza 111     | 0.97**         | 0.94**         | 5.90**         | 4.62**         | 2.73**         | 1.91**         | -0.56**    | -0.44**        |
| Dr 101       | 0.31**         | 0.17**         | 6.06**         | 5.51**         | 0.03           | 0.57           | -0.81**    | -0.87**        |
| Line 105     | -1.36**        | -1.40**        | -10.99**       | -10.30**       | -2.51**        | -2.36**        | 1.38**     | 1.38**         |
| LSD gi 5%    | 0.10           | 0.12           | 0.72           | 0.79           | 0.64           | 0.63           | 0.27       | 0.27           |
| LSD gi 1%    | 0.13           | 0.16           | 0.96           | 1.06           | 0.85           | 0.84           | 0.36       | 0.36           |
| LSD gi-gj 5% | 0.27           | 0.33           | 1.97           | 2.18           | 1.75           | 1.73           | 0.75       | 0.74           |
| LSD gi-gj 1% | 0.37           | 0.44           | 2.64           | 2.92           | 2.34           | 2.31           | 1.00       | 0.99           |

## Specific combining ability effects $(\hat{S}_{ij})$ .

Estimates specific combining ability effects of fifteen  $F_1$  and  $F_2$  crosses are presented in Table 6. For maturity period the results indicated that six and six crosses in F<sub>1</sub> and F<sub>2</sub> generations, respectively expressed significant negative desirable  $\hat{S}_{ii}$  effect. Among these crosses the four crosses Giza 111 x D89-8940, Line 105 x D89-8940, Line 105 x Giza 111 and Line 105 x Dr 101 showed negative significant  $\hat{S}_{ij}$  effect in both generations. For plant height, eight crosses in F1 and nine crosses in F2 had significant positive  $\hat{S}_{ij}$  effect. The highest significant positive  $\hat{S}_{ij}$  effect for this trait was obtained by the two crosses Giza 111 x Hardin and Line 105 x Giza 83 in both generations. The three crosses Hardin x D89-8940, Giza 111 x Giza 83 and Dr 101 x Giza 83 showed the highest significant desirable  $\hat{S}_{ij}$  effect for number of pods/plant in both  $F_1$  and  $F_2$  among ten crosses in F<sub>1</sub> and seven crosses in F<sub>2</sub> showed the same positive significant Sij effect. Regard to number of seeds/pod seven crosses in F1 and two crosses in F2 expressed positive significant Si effects among these crosses only the two cross combinations Giza 111 x Hardin and Line 105 x Giza 83 showed positive significant  $\hat{S}_{ij}$ effect for this trait in both generations. For number of seeds/pod the two crosses Hardin x D89-8940 and Giza 111 x Giza 83 had the highest significant positive  $\hat{S}_{ij}$  effect in both F1 and F2 generation among eight crosses in F1 and six crosses in  $F_2$  showed also positive significant  $\hat{S}_{ij}$  effect for this trait. For 100-ssed weight eight crosses in F<sub>1</sub> and seven crosses in  $F_2$  expressed positive significant  $\hat{S}_{ij}$  effect. The highest significant positive  $\hat{S}_{ij}$  effect for 100-seed weight were obtained by the two crosses Giza 111 x D89-8940 and Giza 111 x Hardin in both  $F_1$  and  $F_2$  generations. For seed yield/plant ten crosses in  $F_1$  and eight crosses in  $F_2$  expressed positive significant  $\hat{S}_{ij}$  effect. The highest significant positive  $\hat{S}_{ij}$  effect for seed yield/plant were obtained by the two crosses Giza 111 x Giza 83 and Dr 101 x Giza 83 in both  $F_1$  and  $F_2$  generations. Four crosses in  $F_1$  and six crosses in  $F_2$  showed significant positive  $\hat{S}_{ij}$ effect for seed content of protein and only the two crosses Giza 111 x D89-8940 and Giza 111 x Hardin had positive significant  $\hat{S}_{ij}$  effect for this trait in both generations. For oil percentage only the four crosses, Hardin x D89-8940, Line 105 x D89-8940, Giza 111 x Giza 83 and Dr 101 x Giza 111 showed positive and significant  $\hat{S}_{ij}$  effects for this trait in both generations.

In this study a significant differ in spcific combining ability of all parental genotypes were detected in the same way Shiv, *et al.*, (2011) found highly significant differ between soybean parents and crosses for general combining ability and specific combining ability effects in growth and yield traits. The previous results were in the same way with those by El-Shaboury *et al.*, (2006), Perez *et al.*, (2009) and Waly (2015) which they found highly positive significant specific combining ability for branches number/plant, pods and seeds number/plant and seed yield/plant and negative one for flowering and maturity date in soybean. In the same way Nassar, (2013) reported that SCA effect were significant positive for pod and seed yield/plant and negative for some crosses in flowering and maturity.

| Table 6. Estimate | s of sca effects | (Ŝii)    | ) of individual         | crosses for a | all t | he studied | trait in | both F | 1 and F2 |
|-------------------|------------------|----------|-------------------------|---------------|-------|------------|----------|--------|----------|
|                   |                  | ·~ · · · | , == === .= . = = . = . |               |       |            |          |        |          |

|                     | Mat        | ,,<br>irity | Pla     | ant            | No. of         | pods           | No.     | of             | No       | . of           |
|---------------------|------------|-------------|---------|----------------|----------------|----------------|---------|----------------|----------|----------------|
| Cross               | Period     | (day)       | heigh   | t (cm)         | /pla           | int            | seeds   | /pod           | seeds    | /plant         |
|                     | <b>F</b> 1 | F2          | F1      | F <sub>2</sub> | F <sub>1</sub> | F <sub>2</sub> | F1      | F <sub>2</sub> | F1       | F <sub>2</sub> |
| Hardin x D89-8940   | -1.17      | -3.17**     | 6.48**  | 4.10*          | 50.17**        | 33.88**        | -0.03   | -0.06          | 100.87** | 62.78**        |
| Giza 83 x D89-8940  | -5.08**    | -0.33       | 10.38** | 5.74**         | -0.50          | 1.79           | 0.08    | 0.04           | 9.36     | 9.15           |
| Giza 111 x D89-8940 | -5.04**    | -3.13**     | 11.20** | 6.83**         | 4.44*          | 5.38**         | -0.06   | -0.01          | -0.53    | 9.53           |
| Dr 101 x D89-8940   | -6.08**    | -0.54       | 2.37    | -16.20**       | -4.12*         | -14.66**       | 0.03    | 0.02           | -4.81    | -29.93**       |
| Line 105 x D89-8940 | -3.63**    | -18.83**    | -9.37** | -6.21**        | 8.54**         | 2.94*          | -0.14** | -0.12*         | 5.36     | -1.56          |
| Giza 83 x Hardin    | 0.25       | -0.50       | 20.66** | -3.58          | 0.72           | -18.00**       | 0.14**  | 0.10           | 17.59**  | -30.47**       |
| Giza 111 x Hardin   | 1.63*      | 3.04**      | 23.20** | 15.53**        | 7.15**         | 1.92           | 0.10*   | 0.12*          | 29.72**  | 17.97**        |
| Dr 101 x Hardin     | 2.58**     | 1.62**      | 1.44    | 12.26**        | 12.24**        | 11.55**        | 0.12**  | 0.08           | 47.79**  | 36.72**        |
| Line 105 x Hardin   | 5.04**     | 8.33**      | -4.95*  | -5.86**        | -10.95**       | -12.85**       | 0.01    | -0.03          | -25.62** | -30.71**       |
| Giza 111 x Giza 83  | 3.71**     | 2.21**      | 8.25**  | 16.75**        | 26.20**        | 26.83**        | 0.01    | -0.06          | 60.04**  | 52.32**        |
| Dr 101 x Giza 83    | 3.33**     | 2.79**      | 4.35*   | 9.99**         | 37.29**        | 33.47**        | -0.27** | -0.23**        | 44.60**  | 44.36**        |
| Line 105 x Giza 83  | -0.21      | 1.17*       | 12.58** | 14.73**        | 12.10**        | 12.07**        | 0.15**  | 0.17**         | 42.33**  | 42.23**        |
| Dr 101 x Giza 111   | 1.04       | -0.67       | -7.04** | 9.72**         | 3.99*          | -1.62          | 0.16**  | 0.06           | 34.10**  | 4.93           |
| Line 105 x Giza 111 | -2.83**    | -1.63**     | -0.15   | -23.02**       | -5.04**        | -25.35**       | 0.11*   | 0.09           | -1.67    | -48.13**       |
| Line 105 x Dr 101   | -2.87**    | -2.38**     | -4.80*  | -23.18**       | -16.31**       | -22.05**       | 0.13**  | 0.02           | -28.22** | -50.52**       |
| LSD Sij 5%          | 1.31       | 1.03        | 4.31    | 4.00           | 3.69           | 2.80           | 0.09    | 0.10           | 12.26    | 12.06          |
| LSD Sij 1%          | 1.75       | 1.37        | 5.77    | 5.35           | 4.93           | 3.75           | 0.11    | 0.14           | 16.41    | 16.13          |
| LSD sij-sik 5%      | 2.36       | 1.86        | 7.80    | 7.23           | 6.66           | 5.06           | 0.15    | 0.18           | 22.16    | 21.79          |
| LSD sij-sik 1%      | 3.16       | 2.48        | 10.43   | 9.67           | 8.92           | 6.77           | 0.21    | 0.25           | 29.65    | 29.16          |
| LSD sij-skl 5%      | 2.19       | 1.72        | 7.22    | 6.69           | 6.17           | 4.69           | 0.14    | 0.17           | 20.51    | 20.17          |
| LSD sij-skl 1%      | 2.93       | 2.30        | 9.66    | 8.95           | 8.26           | 6.27           | 0.19    | 0.23           | 27.45    | 27.00          |

#### Table 6.Cont.

|                     | 100            | Seed           | yield          | Seed c         | ontent         | Seed content   |                  |                |
|---------------------|----------------|----------------|----------------|----------------|----------------|----------------|------------------|----------------|
| Crosses             | weig           | ght (g)        | /plan          | t (g)          | of prot        | ein %          | of oil %         |                |
|                     | $\mathbf{F}_1$ | $\mathbf{F}_2$ | $\mathbf{F}_1$ | $\mathbf{F}_2$ | $\mathbf{F}_1$ | $\mathbf{F}_2$ | $\mathbf{F}_{1}$ | $\mathbf{F}_2$ |
| Hardin x D89-8940   | -1.87**        | -1.14**        | 5.72**         | 4.67**         | -5.17**        | -3.67**        | 3.29**           | 1.99**         |
| Giza 83 x D89-8940  | 0.26*          | 0.11           | 2.65**         | 2.04*          | 1.40           | 1.88*          | -1.41**          | -1.30**        |
| Giza 111 x D89-8940 | $0.84^{**}$    | 0.84**         | 2.39**         | 3.28**         | 2.16**         | 2.93**         | -1.63**          | -1.38**        |
| Dr 101 x D89-8940   | -0.14          | -0.66**        | -1.09          | -6.05**        | -0.96          | -3.07**        | -0.81*           | -1.15**        |
| Line 105 x D89-8940 | -0.34**        | -0.62**        | 0.53           | -0.99          | -1.57*         | -2.42**        | 2.17**           | 1.91**         |
| Giza 83 x Hardin    | 0.41**         | 0.59**         | 3.71**         | -3.18**        | 1.09           | 2.37**         | -1.64**          | -1.29**        |
| Giza 111 x Hardin   | 1.94**         | 1.31**         | 9.74**         | 5.36**         | 3.66**         | 2.85**         | -2.18**          | -2.35**        |
| Dr 101 x Hardin     | 0.43**         | 0.05           | 7.12**         | 4.45**         | 1.47*          | -0.39          | -1.03**          | -1.27**        |
| Line 105 x Hardin   | 0.54**         | 0.74**         | -1.76*         | -1.98*         | -0.23          | -0.03          | -2.18**          | -1.66**        |
| Giza 111 x Giza 83  | 0.74**         | 0.63**         | 12.45**        | 10.30**        | 2.16**         | -3.88**        | 1.88**           | 1.62**         |
| Dr 101 x Giza 83    | 0.93**         | 0.62**         | 10.56**        | 9.08**         | -2.54**        | 2.51**         | $0.88^{**}$      | 0.50           |
| Line 105 x Giza 83  | -1.06**        | -0.65**        | 2.82**         | 3.85**         | -1.11          | 0.91           | -1.35**          | -0.89**        |
| Dr 101 x Giza 111   | -0.30**        | 0.42**         | 4.10**         | 1.55           | 1.26           | 2.78**         | 2.50**           | 3.25**         |
| Line 105 x Giza 111 | -0.79**        | -1.19**        | -3.12**        | -9.15**        | -3.10**        | -3.44**        | 0.25             | -0.46**        |
| Line 105 x Dr 101   | -0.70**        | -1.07**        | -6.03**        | -8.93**        | -1.51*         | -3.55**        | -0.32            | -0.96**        |
| LSD Sij 5%          | 0.23           | 0.27           | 1.63           | 1.80           | 1.44           | 1.43           | 0.62             | 0.61           |
| LSD Sij 1%          | 0.30           | 0.36           | 2.18           | 2.41           | 1.93           | 1.91           | 0.83             | 0.82           |
| LSD sij-sik 5%      | 0.41           | 0.49           | 2.94           | 3.26           | 2.61           | 2.58           | 1.12             | 1.11           |
| LSD sij-sik 1%      | 0.55           | 0.66           | 3.94           | 4.36           | 3.49           | 3.45           | 1.49             | 1.48           |
| LSD sij-skl 5%      | 0.38           | 0.45           | 2.72           | 3.01           | 2.42           | 2.39           | 1.03             | 1.02           |
| LSD sij-skl 1%      | 0.51           | 0.61           | 3.64           | 4.03           | 3.23           | 3.20           | 1.38             | 1.37           |

\* and \*\* referred to significant at both 5 and 1% levels of probability, respectively.

# Hayman approach.

# Analysis of variance.

The analysis of variance according to Hayman method is presented in Table 7. Results showed that mean squares due to additive (a) and dominance (b) components were highly significant for all studied traits in both F<sub>1</sub> and F<sub>2</sub> generations. The significant of both additive and nonadditive consider a clear evidence that both additive and non-additive gene actions were important in governing the inheritance of these traits. Also, the results showed that additive (a) component were larger than non-additive component in all studied traits and this may be indicated that the additive gene effect had the majority in the inheritance of these traits. This findings are in the same line with the result obtained by, Barelli et al., (2000) who indicated the preponderance of additive gene action in the inheritance of growth, yield and oil percentage of sovbean. Dominance direction (b<sub>1</sub>) and SCA (b<sub>3</sub>) components were significant for all studied traits in F1and F2 except for number of seeds/pod in F2 and both seed content of protein and oil in  $F_1$ , indicating the presence of directional dominance and specific dominance effects relative to individual crosses while the insignificant  $b_1$  and  $b_3$  for number of seeds/pod in F2 and both seed content of protein in F<sub>1</sub>confirmed the absence of directional and oil dominance and specific dominance effects relative to individual crosses. The genes' distribution (b<sub>2</sub>) component, were highly significant for all studied traits in both F<sub>1</sub> and F<sub>2</sub> except for number of seeds/pod in F<sub>2</sub>, indicating that gene asymmetry will presence of in the expression of the significant traits and absence in the insignificant one. The higher additive mean squares than the dominance mean squares reveal the predominance of additive effects on the control of all traits, although non-additive effects may also be involved these traits (Baker, 1978). Isik, et al., (2003) pointed that additive effects of genes are the main sources of genetic variation exploited by most breeding programs since it is responsible for setting the traits of interest. In this sense, the selection based on the morphological traits, which are useful in soybean breeding programs, can be carried out at initial generations due to the predominance of additive effects in segregation generations. This generates time savings in the evaluation, contributing to greater efficiency of breeding programs.

| Table 7. Ana | alysis of variance | according to Hayma | an method for all the s | studied traits in F1 ar | nd F <sub>2</sub> generations. |
|--------------|--------------------|--------------------|-------------------------|-------------------------|--------------------------------|
|              |                    |                    |                         |                         |                                |

| SOV        |     | Maturity period (day) |                | Plant he       | ight (cm)      | Number of      | pods/plant     | Number of seeds/pod |                |  |
|------------|-----|-----------------------|----------------|----------------|----------------|----------------|----------------|---------------------|----------------|--|
| 501        | D.F | F1                    | F <sub>2</sub> | $\mathbf{F}_1$ | F <sub>2</sub> | $\mathbf{F}_1$ | F <sub>2</sub> | F1                  | F <sub>2</sub> |  |
| a          | 5   | 309.34**              | 241.13**       | 1125.18**      | 1772.37**      | 1481.38**      | 1579.73**      | 0.05**              | 0.03**         |  |
| b          | 15  | 21.01**               | 48.12**        | 230.40**       | 257.24**       | 619.77**       | 450.25**       | 0.02**              | 0.01*          |  |
| b1         | 1   | 20.33**               | 33.60**        | 1298.29**      | 72.13**        | 3699.47**      | 290.83**       | 0.07**              | 0.01           |  |
| $b_2$      | 5   | 48.29**               | 87.41**        | 340.26**       | 484.99**       | 470.27**       | 559.83**       | 0.01**              | 0.01           |  |
| <b>b</b> 3 | 9   | 5.92**                | 27.90**        | 50.70**        | 151.28**       | 360.64**       | 407.09**       | 0.02**              | 0.01*          |  |
| Error      | 40  | 0.78                  | 0.48           | 8.50           | 7.31           | 6.21           | 3.58           | 0.0004              | 0.0003         |  |

\* and \*\* referred to significant at both 5 and 1% levels of probability, respectively.

#### Table 7. Cont.

| SOV                   | Number<br>of seeds/plant |                | 100-seed<br>weight |         | Seed<br>/pl    | yield<br>ant   | Seed c<br>of pro | ontent<br>tein % | Seed content<br>of oil % |                |                |
|-----------------------|--------------------------|----------------|--------------------|---------|----------------|----------------|------------------|------------------|--------------------------|----------------|----------------|
|                       | D.F                      | F <sub>1</sub> | $\mathbf{F}_2$     | F1      | $\mathbf{F}_2$ | $\mathbf{F}_1$ | $\mathbf{F}_2$   | F <sub>1</sub>   | $\mathbf{F}_2$           | $\mathbf{F}_1$ | $\mathbf{F}_2$ |
| a                     | 5                        | 8403.02**      | 7706.24**          | 10.26** | 10.29**        | 321.42**       | 272.78**         | 47.71**          | 30.85**                  | 7.22**         | 6.19**         |
| b                     | 15                       | 3170.19**      | 1807.94**          | 1.12**  | 0.93**         | 80.89**        | 50.53**          | 7.26**           | 9.15**                   | 3.50**         | 3.09**         |
| <b>b</b> 1            | 1                        | 25553.20**     | 1834.18**          | 0.19**  | 0.0004         | 578.40**       | 47.79**          | 2.06             | 4.15*                    | 0.58           | 2.76**         |
| <b>b</b> <sub>2</sub> | 5                        | 2202.01**      | 2348.80**          | 1.62**  | 1.84**         | 101.42**       | 87.15**          | 11.23**          | 10.01**                  | 2.18**         | 1.97**         |
| <b>b</b> 3            | 9                        | 1221.06**      | 1504.56**          | 0.94**  | 0.53**         | 14.20**        | 30.49**          | 5.63**           | 9.22**                   | 4.56**         | 3.74**         |
| Error                 | 40                       | 68.69          | 66.42              | 0.02    | 0.03           | 1.21           | 1.48             | 0.95             | 0.93                     | 0.17           | 0.17           |

## Estimates of genetic variance components:

The computed parameters for maturity period, plant height, seed yield and its components as well seed content of both protein and oil are presented in Table 8. From this table it could be clear that the additive genetic component (D) was highly significant for all traits in both  $F_1$  and  $F_2$ hybrids except number of seeds/pod in F<sub>1</sub>. It was an evidence for the importance of the additive effect in the inheritance of these traits. With regard to dominance genetic variations  $(H_1)$  and  $(H_2)$ , the results indicated that the highly significant and/or significant were presented in all studied traits in both F1 and F2 generations. Comparing between the magnitude of additive and dominance components revealed that, the dominance component was more importance than additive components for all traits in both generation except maturity period and this finding could be interest to breeder to use the hybrid vigor in  $F_1$ and F<sub>2</sub> to introduce hybrids with highly seed yield. Values of  $(H_2)$  were lower than those of  $(H_1)$  indicating the unequal proportions of positive U and negative V alleles at all loci for these traits. in this study additive component was larger than dominance component and both additive and dominance are important in the inheritance in all studied traits these results were in agree with those reported by Bhor et al., (2014) who found that both additive and non-additive gene effects were significantly involved in the expression of number of clusters and yield per plant with duplicate epistasis. Bi-parental mating design should be used to improve these characters. Complementary epistasis observed for days to 50% flowering, maturity plant height, pods per cluster and 100 seed weight suggests that selection can be practiced in segregation generation onwards for improvement of these characters. The significant of additive gene revealed that selection for this trait would be useful to start from the early segregating generation (Shinde, 2010). The significance of additive effect is indicative of the existence of parents who contribute to a greater number of favorable alleles for these traits to be transmitted to offspring (Ramalho et al., 2012). With respect to (F) parameter data showed that the values of (F) parameter was insignificant for all studied traits in  $F_1$ and  $F_2$  except for maturity period in both generations and seed yield/plant and oil percentage in F1. The insignificant values of (F) parameters for these traits may indicate that there is asymmetric gene distribution or the equality in the relative frequencies or dominant and recessive genes in the parent. On the other side, the (F) values were positive significant for maturity period in both generations. This finding indicates that the gene was more frequent in the parental lines and the majority for the dominant genes. Moreover, (F) value was negative significant for seed vield/plant in F<sub>1</sub> and this will refer to that the recessive gene were more frequent in the parental lines and the majority is for the recessive genes. For dominance effects of heterozygous loci (h<sup>2</sup>) highly significant and positive were presented for plant height, number of pods/plant, number of seeds / pod, number of seeds/plant and seed yield/plant in F1 and this indicate that dominance component over all heterozygous loci is important in the inheritance of these traits. The Significant of dominance effects reveal that there are deviations in the behavior of the hybrids compared to what was expected based on the parent's additive variation (Cruz, and Vencovsky 1989). The environmental variation (E) were not significant for all studied traits in both F1 and F2 indicating the absence of the environmental effect on these traits.

 Table 8. Estimates genetic variance components for all the studied traits of F1 and F2 generations, according to Hayman.

| Donom      | Maturity Period (day) |                | Plant he       | Plant height (cm) |                | Number of pods/plant |                | Number of seeds/ pod_ |                | Number of seeds/plant |  |
|------------|-----------------------|----------------|----------------|-------------------|----------------|----------------------|----------------|-----------------------|----------------|-----------------------|--|
| r ai aili. | $\mathbf{F}_1$        | $\mathbf{F}_2$ | $\mathbf{F}_1$ | $\mathbf{F}_2$    | $\mathbf{F}_1$ | $\mathbf{F}_2$       | $\mathbf{F}_1$ | $\mathbf{F}_2$        | $\mathbf{F}_1$ | $\mathbf{F}_2$        |  |
| <u>л</u>   | 297.10**              | 297.39**       | 512.64**       | 514.40**          | 477.61**       | 479.54**             | 0.01           | 0.01*                 | 2833.40**      | 2691.12**             |  |
| D          | ± 5.79                | $\pm 41.93$    | $\pm 86.84$    | ±120.72           | $\pm 179.99$   | $\pm 106.43$         | $\pm 0.01$     | $\pm 0.01$            | $\pm 834.32$   | ±410.20               |  |
| <b>U</b> 1 | 101.22**              | 226.35*        | 901.42**       | 1214.04**         | 2261.10 **     | 2006.71**            | 0.07**         | 0.04*                 | 10622.77**     | 7896.62**             |  |
| 111        | $\pm 14.70$           | $\pm 106.44$   | $\pm 220.44$   | $\pm 306.46$      | $\pm 456.91$   | $\pm 270.19$         | $\pm 0.02$     | $\pm 0.01$            | $\pm 2118.00$  | $\pm 1041.34$         |  |
| บา         | 58.80 **              | 148.97         | 605.75**       | 788.55**          | 1847.06**      | 1511.79**            | 0.06**         | 0.03*                 | 8714.78**      | 5852.61**             |  |
| 112        | $\pm 13.14$           | $\pm 95.09$    | ±19693         | ±273.77           | $\pm 408.17$   | $\pm 241.37$         | $\pm 0.02$     | $\pm 0.01$            | $\pm 1892.06$  | ±930.25               |  |
| E          | 222.10 **             | 294.04**       | 160.24         | -172.39           | -37.26         | -40.55               | -0.01          | 0.00                  | -356.13        | 16.53                 |  |
| Г          | $\pm 14.15$           | $\pm 102.43$   | $\pm 212.14$   | $\pm 294.92$      | $\pm 439.71$   | $\pm 260.02$         | $\pm 0.02$     | $\pm 0.01$            | $\pm 2038.25$  | $\pm 1002.12$         |  |
| h2         | 12.76                 | 21.52          | 835.83**       | 42.08             | 2394.49**      | 186.25               | 0.04**         | 0.00                  | 16521.14**     | 1152.30               |  |
| 11         | $\pm 8.84$            | $\pm 64.00$    | ±132.55        | $\pm 148.26$      | $\pm 274.73$   | $\pm 162.46$         | $\pm 0.01$     | $\pm 0.01$            | $\pm 1273.48$  | ±626.12               |  |
| E          | 0.75                  | 0.46           | 10.18          | 8.42              | 5.98           | 4.05                 | 0.00           | 0.01*                 | 74.03          | 65.73                 |  |
| Ľ          | ± 2.19                | $\pm 15.85$    | $\pm 32.82$    | ±45.63            | $\pm 68.03$    | $\pm 40.23$          | $\pm 0.00$     | $\pm 0.00$            | $\pm 315.34$   | $\pm 155.04$          |  |

\* and \*\* referred to significant at both 5 and 1% levels of probability, respectively.

Table 8. Cont.

| Domomotors | 100- seed                                              | weight (g)     | Seed yield     | /plant (g)     | Seed content   | of protein %   | Seed content of oil % |         |  |
|------------|--------------------------------------------------------|----------------|----------------|----------------|----------------|----------------|-----------------------|---------|--|
| rarameters | $\mathbf{F}_1$                                         | F <sub>2</sub> | F <sub>1</sub> | F <sub>2</sub> | $\mathbf{F}_1$ | F <sub>2</sub> | F1                    | F2      |  |
| D          | 3.20**                                                 | 3.19**         | 77.09**        | 72.57**        | 12.40**        | 7.37**         | 5.83**                | 5.83**  |  |
| D          | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\pm 1.08$     |                |                |                |                |                       |         |  |
| u.         | 5.11**                                                 | 4.46**         | 300.97**       | 231.69**       | 30.38**        | 37.27**        | 14.28**               | 12.31** |  |
|            | ±1.31                                                  | ±0.51          | ±75.88         | ±57.57         | ±8.05          | ±6.05          | ±2.24                 | ±2.74   |  |
| U.         | 3.68**                                                 | 2.84**         | 211.66**       | 155.19**       | 21.25**        | 29.20**        | 12.50**               | 10.71** |  |
| <b>Π</b> 2 | ±1.17                                                  | ±0.45          | ±67.79         | ±51.43         | ±7.19          | ±5.41          | ±2.01                 | ±2.45   |  |
| Б          | -1.49                                                  | -1.38          | -43.87**       | -26.98         | -7.79          | -4.07          | 4.41*                 | 4.97    |  |
| Г          | ±1.26                                                  | ±0.49          | ±73.02         | $\pm 55.40$    | ±7.75          | ±5.82          | ±2.16                 | ±2.64   |  |
| h2         | 0.11                                                   | -0.02          | 374.18**       | 30.17          | 0.63           | 2.00           | 0.25                  | 1.66    |  |
| 11         | ±0.79                                                  | ±0.31          | ±45.62         | ±34.61         | $\pm 4.48$     | ±3.64          | ±0.33                 | ±1.65   |  |
| E          | 0.02                                                   | 0.03           | 1.27           | 1.45           | 1.28           | 1.24           | 0.23                  | 0.23    |  |
| E          | ±0.19                                                  | $\pm 0.08$     | ±11.30         | ±8.57          | ±1.20          | ±0.90          | ±0.35                 | ±0.41   |  |

## **Estimates of genetic ratios:**

The results in Table 9 revealed that the average degree of dominance  $((H_1/D)^{0.5})$  was less than the unit for maturity period in both generations, indicating the persence of partial dominance in this trait while, H1/D)<sup>0.5</sup> was larger than the unit in all other traits in both  $F_1$  and  $F_2$  indicating that over dominance was involving these traits. Data in Table 9 showed that the  $H_2/4H_1$  ratios were close to 0.25 for pods number/plant, seeds number/pod, seeds number/plant and oil percentage in both F1 and F2 as well as protein percentage in F2. These findings indicating that the alleles have symmetrical distribution between the parents. In contrast, H<sub>2</sub>/4H<sub>1</sub>were not close to 0.25 for maturity period, 100-seed weight and seed yield/plant in both generations and protein percentage in F1 as clear evidence that non symmetry in the distribution of favorable and unfavorable alleles for the increase of these traits.

For dominant / recessive relationship  $K_D$  /  $K_R$  indicated that recessive alleles were larger than dominant ones for all studied traits in both  $F_1$  and  $F_2$  generations

except for maturity period and oil percentage in both seasons as well as plant height in  $F_1$  and number of seeds/plant in  $F_2$ . It was noticed through the data presented in Table 10 that the difference between the broad and narrow sense heritability values was small in all traits in both the  $F_1$  and  $F_2$  generations, except for the oil percentage in both generations as a clear evidence of the predominance of the additive genes over the dominant genes in these traits, as well as a great stability in those traits.

According to Brogin, *et al.* (2003) the broad heritability values are considered low when they are lower than 0.30, intermediate when they are between 0.30 and 0.60, and high when they are higher than 0.60. These authors also mention that a heritability greater than 30% allows genetic gains through selection in early generations of inbreeding, as in the  $F_3$  or  $F_4$  progenies. It is also shown that the heritability estimate refers to a population trait that is specific to the environment in which the genotypes were evaluated.

Table 9. Estimates genetic ratios for all the studied traits of  $F_1$  and  $F_2$  generations, according to Hayman.

| Dation                         | Maturity pe | Maturity period (day) |                | Plant height (cm) |                | pods/plant     | Number of seeds/ pod |                |
|--------------------------------|-------------|-----------------------|----------------|-------------------|----------------|----------------|----------------------|----------------|
| Kauos                          | F1          | F <sub>2</sub>        | $\mathbf{F}_1$ | F <sub>2</sub>    | $\mathbf{F}_1$ | F <sub>2</sub> | $\mathbf{F}_1$       | F <sub>2</sub> |
| $(H_1/D)^{0.5}$                | 0.58        | 0.87                  | 1.33           | 1.54              | 2.18           | 2.05           | 2.59                 | 1.77           |
| $H_2/4H_1$                     | 0.15        | 0.16                  | 0.17           | 0.16              | 0.20           | 0.19           | 0.21                 | 0.21           |
| K <sub>D</sub> /K <sub>R</sub> | 4.56        | 3.62                  | 1.27           | 0.80              | 0.96           | 0.96           | 0.65                 | 0.97           |
| h <sup>2</sup> (n.s)           | 0.79        | 0.52                  | 0.67           | 0.73              | 0.50           | 0.57           | 0.47                 | 0.41           |
| h^2 (b.s)                      | 0.99        | 0.99                  | 0.98           | 0.99              | 0.99           | 0.98           | 0.90                 | 0.77           |

#### Table 9. Cont

| D. (*                          | Number of seeds/plant |                | 100-seed weight (g) |                | Seed yield/plant (g) |                | Seed content of | Seed content of oil % |      |                |
|--------------------------------|-----------------------|----------------|---------------------|----------------|----------------------|----------------|-----------------|-----------------------|------|----------------|
| Ratios                         | F1                    | F <sub>2</sub> | F1                  | F <sub>2</sub> | F <sub>1</sub>       | F <sub>2</sub> | $\mathbf{F}_1$  | F <sub>2</sub>        | F1   | F <sub>2</sub> |
| $(H_1/D)^{0.5}$                | 1.94                  | 1.71           | 1.26                | 1.18           | 1.98                 | 1.79           | 1.57            | 2.25                  | 1.57 | 1.45           |
| $H_2/4H_1$                     | 0.21                  | 0.19           | 0.18                | 0.16           | 0.18                 | 0.17           | 0.17            | 0.20                  | 0.22 | 0.22           |
| K <sub>D</sub> /K <sub>R</sub> | 0.94                  | 1.00           | 0.69                | 0.69           | 0.75                 | 0.81           | 0.67            | 0.78                  | 1.64 | 1.83           |
| h <sup>2</sup> (n.s)           | 0.53                  | 0.61           | 0.76                | 0.81           | 0.66                 | 0.69           | 0.69            | 0.53                  | 0.32 | 0.30           |
| h <sup>2</sup> (b.s)           | 0.98                  | 0.98           | 0.99                | 0.99           | 0.99                 | 0.99           | 0.94            | 0.93                  | 0.95 | 0.94           |

# Wr/Vr Graphical analysis.

The results in fig 1 confirmed that the Wr/Vr graph showed that the regression line intercepted the Wr-axis under the origin point in both  $F_1$  and  $F_2$ , for number of pods/plant, number of seeds/pod, number of seeds/plant, seed yield/plant and seed content of oil indicating that the inheritance of this trait was governed by over dominance. While, the regression line intercepted the Wr-axis above the origin point for maturity period, plant height, 100-seed weight, and seed content of protein in both  $F_1$  and  $F_2$ generations indicating the presence of partial dominance.

The regression line slopes significantly deviate from the unit for all studied traits in both generations except maturity period in  $F_1$  as an indicator that epistasis was involved in the inheritance of the trait.

Line 105 for plant height, number of pod/plant,

number of seed/plant, 100-seed weight, seed yield/plant and seed content of protein, Dr 101 for maturity period and plant height, D89-8940 for number of pods/plant and G82 for oil percentage were closest to the origin point in both in both  $F_1$  and  $F_2$  as clear evidence that more dominant genes for these traits. On the other side, the farthest from the origin point in both generations was D89-8940 for maturity period, seed content of protein and oil percentage, Hardin for plant height, number of seeds/pod, number of seeds/plant and 100-seed weight and Giza 83 for number of pods/plant and seed yield/plant, seemed to carry most recessive genes for the expression of the previous traits.

The scattered distribution of array points on the regression line were shown for all the studied traits, except maturity period and this often confirmed the presence of genetic variation among parents in this trait.



 $F_1 \ Number \ of \ seed \ / \ plant \\ F_2 \ Number \ of \ seed \ / \ plant \\ F_3 \ L \ Wr \ yr \ graphs \ for \ all \ the \ studied \ traits \ of \ F_1 \ and \ F_2 \ generations.$ 





Fig. 1. Cont.

# REFERENCES

- Agrawal, A.P., P.M. Salimath and S.A. Patil (2005). Gene action and combining ability analysis in soybean (*Glycine max (L.*) Merrill). Indian J. of Legume Research., 28(1):7-11.
- AOAC. 1988. Official Methods of Analysis 21<sup>st</sup> Ed., Association of Official Agricultural Chemists, Washington, DC, USA.
- Baker R.J. (1978). Issues in diallel analysis. Crop Sci. 18: 533–536.
- Barelli, M. A. A., M. C. Goncalves Vidigal, A. T. Amaral Junior do, P. S. Vidigal Filho, C. A. Scapim, E. Sagrilo and A. T. do Amaral Junior (2000). Diallel analysis for grain yield and yield components in *Phaseolus vulgaris* L. Acta Scientiarum. 22(4): 883-887.
- Bhering, L.L., L.A. Peixoto and C.D. Cruz (2017). Selection of parents. In: Silva FL, Bore'm A, Sediyama T, Ludke W, editors. Soy improvement. Vic<sub>s</sub>osa: UFV; 2017.





- Bhor, T.J., V.P. Chimote and M.P. Deshmukh (2014). Genetic analysis of yield and yield components in soybean [*Glycine max* (L.) MERRILL]. Indian J. Agric. Res.., 48 (6) 446-452.
- Brogin, R. L., Arias, C. A. A., & de Toledo, J. F. F. (2003). Genetic control of soybean resistance to brown spot (*Septoria glycines*): first studies. Crop Breeding and Applied Biotechnology, 3(1), 35-44.
- Chen, H.H., (2008). Diallel analysis of the genetic regulation of protein and oil contents in soyabean. Agric. Sci., 44: 643-648
- Cho, T. and R.A. Scott (2006). Combining ability of seed vigor and seed yield in SABRAO J. Breed. Genet. 50 (1) 62-71
- Cruz, C. D., A. J. Regazzi and P. C. Carneiro (2012). Biometric Models Applied to Genetic Improvement. Viçosa: Editora UFV.
- Cruz, C.D. and Vencovsky R. (1989). Comparison of some methods of dialectical analysis. Rev. Bras. Gen. 12: 425–438.

- Durai, A.A. and B. Subbalakshmi (2010). Heterosis and combining ability in soybean for the traits of vegetable importance. Veg. Sci. 37(1): 48-51.
- El-Garhy, A. M., M. Shaaban, Ola A. M. EL-Galaly, M. M. Omran, E. H. El-Harty and S. B. Ragheb (2008). Combining ability and heterosis in some top crosses of soybean (Glycine max (L) merrill). Annals of Agric. Sci., Moshtohor, 46(1):45-53.
- El-Shaboury, Hoda M. G., Soheir A. Zein El-Abdien, S. A. Attia and M. Shaaban (2006). Heterosis and combining ability for yield and its components in soybean top crosses. J. Adv. Agric. Res., 11(1): 11-22.
- FAOSTAT, (2019). Food and Agriculture Organization of The United Nation.
- Fayiz, E. A. W. (2009). Diallel cross analysis for some quantitative characters in soybean. M. Sc. Thesis in Agronomy, Agronomy Department, Faculty of Agriculture, Tanta Uni., Egypt.
- Gardner, C. O. and A. S. Eberhart, (1966). Analysis and interpretation of the variety cross diallel and related populations. Biometrics, 22, 439-452.
- Gomez, K.A. and A.A. Gomez, (1984). Statistical Procedures for Agriculture Research 2<sup>nd</sup> Ed., Willey and Sons. Inc. New York. USA.
- Gravina, G.A., C.S. Sediyama, S.M. Filho, M.A. Moriera, E.G. Barror and C.D. Cruz (2004). Multivariate analysis of combining ability for soybean resistance to Cercospora sojina Hara. Genet. Mol. Biol. 27 (3): 395-399.
- Griffings, J.B. (1956). Concept of general and specific combining ability in relation to diallel crossing system. Aus. J. of Biol. Sci., 9:463-493.
- Hayman, B. I. (1954a). The analysis of variance of diallel tables. Biometrics, 10, 235-244.
- Hayman, B. I. (1954b). The theory and analysis of diallel crosses. Genetics, 39, 789-809. PMid: 17247520.
- Iqbal M.M., R. Noshin, Din and S.J. Khan (2003). Use of diallel analysis to examine the mode of inheritance of agronomic and quality parameters in F<sub>1</sub> generation of brown mustard (Brassica juncea L. Czern and Coss). Asian J. Pl. Sci. 2(14): 1040-1046.
- Isik, F., B. Li and J.Frampton (2003). Estimates of additive, dominance and epistatic genetic variances from a clonally replicated test of loblolly pine. Forest Sci. 49: 77-88.
- Mansour, S .H. (2002). Genetic analysis of yield, yield components and earliness in two soybean crosses. J. Adv. Agric. Res. Fac. Agric. Saba Basha., 7(1):1-11.

- Mansour, S .H., Kh. A. AL-Assily, M. S .A. Mohamed and M.S. Said (2002b). Estimation of heterosis and combining ability in soybean (Glycine max (L.) Merril) by diallel cross analysis. Menoufiya J. Agric .Res., 27 (3):487-497.
- Mansour, S .H., Kh. A. AL-Assily, M. S .A. Mohamed, M.I. Abdel- Mohsen and M.H. Bastawisy (2002a). Estimation of soybean top crosses for seed yield and other agronomic characters. J. Agric. Sci. Mansoura Univ., 27 (5): 2809-2819.
- Mather, K. and J.L. Jinks, 1971. Biometrical Genetics (2nd ed). Chapman and Hall Ltd., London, pp: 382. Raut, V.M., G.B. Halwankar and V.P. Patil, 1988. Heterosis in soybean. Soybean Genetics Newsletter, 15: 57-60.
- Nassar, M.A.A. (2013). Heterosis and combining ability for yield and its components in some crosses of soybean. Australian Journal of Basic and Applied Sciences, 7(1): 566-572.
- Paschal, E. H. and J. R. Wilcox (1975). Heterosis and combining ability in exotic soybean germplasm. Crop Sci.,5(2):1272-1301.
- Perez, P.T.; S. Clanzio and R.G. Palmer (2009). Evaluation of Soybean [Glycine max (L.) Merr.] Fl hybrids Journal of Crop Improvement., 23:1-18.
- Pimentel, A.J.B., M.A. Souza, P.C.S. Carneiro, J.R.A.S.C. Rocha, J.C. Machado and G. Ribeiro (2013). Partial diallel analysis in advanced generations for selection of wheat segregating populations. Pesq. Agropec. Bras. 48: 1555-1561.
- Ramalho, M.A.P., D.F. Ferreira and A.C. Oliveira (2012). Experimentation in genetics and plant breeding. UFLA: Lavras, Brazil, 2012.
- Shinde, S.R. (2010). Inheritance of resistance to leaf rust caused by Phakopsora pachyrhizi syd. and quantitative characters in soybean [(Glycine max (L.)]. Ph. D. thesis submitted to Mahatma Phule Krishi Vidyapeeth, Rahuri 90-104.
- Shiv, D., P.R. Sharma, K.N. Singh and K. Mukul (2011). Combining ability analysis for yield and other quantitative traits in soybean (Glycine max L. Merril). Indian J. Plant Genet. Resour., 24 (3): 353-355.
- Soybean meal (2019). Retrieved April 16, 2019.
- Waly, F.E. (2015). Evaluation of soybean diallel crosses under drought conditions for yield and its Ph.D. components. Thesis in Agronomy, Agronomy Department, Faculty of Agriculture, Benha Uni., Egypt.

القدرة على التآلف ومكونات التباين الوراثي للمحصول ومكوناته لهجن فول الصويا التبادلية في الجيل الأول والثاني فايز السيد والى و رضاً على إبراهيم . قسم بحوث المحاصيل البقولية- معهد بحوث المحاصيل الحقلية- مركز البحوث الزراعية- الجيزة-مصر

تم تقدير القدرة على التالف ومكونات النباين الوراثي لسنة أباء من فول الصويا مع هجنهم النصف تبادلية في الجيلين الأول والثاني في المزرعة البحثية لمحطة البحوث الزراعية بإيتاي البارود خلال المواسم 2017 و2019 و2019. كان التباين الراجع إلى التراكيب الوراثية؛ الأباء, الهجن وقوة الهجين كان عالى المعنويةً لجميع الصفات المدروسة في كلا الجيلين باستثناء قوة الهجين لمحتوى البراعي وترادع. لمن سببي الرابع في الجيل الورابية ، وتربي الهجن وتروا الهجين على على المعقوية المجمع الصفات المدروسة في كلا الجيلين باستثناء قوة الهجين لمحتوى البنرو من البروتين والزيت في الجيل الأول بالإضافة إلى عدد البذور/القرن ووزن 100 بذرة في الجيل الثاني. كان التباين الراجع لكل من القدرة العامة والخاصة على التألف معنويا لجميع الصفات في كلا الجيل الأول والإضافة إلى عدد البذور/القرن ووزن 100 بذرة في الجيل الأول بالإضافة إلى عدد البذور/القرن ووزن 100 بذرة في الجيل الثاني. كان التباين الراجع لكل من القدرة العامة على التألف معنويا لجميع الصفات في كلا الجيل الألى باستثناء القدرة العامة والخاصة على التألف أعلى من الوحدة لجميع الصفات المدروسة في كلا الجيلين. كان تباين الإسافة إلى كان التباين الراجع لكل من القدرة العامة والخاصة على التآلف معنويا لجميع من الوحدة لجميع الصفات المدروسة في كلا الجيل الألى كان التباين الراجع لكل من القدرة العامة والخاصة على التآلف معنويا لحمي من الوحدة لجميع الصفات المدروسة في كلا الجيلين. كان تابين الراجع لكل من القدرة العامة والخاصة على التآلف ألم معنويا لحمي من الوحدة لجميع الصفات المدروسة في كلا الجيلين. كان تباين القدرة العامة والخاصة على التآلف أعلى من الوحدة لجميع الصفات المدروسة في كلا الجيلين. كان تابين القدرة العامة والخاصة على التآلف أعلى من الوحدة لجميع الصفات المدروسة في كلا الجيلين. كان تباين الإضافة (أ والسيادة (ب) عالى المعنوبة لجميع الصفات المدروسة في كلا من الجيل الأول والثانى. في كلا الجيلين، أعطت الأباء دى أر 101 وجيزة اً 11 والهجن جيزة111 × جيزة83 ، دى أر 101× جيزة83 ، دى أر 101 × جيزة111 أعلى محصول بذور/نبات. أظهر الصنف دى أر 101 معنوبة سالبة في فترة النضج بالإضافة إلى تأثير معنوي موجب في معظم الصفات المحصولية للقدرة العامة على التآلف في كلا الجيلين. تم الحصول على أعلى تأثير موجب للقدرة الخاصة على التآلف في محصول البذور / نبات من الهجينين جيزة111 × جيزة83 ودي أر 101 × جيزة83 في كلا الجيلين. كانت التباين الإضافي (د) والسيادي (ها و ه ) عالى المعنوية في كلا الجيلين ما عدا عدد البذور /قرن في الجيل الأول. تعتبر طريقة سجلات النسب طريقة ممتازة لإنتخاب سلالات مميزة في الأجيال الإنعز البة المبكرة لهذه الدر اسة.