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Inorganic phosphate (Pi) is reabsorbed in the renal proximal convoluted tubules
mainly via the electrogenic sodium dependent phosphate cotransporter NaPi Type lla
(NaPi-11a). The isoforms of NaPi-Ila have been cloned from different species such as
rat (NaPi-2). Serum and glucocorticoid-induced kinase 1 (SGK1) and rat sodium
dependent phosphate cotransporter (NaPi-2) are highly expressed in the brush border
membrane (BBM) of proximal tubule cells. The significance of the kinase in
regulation of sodium dependent phosphate cotransporter (NaPi-2) has, however,
remained elusive. On the other hand, the carboxyl-terminal tail of NaPi-2 contains
information for apical expression, and interacts by means of its three terminal amino
acids with several PSD95/DglA/ZO-1-like domains (PDZ)-containing proteins such
as Na'/H" exchanger 3 regulatory factors NHERF1 or NHERF2. Both, NHERF1 and
NHERF2 modulate the targeting and trafficking of several proteins into the plasma
membrane. Trafficking of the Na’/H" exchanger NHE3 is controlled by NHE
regulating factor NHERF2 and serum and glucocorticoid-inducible kinase SGK1. To
test for a possible involvement in NaPi-2 regulation, cRNA encoding NaPi-2 was
injected into Xenopuslaevis oocytes with or without additional injection of cRNA
encoding SGK1 and/or NHERF2. Using two-electrode voltage-clamp, the transport
activity was quantified as the substrate-induced current. Exposure to 1 mM
phosphate induced an inward current (Ip) in NaPi-2 expressing oocytes but not in
water injected oocytes. Coexpression of SGK1 in NaPi-2 expressing oocytes
significantly ~stimulated the phosphate-induced inward current. Moreover,
coexpression of NHERF2 also significantly stimulated the phosphate-induced inward
current in NaPi-2 expressing oocytes. The effect of SGK1 on NaPi-2 is mimicked by
additional coexpression of NHERF2. The observations suggest that SGK1 and
NHERF2 regulate NaPi-2 activity and are thus likely to participate in the stimulatory
effect of some hormones, such as growth hormone and insulin, on renal phosphate
transport. The present results thus disclose novel signaling mechanisms regulating
NaPi-2 activity and renal phosphate transport, which may be important for regulation
of phosphate homeostasis.
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INTRODUCTION

The maintenance of Pi homeostasis is a critical

the brush border and exit at the basolateral cell
membrane (Biber and Murer, 1994). One of the key
components involved is sodium dependent phosphate

event to the appropriate growth and well-being of both
young and adult animals (Adedokun and Adeola,
2013), because it is necessary for the development,
maintenance, and repair of bone and tissues
(Mulroney et al., 2004). The major regulation of Pi
homeostasis occurs at the kidney (Tenenhouse and
Murer, 2003). The homeostasis of Pi is maintained via
renal glomerular filtration followed by tightly
controlled  tubular  reabsorption  (Prasad and
Bhadauria, 2013). The renal tubular reabsorption of
phosphate requires cellular phosphate uptake across

cotransporter system localized in the brush border
membrane of the tubular epithelium which mediates
the uptake of Pi against the electrochemical gradient
from primary urine into the cell (Forster et al., 1997).

The sodium dependent phosphate cotransporter
systems mediating the transport have been classified
in three different types according to both molecular
and functional characteristics (Albano et al., 2015).
Type | cotransporter (NaPi-1) induces an anion
channel (Yanagawa et al., 1999), type lla is the renal
brush  border sodium  dependent phosphate
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cotransporter and type Ilb is found apically in many
tissues including the small intestine and the lung, but
not the kidney (Murer et al., 2000). Type il
cotransporters are being found every where including
renal tubules (Werner and Kinne, 2001).

The isoforms of the type Il sodium dependent
phosphate cotransporters from several mammalian
species have been cloned such as the rat (NaPi-2) and
human (NaPi-3) (Magagnin et al., 1993), opossum
kidney (NaPi-4) (Sorribas et al., 1994), flounder
(NaPi-5) (Forster et al., 1997), rabbit (NaPi-6) (Verri
et al., 1995) and murine (NaPi-7) (Hartmann et al.,
1995). The type Il cotransporters in the renal brush
border are rate limiting for renal tubular phosphate
reabsorption in the respective species (Murer, 1992).

The type Il sodium dependent phosphate
cotransporters are tightly regulated by parathyroid
hormone (PTH) (Traebert et al., 2000) which inhibits
proximal tubular  phosphate reabsorption by
stimulation of NaPi-internalization and degradation
(Pfister et al., 1998). Further hormones regulating
renal tubular phosphate transport include insulin (Li et
al., 1996) and growth hormone (Costanzo et al.,
1974), which mediates its effect through IGF-1
(Hammerman et al., 1980). Insulin (Bandyopadhyay
et al., 1999) and insulin like growth factor IGF-1
(Vanhaesbroeckand Alessi, 2000) are both known to
stimulate PI3 kinase, which has previously been
demonstrated to enhance insertion of NaPi into the
cell membrane (Pfister et al., 1999). Downstream
targets of PI3 kinase include phosphoinositol
dependent kinase 1 (PDK1) (Park et al., 1999), which
activates the protein kinase B (PKB) (Vanhaesbroeck
and Alessi, 2000) and Serum and glucocorticoid-
inducible kinase SGK1 (Kobayashi and Cohen, 1999).

PDZ-binding motifs are found in the C-terminal tails
of numerous integral membrane proteins where they
mediate specific protein-protein interactions by
binding to PDZ-containing proteins (Yun et al., 2002).
The C-terminal tail of NaPi-2 contains a PDZ binding
motif, which may bind to the PDZ domains of NHE
regulating factors NHERF1 or NHERF2. Both,
NHERF1 and NHERF2 are expressed in the proximal
renal tubule (Shenolikar and Weinman, 2001).
Moreover, it has been shown that NHERF1 bind to the
NaPi-2 and play a role in the apical expression of
these cotransporters (Hernando et al., 2002). Thus, the
possibility was considered that NHERF2 also
participates in the regulation of NaPi-2 activity.

Recent experiments disclosed a role of serum and
glucocorticoid dependent kinase SGK1 in the
interaction of NHE3 with NHERF2 (Yun, 2003; Yang
et al., 2014). SGK1 has originally been cloned as a
glucocorticoid sensitive gene from rat mammary
tumor cells (Firestone et al., 2003). The human
isoform has been identified as a cell volume regulated
gene (Waldegger et al., 1997). Subsequent studies
revealed the genomic regulation of SGK1 by

aldosterone (Cowling and Birnboim, 2000), 1,25
(OH),D;3 (Akutsu et al., 2001), TGFR (Waldegger et
al., 1999) and a variety of further cytokines (Lang and
Cohen, 2001).

SGK1 is expressed in a wide variety of human
epithelial tissues including intestine, kidney and
placenta (Waldegger et al.,, 1997; Wallace et al.,
2011). Thus, they may participate in the regulation of
transport in those tissues. Similarly NaPi-2 and
NHERF2, SGK1 is expressed in the rat proximal renal
tubule and OK cells (Fuster et al., 2007) and may well
participate in the regulation of NaPi-2.

The present experiments have been performed to
explore whether rat type Ila sodium dependent
phosphate cotransporter (NaPi-2) is regulated by
SGK1 and NHERF2. To this end, cRNA encoding
wild-type rat NaPi-2 has been injected with or without
cRNA encoding NHERF2 and/or wild-type SGK1
into Xenopusleavis oocytes.

MATERIALS and METHODS

CcRNA synthesis

cRNA encoding the wild-type rat sodium dependent
phosphate cotransporter NaPi-2 (Werner et al., 1991),
the Serum and glucocorticoid-inducible kinase SGK1
(Kobayashi et al., 1999), and the Na'/H" exchange
regulating factor NHERF2 (Yun et al., 2002) were
synthesized in vitro as described previously (Busch et
al., 1995; Forster et al., 1997; Wagner et al., 2000).

Expression in Xenopus laevis oocytes

Dissections of Xenopuslaevis ovaries, collection, and
handling of the oocytes were done as described by
Wagner et al., 2000. Oocytes were injected with 7.5
ng SGK1 and/or 5ng NHERF2 cRNA on the first day
after preparation of the oocytes. On the second day
after preparation 1ng wild-type rat NaPi-2 was
injected. Control oocytes were injected with H,O. All
steps were performed at room temperature 3-8 days
after injection of the respective cCRNAs.

Voltage-clamp analysis

As shown in Fig. 1, two electrode voltage clamp
recordings were performed at a holding potential of -
50 mV. The data were filtered at 10 Hz and recorded
with MacLab digital to analog converter and software
for data acquisition and analysis (AD Instruments,
Castle Hill, Australia). The control bath solution
(ND96) contained 96 mMNaCl, 2 mMKCI, 1.8 mM
CaCl,, 1 mM MgCl, and 5 mM HEPES, pH 7.4.
Where indicated, phosphate was added at 1 mmol/I.
The final solutions were titrated to the pH 7.4 using
HCI or KOH. The flow rate of the superfusion was 20
ml/min and a complete exchange of the bath solution
was reached within about 10 s. In two electrode
voltage clamp experiments substrate induced currents
were recorded following the application of phosphate.
The magnitude of the induced currents varied two- to
fivefold, depending on the time period after cRNA
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injection and on the batch of oocytes (from different
animals). Thus, comparisons were made only within
the same batch of oocytes.

Fig. 1: The two-electrode voltage-clamp. The voltage
recording electrode ey monitors the membrane
potential; this is compared with a command voltage
V., and the magnified difference is applied to a current
injection electrode, e,. A bath electrode eg serves as
the return path for the injected current.

Statistical analysis

Data are provided as means + SEM, n represents the
number of oocytes investigated. All experiments were
repeated with at least 3 batches of oocytes; in all
repetitions qualitatively similar data were obtained.
All data were tested for significance using the Student
t-test, and only results with P< 0.05 were considered
as statistically significant.

RESULTS

NaPi-2 induced inward currents

Addition of phosphate (1 mM) to Xenopusleavis
oocytes expressing NaPi-2 led to an inward current
(Ip) approaching -4.7 £ 0.5 nA (n = 14) at a holding
potential of -50 mV (Fig. 2). Water injected oocytes,
not injected with NaPi-2, did not show any
electrogenic phosphate transport and the phosphate
induced inward currents were negligible (-0.3 £ 0.1
nA, n=8).
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Fig. 2: Phosphate induced inward current (IP) in
Xenopus oocytes expressing NaPi-2. Xenopuslaevis
oocytes were injected with either water (H,O), or
cRNA encoding wild-type rat type Ila sodium
dependent phosphate cotransporter (NaPi-2) alone.
Addition of 1 mM phosphate into ND96 solution
induced inward current in Xenopus oocytes expressing
NaPi-2. In contrast, very small phosphate-induced
inward current was observed in H,O-injected oocytes
may be due to expression of endogenous proteins. *
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indicates statistically significant difference to current
in H,O-injected oocytes.

Stimulation of  NaPi-mediated
coexpression of SGK1

As shown in Fig. 3, coexpression of SGK1 led to a
marked increase of phosphate induced inward currents
in NaPi-2 expressing oocytes. Significantly (p < 0.05)
higher phosphate induced inward currents were
observed in oocytes injected with SGK1 and NaPi-2 (-
7.4 £ 0.9 nA, n = 14) than the respective value in
oocytes expressing NaPi-2 alone.
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Fig. 3: Phosphate induced inward current (Ip) in
Xenopus oocytes expressing NaPi-2 with SGKI1.
Xenopuslaevis oocytes were injected with either
cRNA of encoding wild-type rat type lla sodium
dependent phosphate cotransporter (NaPi-2) alone or
together with SGK1. Coexpression of SGK1 with
NaPi-2 significantly stimulated the phosphate induced
inward current (Ip) in contrast to coexpression of
NaPi-2 + H,O (*p < 0.05). * indicates statistically
significant difference to current in Xenopus oocytes
expressing NaPi-2 alone.

Stimulation of  NaPi-mediated
coexpression of NHERF2

Coexpression of NHERF2 together with NaPi-2
increased significantly phosphate-induced inward
currents in NaPi-2 expressing oocytes (Fig. 4).
Significantly (p < 0.05) higher phosphate induced
inward currents were observed in oocytes injected
with NHERF2 and NaPi-2 (-8.4 £ 0.9 nA, n = 14) than

currents by

phosphate induced inward currents in oocytes
expressing the cotransporter alone.
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Fig. 4: Stimulation of NaPi-2 transport activity by
NHERF2. Xenopuslaevis oocytes were injected with
cRNA of wild-type rat type lla sodium dependent
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phosphate cotransporter (NaPi-2) alone or together
with NHERF2. Coexpression of NHERF2 with NaPi-
2 significantly increased phosphate induced inward
currents in contrast to coexpression of NaPi-2 + H,0
(*p < 0.05). * indicates statistically significant
difference to current in Xenopus oocytes expressing
NaPi-2 alone.

NHERF2 further increase the effect of SGK1on the
NaPi-mediated currents

As shown in Fig. 5, upon coexpression of NaPi-2 with
both, SGK1 and NHERF2, phosphate induced inward
currents were significantly larger than phosphate
induced inward currents in oocytes expressing NaPi-2
with SGK1 or NaPi-2 with NHERF2 alone. In
Xenopus oocytes coexpressing NaPi-2 together with
both, NHERF2 and SGK1, phosphate induced inward
currents approached -12.9 £ 1.5 nA, n = 14).
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Fig. 5: Phosphate induced inward current (lp) in
Xenopus oocytes expressing NaPi-2 with or without
coexpression of SGK1. and/or NHERF2.
Xenopuslaevis oocytes were injected with cRNA
encoding wild-type rat lla sodium dependent
phosphate cotransporter (NaPi-2) alone or NaPi-2
together with cRNA encoding SGK1 and/or NHERF2.
Coexpression of SGK1 enhances Phosphate induced
inward current (Ip), an effect potentiated by additional
expression of NHERF2 (*p < 0.05). * indicates
significant difference between expression of NaPi-2
alone, or with SGK1, or NHERF2 and coexpression of
NaPi-2 together with both, SGK1 and NHERF2.

DISCUSSION

The present experiments disclose two completely
novel mechanisms involved in the regulation of renal
tubular phosphate transport, i.e., the regulation by
NHERF2 and by the protein kinase SGK1. The kinase
increases the NaPi-2 activity and stimulates NaPi-2
mediated phosphate transport. As shown for SGK1,
the effect is potentiated by additional coexpression of
NHERF2. The effect is at least partially due to
stimulation of the insertion of the carrier into the cell
membrane and delaying the endocytotic retrieval of
NaPi-2 cotransporter (Fig. 6).
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Fig. 6: Proposed model of NaPi-2 cotransporter
regulated by SGK1 and NHERF2. The
SGK1/NHERF2 stimulates the insertion of new NaPi-
2 cotransporters into the plasma membrane and delay
the endocytoticretrival of NaPi-2 cotransporters.

In this respect the action of the kinase mimicks that of
P13 kinase (Pfister et al., 1999). In analogy, the serum
and glucocorticoid dependent kinase (SGK1)
(Webster et al., 1993; Waldegger et al., 1997), another
downstream target of PI3 kinase (Kobayashi and
Cohen, 1999) stimulates Na® channel activity
similarly by fostering of channel insertion into the cell
membrane (De la Rosa et al., 1999). The SGK1 thus
presumably mediates the stimulating effect of IGF-1
on epithelial Na* channel activity (Blazer-Yost and
Cox, 1988; Blazer-Yost et al., 1992; Blazer-Yost et
al., 1996).

SGK1 is not constitutively active but requires
activation by phosphorylation. The upstream kinase is
the phosphoinositol dependent kinase PDK1 which is
in turn activated by IGF-1 through PI3 kinase
(Kobayashi and Cohen, 1999; Park et al., 1999). IGF-
1 has indeed been shown to stimulate phosphate
transport (Caverzasio et al., 1985; Caverzasio and
Bonjour, 1988) and inhibition of P13 kinase leads to
internalization and subsequent lysosomal degradation
of NaPi (Pfister et al., 1999).

CONCLUSIONS

Rat type lla sodium dependent phosphate
cotransporter (NaPi-2), Serum and glucocorticoid-
inducible kinase 1 (SGK1), and Na'/H® exchange
regulating factor 2 (NHERF2) are expressed in rat
proximal renal tubules. Coexpression of SGK1
enhances NaPi-2 activity and stimulates phosphate
transport through NaPi-2, an effect potentiated by
coexpression of NHERF2. SGK1 may mediate the
effect of IGF-1 and insulin on renal tubular phosphate
transport which stimulates SGK1 through PI3 kinase
and PDK1. Thus, the present observations unravel a
novel signaling pathway in renal tubular transport
regulation.
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