
# Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.



The journal of Toxicology and pest control is one of the series issued twice by the Egyptian Academic Journal of Biological Sciences, and is devoted to publication of original papers related to the interaction between insects and their environment.

The goal of the journal is to advance the scientific understanding of mechanisms of toxicity. Emphasis will be placed on toxic effects observed at relevant exposures, which have direct impact on safety evaluation and risk assessment. The journal therefore welcomes papers on biology ranging from molecular and cell biology, biochemistry and physiology to ecology and environment, also systematics, microbiology, toxicology, hydrobiology, radiobiology and biotechnology.

www.eajbs.eg.net

Egypt. Acad. J. Biolog. Sci., 9(3): 197-202 (2017) Egyptian Academic Journal of Biological Sciences F. Toxicology & Pest control

ISSN: 2090 - 0791

<u>www.eajbs.eg.net</u>



Control of Root Lesion Nematode *Pratylenchus* spp. Infesting Potato Cv. Spunta Under Field Conditions Through Biotic Products.

Hoda Hussein Amin Mohammed and Usamy Samy Fathy Elkelany Mailing address: Plant Pathology Department, Nematology Lab., National Research

Centre Buhouth st. Dokki, Giza Egypt.

Email: usamasamy\_nrc@yahoo

## **ARTICLE INFO**

Article History Received: 5/9/2017 Accepted:11/11/2017

*Key words:* Root Lesion Nematode . Egypt potato

## ABSTRACT

In Egypt potato is the most popular solanaceous vegetables either for local consumption and exportation. Previous investigations showed that potato have been attacked by many plant parasitic nematodes. The root-lesion nematodes (Pratylenchus spp.) are economically the most important plant pathogens after root knot nematodes. They cause an average growth inhibition of 59.6% of infected potato seedlings with losses in tuber yields of 20-50% and in total plant weight of 50%. Producers have relied mainly on nematicides and chemical fertilizers to control plant parasitic nematodes and improved soil fertility, but their applications are associated with myriads of problems on human health and environment. Due to the consumer demand for chemicalsfree food the main goal of this work is to evaluate the potentialities of some commercial bioproducts in controlling root lesion nematodes Pratylenchus spp. infecting potato cv. Spunta and improving yield production, under field conditions. The bioagents that have been assessed and their commercial name are Microbien containing the N2 fixing bacteria Pseudomonas spp. and Bacillus megatherium, Potassiumag containing the potassium solubilizing bacterium Bacillus circulanes and Phosphorine contain the phosphorus solubilizing bacterium Bacillus megatherium, Nemafree containing Serratia spp. theStanes Symbion VAM Plus containing the vascular arbiscular miccorhiza Glomus fasciculatum and the Stanes Sting containing the rhizobacteria Bacillus subtilis. A field experiment was conducted at Kafrkandeel village, Giza governorate, Egyptto investigate the integration effects between these products to control Pratylenchus pp. and improve potato yield production cv. Spunta. The combined treatments are 1-Biofertilizers (Microbien, Phosphorine, Potassiumag) 2- Biofertilizers plus stanes Symbion, 3- Biofertilizers plus Nemafree4- Biofertilizers, plus Stanes Sting 5- untreated plant using as control. Obtained results after three months showed that all the tested combinations reduced Pratylenchus spp. both in soil and rootsby different rates, as well as increased potato yield production as compared to untreated control treatment. The highest increase in potato yield production 30% over control resulted from the application of the bionematicides Stanes Sting containing Bacillus subtilis in combination with the biofertilizers Microbien, Phosphorine and Potassiumag.

#### INTRODUCTION

Potato, *Solanum tuberosum* L. is a good source of carbohydrates. Root-lesion nematodes of the genus *Pratylenchus* are recognized worldwide as one of the major constraints of potato cultivation mainly in light soil (Philis, 1995). These nematodes are migratory endoparasite, moving in and out of the host plant roots, leaving a trail of necrotic tissue in its walk causing an average growth inhibition of 59.6% of infected potato seedlings with losses in tuber yields of 20-50% and in total plant weight of 50% (Bernard and Laughlin, 1976).

In addition, association of these nematodes with other soil borne pathogens caused more economic losses agricultural crops (Powell to and Nusbaum, 1960). Chemical nematicides have been the primary management tool of plant parasitic nematodes for over fifty years but their applications are associated with myriads of problems. Consequently, chemical control may no longer be a good option (Ploeg, 2002). The recent drive to produce vegetables free of chemical residues and increased concern for the environment and human health led to innovate and develop alternative control approaches which are environmentally safe. One possible alternative is the use of biocontrol strategies which involve the application of microbes antagonistic to nematodes.

The main goal of this work is to evaluate the potentialities of some microorganisms which known to have potential as biocontrol and biofertilizer against nematodes in their agents products (Stanes commercial Sting contains Bacillus Nemafree subtilis, contains Serratia spp. and Stanes Sambion contains the vesiculararbuscular mycorrhizal Glomus play fasciculatum. and that as biofertilizers Microbien contain the N2fixing bacteria Pseudomonas spp. and Bacillus megatherium, Phosphorine solubilizing phosphate contains the bacteria Bacillus megatherium and Potassiumag contains potassium solubilizing bacteria Bacillus circulanes to manage potato cv. Spunta production

grown in field naturally infested with root lesion nematode *Pratylenchus* spp.

## **MATERIALS AND METHODS**

Field experiments were carried out at Kafr-kandeel village, Giza governorate to evaluate the effectiveness of certain commercial bionematicides combined with some biofertilizers for controlling root lesion nematode Pratylenchus spp on potato cv. Spunta. The chosen field naturally infested area was with Pratylenchus spp. The experimental field was divided into plots, each of 6m long, 1m apart and the distance between hills was 0.5m where potato eyes were planted in rows. **Bionematicides** and biofertilizers combined treatments were designed as shown in Table (1) and each one was replicated four times in completely randomized block design. Tested formulations were applied, as labeled using rate equivalent to field application rate. Soil population densities of *Pratylenchus* spp. were initially determined prior to planting time and at the end of the growing season of such treatment Each treatments. was represented by ten compressed samples each comprised three samples. Nematode extraction and counting were done as described by (Barker, 1985). Means of the ten compressed samples were used to calculate the numbers of nematode population per 1kg soil, for each treatment. At harvest time; three months after application, potato tubers were hand-harvested and yield was determined as tons /Feddan, for each treatment and the nematode final population were expressed as nematodes/kg soil.

 Table 1: Different treatments of bionematicides and biofertilizers for controlling *Pratylenchus* spp. on potato cv. Spunta under field conditions.

| Treatments |                                                      |  |  |  |
|------------|------------------------------------------------------|--|--|--|
| 1          | Untreated control                                    |  |  |  |
| 2          | Microbien, Phosphorine, Potassiumag (Biofertilizers) |  |  |  |
| 3          | Biofertilizers plus Stanes Symbion                   |  |  |  |
| 4          | Biofertilizersplus Nemafree                          |  |  |  |
| 5          | BiofertilizersplusStanes Sting                       |  |  |  |

Plants were carefully dug out and gently washed to remove the adhering soil particles from the root surface. Excess water was removed by blottingpaper before weighing shoots and roots separately. Nematode population from 5g roots was extracted and counted as mentioned by (Southey 1970).

Percentage nematode reduction in soil was determined according to Henderson and Tilton formula (Puntener, 1981) as follows.

Nematode population reduction (%) =  $[1-(\frac{PTA}{PTB} \times \frac{PCB}{PCA})] \times 100$  Where: PTA=

Population in the treated plot after application, PTB= Population in the treated plot before application, PCB= Population in the check plot before application and PCA= Population in the check plot after application.

#### RESULTS

Table (2) illustrates the effects of aforementioned bioproducts the in controlling the lesion nematodes Pratylenchus spp. infecting potato cv. Spunta under field conditions. Data revealed that all treatments reduced Pratylenchus spp. numbers in soil and roots with different rates as compared with the untreated control. At harvest time (three months after application) the application of biofertilizers with B. subtilis exhibited the highest efficacy in **Pratylenchus** reducing spp soil population (91.7%) followed by 89.98% in soil treated by biofertilizers as compared with the untreated control plots.

 Table 2: Efficacy of certain commercial bioproducts in controlling nematode population of the root lesion nematode *Pratylenchus* spp. infecting potato cv. Spunta under field conditions.

|                                | Population densities of <i>Pratylenchus spp</i> . |                             |         |                   |       |  |  |  |
|--------------------------------|---------------------------------------------------|-----------------------------|---------|-------------------|-------|--|--|--|
| Treatments                     | Initial                                           | Final                       | % *Red. | Number of         | %     |  |  |  |
| Treatments                     | population                                        | population Efficacy Pratyle |         | Pratylenchus spp. | Red.  |  |  |  |
|                                |                                                   |                             |         | in 5g roots       |       |  |  |  |
| Untreated control              | 1001                                              | 759                         |         | 26                |       |  |  |  |
| Biofertilizers(Microbien+      |                                                   | 75 89.98                    | 16      | 38.46             |       |  |  |  |
| Phosphorine+ Potassuimag)      | 978                                               | 75                          | 89.98   | 10                | 38.40 |  |  |  |
| Biofertilizers +Stanes Symbion | 932                                               | 105                         | 85.14   | 17                | 34.62 |  |  |  |
| Biofertilizers +Nemafree       | 985                                               | 175                         | 76.75   | 17                | 34.62 |  |  |  |
| Biofertilizers + Stanes Sting  | 960                                               | 65                          | 91.7    | 16                | 38.46 |  |  |  |

\*Percentage reduction in soil population of *Pratylenchus spp.* according to Henderson & Tilton Formula Puntener, 1981.

\*Efficacy of treatment in reducing nematode population of *Pratylenchus* spp.

The mentioned treatments reduced *Pratylenchus* spp. roots population at the end of the growing season (Table 3) by38.46%. All studied combinations affected positively potato vields production by different rates (Table 3)the application of biofertilizers plus B. subtilis induce 30% increase over control followed by 20% due to the biofertilizers plus Serratia spp. Results showed that not all combinations exhibited an increase in weights of potato roots. The highest percentage increase 20% was

achieved bv the application of biofertilizers followed by 11% increase with the application of biofertilizers plus В. subtilis. All combinations under investigation enhanced potato shoot weights more than the untreated control plants with varied rates (Table 3). Results are in agreement with (Bevivino et al., 1998) who reported that rhizobacteria can stimulate plant growth directly by producing growth hormones and improving nutrient uptake or indirectly by changing microbial balance in the

rhizosphere in favour of beneficial microorganisms. The remarkable reduction in nematode population with the application of Bacillus subtiliswas explained with more than one mechanism produce the antibiotic bulbiformin directly affect nematodes, also (Qiuhong et al., 2006) found that the extracellular cuticle-degrading proteases were involved in the processes to penetrate nematode cuticle and eventually digest them and improving plant growth by

solubilizing phosphate and other nutrients and making them available to the plants (Gaur, 1990). Mercer et al., 1992 found that chitinase from Serratia marcescens induced premature hatch of nematode eggs. Kamensky et al., 2003 stated that inhibitory metabolites produced by Serratia isolates including serrawettin as well as chitinase and other cell wall and cell-membrane degrading enzymes had significant suppressive effect on nematodes.

Table 3: Effect of certain commercial bionematicides and biofertilizers on plant growth response and yield of potato cv. Spunta infected with *Pratylenchus* spp. under field conditions.

| Treatments                                             | Root<br>Weight/<br>plant g | % Incr. | Shoot<br>Weight/<br>Plant g | % Incr. | Yield/<br>Feddan<br>Ton | % Incr. |
|--------------------------------------------------------|----------------------------|---------|-----------------------------|---------|-------------------------|---------|
| Untreated control                                      | 9                          |         | 53                          |         | 7000                    |         |
| Biofertilizers(Microbien+<br>Phosphorine+ Potassuimag) | 10.8                       | 20      | 70                          | 32.1    | 7700                    | 10      |
| Biofertilizers +Stanes Symbion                         | 7.4                        |         | 69                          | 30.2    | 7700                    | 10      |
| Biofertilizers +Nemafree                               | 8.8                        |         | 74                          | 39.6    | 8400                    | 20      |
| Biofertilizers + Stanes Sting                          | 10                         | 11      | 64                          | 20.8    | 9100                    | 30      |

It is clear from Table 2 that Pratylenchus spp. are much morefound in soil than in roots at harvest time this is trend of refer to general lesion nematodes. where reniform many Pratylenchus individuals leave the roots and enter the soil at the end of the growing season of the annual crops and remain until a new crop is planted as reported by Timper and Brodie, 1993.

Results showed that treated soil with the three biofertlizers; Microbien, Phosphorine and Potassiumag containing each of the rhizobacteria Pseudomonas pp., B. megatherium, B. circulanes that had involved in the biological processes of N<sub>2</sub> fixation Nitrogen and solubilizing phosphate and potassium improved plant production and gave a remarkable reduction in nematode population. The same results were discussed in previous studies of Kirkpatrick et al. (1964) who reported that the greater availability of phosphorus made the host plant strong enough to tolerate pathogen attack and also phosphorus itself played a vital role in building self-defense of plants against

nematodes. Al-Rehiayani et al., 1999 found that *B. megatherium* reduced penetration of Pratylenchus penetrans in potato by 50%, Padgham and Sikora, 2007stated that treatment with B. Megatherium resulted in a greater than 40% reduction in nematode penetration. Also Siddiqui and Akhtar, 2007reported that Phosphate-solubilizing microorganisms have potential for the biocontrol of plant pathogens as they change insoluble phosphatic compounds into soluble forms thus increasing the growth and vield of crop plants. The Arbuscular mycorrhizal fungi (AMF) Glomus fasciculatum are endophytic fungi that grow within plant tissues without causing disease and can play a protective role against parasitic nematodes by forming distinct symbiotic structures and are of great value in promoting the uptake of phosphorus, minor elements and water (Allen, 1996 and Ibijbijen et al., 1996). They also influence the severity of several plant pathogens by altering plant-pathogen interactions (Akkopru and Demir, 2005).

We can conclude that two or more biopreparations in such treatment give potential to the biological control of plant parasitic nematode and produce food free from chemical residues.

## REFERENCES

- Akkopru, A. and Demir, S. (2005). Biological controls of Fusarium wilt in tomato caused by *Fusarium oxysporum* f.sp. *Lycopersic*i by AMF *Glomus intraradices* and some rhzobacteria. Journal of Phytopathology, 153:544-550.
- Allen, M. F.(1996). The ecology of arbuscular mycorrhiza: A look back into 20th century and a peak into the 21 st. Mycologecal Research, 100:769-782.
- Al-Rehiayani, S.; Hafez, S. L.; Thorton, M. and Sundararaj, P. (1999).
  Effects of *Pratylenchus neglenchus*, *Bacillus megaethrium* and oil radish or rapeseed green manure on reproductive potential of *Meloidogynechiwoodi* on potato. Nematropica, 29:37-49.
- Barker, K.R. (1985). Nematode extraction and bioassay. In : An advanced treatise on *Meloidogyne*, (Barker, K. R.; Carter, C. C. and Sasser, J. N. Eds). Methodology, 11: 19-35.
- Bernard, E. C. and Laughlin, C. W. (1976). Relative susceptibility of selected cultivars of potato to *Pratylenchus penetrans*. Journal of Nematology, 8(3):241-242.
- Bevivino, A.; Sarrocco, S.; Dalmastri, C.; Tabacchioni, S.; Cantale, C. and Chiarini, L. (1998). Characterization of a free-living maize-rhizosphere population of *Burkholderia cepacia*: effect of seed treatment on disease suppression and growth promotion of maize. FEMS Microbiology Ecology, 27: 225–237.
- Gaur, A. C. (1990). Phosphate solubilising microorganisms as

bioferrtilizers.Omega Scientific Publishers,176p.

- Ibijbijen, J.; Urquiage, S.; Ismaili, M.; Alves, B. J. R. and Boodey, R. M. (1996). Effect of arbuscular mycorrhiza on uptake of nitrogen by *Brachiaria arrecta* and *Sorghum vulgare* from soils labeled for several years with<sup>15</sup> N. New Phytologist, 133:487-494.
- Kamensky, M. Ovadis, M. Chet, I. Chernin, L.(2003). Soil-borne strain IC14 of *Serratia plymuthica* with multiple mechanisms of antifungal activity provides biocontrol of *Botrytis cinerea* and *Sclerotinia sclerotiorum* diseases. Soil Biology and Biochemistry, 35: 323–331.
- Kirkpatrick, J. D.; Mai, W. F.; Parker, K.G. and Fisher, E. G. (1964). Effect of phosphorus and potassium nutrition of sour cherry of the soil population levels of five plant parasitic nematodes. Phytopathology, 54:706-712.
- Mercer, C. F.; Greenwood, D. R. and Grant, J. L. (1992). Effect of plant and microbial chitinases on the eggs and juveniles of *Meloidogyne hapla*. Nematologica., 38:227-236.
- Padgham, J. L. and Sikora, R. A. (2007). Biologecal control potential and modes of acion of *Bacillus megatherium* agains *Meloidogyne graminicola* on rice. Crop Protection, 26:971-977.
- Philis, J. (1995). Presence and control of *Pratylenchus penetrans* on potato in cyprus. Nematologia Mediteranea, 23: 235-238.
- Ploeg, A.T. (2002). Effect of selected Marigold varieties on root knot nematodes and tomato and melon yields. Plant Diseases, 86: 505-508.
- Powell, N. T. and Nusbaum, C. J.(1960). The black shank-root-knot complex in flue-cured tobacco. Phytopathology, 50:899-906.
- Puntener, W. (1981). Manual for field trials in plant protection. Agric. Div-

Geigy Limited, Basle, Switzerland, 205p.

- Qiuhong, N.; Xiaowei, H.; Baou, T.; Jinkui, Y.; Jiang, L.; Lin, Z. and Zhang, K. (2006). *Bacillus* sp. B16 kills nematodes with a serine protease identified as a pathogenic factor. Applied Microbial Biotechnology, 69:722-730.
- Siddiqui, Z. A. and Akhtar, M. S. (2007). Effects of AM fungi and organic fertilizers on the reproduction of the nematode *Meloidogyne incognita*

and on the growth and water loss of tomato. Biology and Fertility of Soils, 43:603–609.

- Southey, J. F. (1970). Laboratory methods for work with plant and soil nematodes. Tech. Bull. 2. Ministry of Agric. Fisheries and Food. London. 148 pp.
- Timper, P. and Brodie, B. B. (1993). Infection of *Pratylenchus penetrans* by nematode-pathogenic fungi. Journal of Nematology, 25:297-302.

#### **ARABIC SUMMERY**

مكافحة نيماتودا التقرح الجذرى جنس براتيلنكس التى تصيب نباتات البطاطس صنف اسبونتا تحت الظروف الحقلية باستخدام بعض المركبات الحيوية.

اسامه سامى فتحى الكيلانى

معمل النيماتودا قسم أمراض النبات -المركز القومى للبحوث- شارع البحوث - القى -الجيزة - جمهورية مصر العربية. E-Mail: usamasamy\_nrc@yahoo

يعتبر محصول البطاطس من أهم محاصيل الخضر التى تتبع العائلة الباذنجانية لما له من أهمية اقتصاديةكبيرة سواء للاستهلاك المحلى او التصدير تعتبر نيماتودا التقرح الجذرى من اهم الافات التي تسبب ضررا لمحصول البطاطس في مصر بعد نيماتودا تعقد الجذور. و قد اعتمد المنتجين لفترة طويلة على المبيدات الكيميائية لمكافحة هذه الافات مع الاسمدة الكيمائية لخصوبة التربةمما تسبب في العديد من المشاكل الناتجة من متبقيات هذه الاضافات الكيمائية الكثيرة سواء على صحة الانسان و الحيوان أو البيئة و مع زيادة الطلب على المنتجات الزراعية الخالية من آثار المواد الكيماوية دفع ذلك العلماء للبحث عن بدائل آمنة لمقاومة الأفات النيماتودية وتحسين المحصول فكان الغرض من هذه الدراسة هو تقييم فاعلية بعض المنتجات الحيوية التجارية لمكافحة نيماتودا التقرح الجذرى التى تصيب نباتات البطاطس صنف اسبونتا و زيادة المحصول تحت ظروف الحقل. كانت المركبات الحيوية المستخدمه هي المخصبات الحيوية ميكروبين المثبته للنتروجين الجوى ،فوسفورين الميسره للفسفور و بوتاسيوماج الميسره للبوتاسيوم التي تحتوي على البكتريا بسيدومونس فلوريسنس مع باسيلس ميجاتيرم، البكتريا باسيلس سيركولينس ، البكتريا باسيلس ميجاتيرم على التواليو المبيدات الحيوية نيمافري المحتوى على البكتريا سريشيا، استنس استانج المحتوى على البكتريا باسيلس ساتلس و استنس سابيون المحتوى على الفطر الوعائي جلوماس اسيكوليتم و قد تم تقييم هذه المركبات الحيوية في حقل مصاب طبيعيا بنيماتودا التقرح الجذري جنس براتيلنكس في قرية كفر قنديل محافظة الجيزة جمهورية مصر العربية عن طريق المعاملات التالية ١-الثلاث اسمدة الحيوية ميكروبين،فوسفورين و بوتاسيوماج ٢- الثلاث اسمدة الحيوية و استنس سابيون ٣- الثلاث اسمدة الحيوية مع نيمافري ٤-الثلاث اسمدة الحيوية مع استنس استنج ٥- بالاضافة الى معاملة المقارنة بدون أى اضافات. و قد أظهرت هذه العاملات قدرة هذه المركبات على تقليل اعداد نيماتودا التقرح الجذرى في التربة و الجذور مع زيادة في محصول البطاطس مقارنة بالكنترول. وكانت افضل النتائج في تقليل النيماتودا مع زيادة في محصول البطاطس وصلت الى ٣٠% مقارنة بالكنترول هي التي احتوت على الاسمدة الحبوية الثلاث بالاضافة الى المبيد الحبوي استانس استنج