Journal of Soil Sciences and Agricultural Engineering

Journal homepage: <u>www.jssae.mans.edu.eg</u> Available online at: <u>www.jssae.journals.ekb.eg</u>

Evaluation for Some Soils of Al-Bahariya Oases and The Optimal Planning for Their Agricultural Exploitation

Abdalla, I. M.*

Soil, water & Environ. Res. Inst.: Agric. Res. Center; Giza, Egypt.

ABSTRACT

The aim of this investigation is to study the characteristics of Al-Bawoiti soils for evaluating their capability and suitability for growing main crops using Remote Sensing (RS), Geographic Information Systems (GIS), and Sys, Model. Thirty-one representative soil profiles were selected. The profiles were morphological described and samples were collected representing the vertical variation for different laboratory analysis. According to the RS and GIS works three geomorphic units are recognized. These units are depression plain (18.06%), Aeolian plain (28.9%), and Pediplain (53.04%). The correlation between geomorphic unit and soils was carried out and then the soil maps where created using the ArcGIS 10.4.1 software. Based on the soil characteristics, the studied soil were evaluated according to their suitability for agriculture. In the current situation, they categorized into their capability classes namely, moderately suitable (S2=1.88%), marginally suitable (S3=85.87%), and not suitable (N=12.24%). These soils are suffering from limitations of texture class, salinity and alkalinity, topography and soil depth with different intensity degrees (slight, moderate, and severe). The severity of these limitations could be corrected by future land improvement according the potential suitability of the most studied soils could be improved to highly suitable (S1=0.2%), moderately suitable (S2=25.97%), marginally suitable (S3=73.53%), and not suitable ($N_2=0.3\%$). Moreover, the suitability of 18 main crops in these soils was evaluated in the current and potential situation. The potential suitability of the soils for these crops could be improved according to the satisfaction conditions between soil properties and crops requirements. Keywords: Remote Sensing (RS), Geographic Information Systems (GIS), Land Evaluation.

Keywords: Remote Sensing (RS), Geographic Information Systems (GIS), Land Evaluation.

INTRODUCTION

The Egyptian government faces a major challenge in ensuring the security of its food population paths, the first is agricultural intensification or vertical expansion, and the second is horizontal expansion. In this regard our interest is the second track, which means introduction new areas of not cultivated land or Desert lands to cultivated areas. This study is considered a step for achieving this goal as it was implemented in a promising area in the Western Desert in Egypt, which is characterized by ease of terrain and fresh groundwater, as well as a network of roads linking to some of the most populous provinces such as Cairo and Al-Fayoum, this area is Al-Bahariya oases , which its soils have been subject to much of studies to evaluate them such as Khater et al (2008) and Mustafa et al. (2008).

The studied area is located 44 km southeast of Al-Bawoiti which characterized by presence of high quality groundwater, easy terrain and a good road network and so the area is considered promising for agriculture. It also offers the possibility to correct a lot of limitations of agriculture such as salinity, alkalinity and others. The studied area is located between latitude 28°3'18"To 28°1'48" North and longitude 28°51'18"To 28°27'24" East. It covers about 3030 fedden Fig(1)

Fig .1. Location map of the studied area of (Al-Bahariya)

Said(2000) reported that the succession of the formation of Al-Bahariya oases was described from the

oldest to the youngest, i.e., Cretaceous, Paleogene (Paleocene and Eocene), Neogene (Miocene) and Quaternoig (Pleistocene and Holocene). The Cretaceous Sandstones, Clays, and Marls of Al-Bahariya formation are the oldest outcropping deposits in the oases from the floor of the depression. The dolomite beds with sandstones form most of escarpments and some of the hills within the dipression. Sandy clay inter beds are followed conformably in the middle and southern parts of the western scarp by chalk deposits.

Shahin et. al., 1996 reported that Al-Bahariya oases rely entirely on groundwater for agriculture, drinking, industry and all purposes. Ground water is available in the sandstone rocks formed during the Nubian period. The thickness of the Nubian sandstone layer is about 400 to 800 meters. The groundwater of the oases is fresh, with salinity of 1000 mg / l, and the salt is often less than 500 mg / \dot{L} and sometimes reaches to 120-150 mg/1.

The physical, chemical land capability evaluation and mapping for Al-Bawoiti area is one essential action in order to mountain the sustainable development of effort and investment as well as the sustainable usage of the soils(Bandyopadhyay et. Al., 2009)

Satellite remote sensing (RS) in conjunction with geograpiic information systems (GIS) have been widely applied and recognized as a powerfull and effective tools in analyzing land use categories (Ehlers et. al., 1990, and weng, 2001). GIS provide indispensable tools for decision makers. Both RS and GIS techniques are considered very important geometric tools, which are fully utilized in the developed countries(Arafat, 2003). The integration of remotely sensed data, GIS and spatial statistics provides useful tools for modeling variability to predict the distribution presence and pattern of soil characteristics (KalKhan et al., 2000). The potential of the integrated approach in using GIS and RS data for quantitative and evaluation has been demonstrated by Martin & Saha (2009).

The aim of this study was to demonstrate the usefulness of RS and GIS technologies to producing the geomorphic map of the studied area. These techniques are also used to produce the soil characteristics and land evaluation maps of the studied area

MATERIALS AND METHEODS

Remote Sensing

LandSAT 8 (2020) data scene that cover Al-Bawoiti village. The satellite image was geometrically corrected to UTM grid system (zone 35 N datum WGS84). The image was radiometrically corrected to remove any noise and additives from the atmospheres by using Arc. 10.41 software. Topographic maps covering Al-Bawoiti village(district) was used to generate digital elevation model DEM through grouping and processing in ArcGIS 10.4.1 to define the different landforms of the studied area Fig (2).

Fig.2. Land Sat (8) image for the studied area

The extracted data are utilized to generate a preliminary geomorphological map which was checked and completed through field observation. Resolution merge is used for imagery integration of different spatial resolution (Dobos et al., 2002)

Field work and Laboratory analyses

Thirty one soil profiles were dug in the field for an area about 3030 feddan. The soil profiles were described in the field according to (FAO, 1990) table (1).

Table 1. Morphological description of the studied soil profiles Geo

Geomorphic unit	Profile No.	Depth (cm)	Color (dry)	Texture class	Structure	Consistence (dry)	Gravels	Surface cover
		0-30	10YR 6/6	S	Massive	Soft	Few F. fragm.	Common different seizes
	1	30-90	10YR 4/3	S	Massive	Slightly hard	Few F. fragm.	fragments & sand & few soft
		90-160	10YR 4/3	L.S	Massive	Slightly hard	Few F. fragm.	gypsum accumulations.
	2	0-70 70-120	10YR 6/6 10YR 7/4	LS S	Massive Massive	Soft Hard	Few Fine fragm. Non	Common different seizes fragments, sand and stones.
ij	3	0-25 25-60 60-90 90	10YR 5/4 10YR 5/4 10YR 3/2 10YR 5/3	SL LS LS SCL	Massive Massive Massive Massive	Soft Slightly hard Slightly hard Hard	Few F.&M. fragm. Non Few F. fragm.	Common different seizes fragments and sand.
pla		0.20	10VD 6/6	IC	Magging	Soft	Few F. Iragm.	
on	4	0-20	101K 0/0		Massive	Solt	Few line fragm.	Common different seizes
SSS	4	20-90	101K 0/4 10VD 7/6		Massive	Hard	Non	fragments, sand and stones.
Depre	5	0-60 60-125	10YR 7/3 10YR 7/4	SL. SCL.	Massive Massive	Soft Hard	Few diff. seizes fragm. Non	Common different seizes fragments and sand.
	6	0-40 40-110 110-140	10YR 3/2 10YR 5/4 10YR 5/4	C LS LS	Massive Massive Massive	Soft Hard Hard	Few fine fragm. Non Non	Common different seizes fragments and sand.
		0-20	10YR 5/6	LS	Massive	Soft	Few F. fragm.	Comment different estimat
	7	20-60	10YR 7/6	LS	Massive	Hard	Few F. fragm.	Common different seizes
		60-150	10YR 6/6	SCL	Massive	Hard	Non	fragments and sand.
	o	0-20	10YR 5/6	SL	Massive	Soft	Few F. fragm.	Common different seizes
	õ	20-50	10YR 5/6	SL	Massive	Hard	Few F. fragm.	fragments and sand.

S = Sand LS = Loamy sand SL = Sandy loam SCL = sandy clay loam C = clay F.S = fine sand c.S = coarse sand Few F.&M. fragm. = few fine and medium fragments. Few diff. seizes fragm. =few different seizes fragments. W. platy =weak platy.

Table 1. Con	nt.							
Geomorphic unit	Profile No.	Depth (cm)	Color (dry)	Texture class	Structure	Consistence (dry)	Gravels	Surface cover
	9	0-50 50-80 80-170	10YR 5/4 10YR 7/6 10YR 7/3	LS S S	Massive Massive Massive	Soft Slightly hard Slightly hard	Few F. fragm. Few F. fragm. Non	Common different seizes fragments and sand.
	10	0-30 30-90 90-150	10YR 7/6 10YR 7/6 10YR 7/6	S S S	Massive Massive Massive	Soft Soft Slightly hard	Few diff. seizes fragm. Few F.&M. fragm. Few diff. seizes fragm.	Common different seizes fragments, sand.
	11	0-30 30-100 100-150	10YR 7/6 10YR 7/6 10YR 7/4	S S S	Massive Massive Massive	Soft Slightly hard Slightly hard	Few F.&M. fragm. Few F. fragm. Non	Common fine and medium fragments and sand.
lian plain	12	0-55 55-115 115-125	10YR 7/6 10YR 7/6 10YR 7/6	S LS LS	Massive Massive Massive	Soft Soft hard	Few diff. seizes fragm. Non Few F. fragm.	Common different seizes fragments and sand.
Aeo	13	0-30 30-110 110-150	10YR 6/6 10YR 7/6 10YR 7/6	LS S c.S	Massive Massive Massive	Soft Soft Slightly hard	Few F. fragm. Common F.&M. fragm. Common F.fragm.	Common different seizes fragments and sand.
	14	0-50 50-95 95-145	10YR 6/6 10YR 7/4 10YR 6/6	LS S S	Massive Massive Massive	Soft Soft Soft	Few F. fragm. Common F.fragm. Few F. fragm	Common different seizes fragments and sand.
	15	0-15 15-55 55-135	10YR 6/6 10YR 7/6 10YR 7/6	SL S S	Massive Massive Massive	Soft Soft Slightly hard	Few F. &M. tragm. Non Non	Common fine and medium fragments and sand.
	16	0-35 35-60 60-120	10YR 6/6 10YR 7/4 10YR 6/6	S S S	Massive Massive Massive	Soft Soft Hard	Few F. fragm. Non Non	Desert pavement.
lain	17	0-50 50-170	10YR 6/6 10YR 6/3	$\frac{LS}{C}$	Massive Massive	Soft Hard	Few F. fragm. Non	fragments, sand and stones.
lian p	18	0-70 70-120	10YR 6/6 10YR 7/4	LS S	Massive	Hard	Non	fragments, sand and stones.
Aeo	19	0-30 30-100	10YR 6/6 10YR 7/6	LS LS	Massive Massive	Soft Hard	fragm. Non	Desert pavement.
	20	0-60 60-95 95-155	10YR 6/6 10YR 6/6 10YR 6/6	c.S c.S c.S	Massive Massive Massive	Soft Soft Hard	Few F. &M. fragm. Few F. fragm. Non	Desert pavement.
	21	0-60 60-150	10YR 6/6 10YR 6/6	S S	Massive Massive	Soft Hard	Few F. fragm. Non	Common different seizes fragments and sand.
	22	0-45 45-80	10YR 6/3 10YR 7/4	SCL S	Massive Massive	Soft Very hard	Few F. fragm. Few F. fragm.	Common different seizes fragments and stones.
bdi plain	23	0-20 20-120 0-65	10YR 7/6 10YR 7/6 10YR 7/6	S S	Massive Massive Massive	Soft Soft Soft	Few F. fragm. Non Few F. fragm.	Common different seizes fragments and sand . Common different seizes
Pe	24	<u>65-150</u> 0-40	10YR 7/6 10YR 7/6	S S	Massive Massive	Soft Soft	Few F. fragm. Few F. fragm.	fragments, sand and stones. Common different seizes
	26	<u>40-150</u> 0-40 40.60	10YR 6/6 10YR 7/4 10YP 7/2	S SL SCI	Massive Massive	Hard Soft Slightly hard	Non Few F. fragm.	Common different seizes
	27	0-15 15-75 75-110	10YR 7/4 10YR 7/4 10YR 7/4 10YR 7/2	F.S LS S	Massive Massive Massive	Soft Slightly hard Hard	Few diff. seizes fragm. Non Non	Common different seizes fragments, sand and stones.
	28	0-20 20-80 80-120	10YR 7/6 10YR 7/6 10YR 7/4	S c.S CL	Massive Massive Massive	e Soft Soft Hard	Few F. fragm. Common F.&M fragm. Non	. Common fine fragments, sand, stones and boulders.
plain	29	0-30 30-100	10YR 7/4 10YR 7/4	SL SL	Massive Massive	e Soft Hard	Few F. fragm. Non	Desert pavement.
Pedi	30	0-40 40-85 85-145	10YR 7/4 10YR 6/1 10YR 5/3	LS C SL	Massive Massive Massive	e Slightly hard Very hard Very hard	Few diff. seizes fragm. Non Non	Common different seizes fragments, sand, stones and boulders.
	31	0-20 20-70	10YR 7/6 10YR 7/1	S C	Single G W. platy	Loose Hard	Few F. fragm. Non	Common different seizes fragments and sand.

All soil profiles were geo-referenced using the GARMIN GPS 1996. Representative 80 distributed soil samples have been collected from the studied soil profiles according to the morphological variations and were used for laboratory analyses. The laboratory analyses were

carried out according to the methods outlined by Burt 2004, Tables 2 and 3. This properties were particle size distribution, soil pH, electrical conductivity (ECe) in the soil paste extract, soluble cations and anions, CaCO₃, OM, Gypsum content and SAR

Geomorphic	Profile	Depth	Particle size dis	tribution	(%)	Texture	CaCO ₃	Gypsum	0.M
unit	No.	(cm)	Sand	Silt	Clay	class	(%)	(%)	0.01
	1	0-30	95.0 94.9	2.8	2.2	Sand	3.46 3.44	4.50	0.2
	1	90-160	90.0	4.9	5.1	Loamy sand	2.82	3.75	0.15
	2	0-70	89.8	5.2	5.2	Loamy sand	8.92	2.75	0.3
	2	70-120	95.0	2.8	2.8	Sand	8.14	1.80	0.2
		0-25 25-60	59.9 70.2	11.9	28.2	Sandy clay Sandy loam	3.44 3.46	5.45 4.35	0.2
	3	60-90	78.3	10.5	11.2	Sandy loam	2.86	3.41	0.15
lain		90	70.4	7.8	21.8	Sandy clay loam	2.86	2.22	0.1
d u	4	0-20	89.2 89.1	5.4	5.4	Loamy sand	5.23	3.85	0.25
ssic	-	90-150	90.0	4.8	5.2	Loamy sand	3.44	1.58	0.15
pre	5	0-60	89.1	5.5	5.4	Loamy sand	2.86	3.76	0.17
D	5	60-125	70.3	8.1	21.6	Sandy loam	3.15	4.15	0.15
	6	40-110	31.1 89.1	14.8	54.1	Loamy sand	2.45	4.00	0.22
	-	110-140	90.0	4.8	5.2	Loamy sand	2.15	1.86	0.16
	-	0-20	88.0	5.8	6.2	Loamy sand	2.10	4.66	0.23
	/	20-60	84.0 70.0	8.6 8.2	9.4 21.8	Loamy sand Sandy clay loam	1.64	2.84	0.2
	0	0-20	69.8	20.2	10.0	Sandy loam	3.46	3.87	0.13
	8	20-50	78.1	11.3	10.6	Sandy loam	2.10	3.15	0.17
	0	0-50	58.1	6.2	35.7	Sandy clay	3.15	6.48	0.33
	9	80-170	95.6	2.1	2.0	sand	2.10	2.33	0.25
		0-30	95.0	2.7	2.3	Sand	8.14	5.40	0.3
e	10	30-90	94.9	2.7	2.4	Sand	9.15	3.24	0.25
olai		90-150	94.6	3.2	2.2	Sand	8.14 9.31	2.25	0.2
an I	11	30-100	93.4	2.9	3.7	Sand	1.08	2.15	0.15
eoli		100-150	94.6	3.2	2.2	Sand	2.15	2.33	0.12
Ā	12	0-55	94.3 60.3	3.3	2.4	Sand Sandy clay	4.98	6.86 6.86	0.35
	12	115-125	84.3	13.3	2.4	Sandy loam	5.65	3.15	0.3
		0-30	89.2	4.8	6.0	Loamy sand	8.14	6.48	0.25
	13	30-110	95.0	2.9	2.1	Sand	7.65	2.25	0.2
-		0-50	94.0 58.9	5.2 10.3	2.2	Sand Sandy clay	8.14 7.14	2.89	0.15
	14	50-95	94.6	3.2	2.2	Sand	5.86	2.35	0.2
		95-145	94.3	3.3	2.4	Sand	5.86	3.15	0.15
	15	0-15	58.1 94.8	6.2 2.8	35.7	Sandy clay Sand	8.14 3.46	3.85	0.3
.Ħ		55-135	95.6	2.0	2.3	Sand	1.85	2.35	0.25
alq r	1.6	0-35	95.0	3.1	1.9	Sand	8.14	7.68	0.35
oliar	16	35-60	94.7 95.0	3.1	2.2	Sand	2.86	3.45	0.32
Aec	17	0-120	89.8	5.2	5.0	Loamy sand	8.14	8.15	0.17
	17	50-170	28.2	30.0	40.8	Clay	0.98	3.45	0.15
	18	0-70	89.8	5.2	5.0	Loamy sand	8.14	5.36	0.22
	10	0-30	89.0	5.3	5.7	Loamy sand	8.65	3.72	0.20
	19	30-100	88.6	5.2	6.2	Loamy sand	8.14	6.12	0.25
	20	0-60	94.3	3.3	2.4	Sand	8.14	7.68	0.18
	20	60-95 95-155	95.0 94.6	2.9	2.1	Sand	3.44 3.44	4.12	0.16
	21	0-60	95.0	2.9	2.1	Sand	6.92	4.12	0.3
	21	60-150	94.3	3.3	2.4	Sand	7.65	1.25	0.25
	22	0-45 45-80	70.4 94.6	1.8	21.8	Sandy clay loam	9.04 1.64	1.08	0.22
	22	0-20	94.3	3.3	2.4	Sand	8.92	1.15	0.35
	23	20-120	95.0	2.9	2.1	Sand	8.14	1.08	0.3
	24	0-65	95.1 94.6	2.9	2.0	Sand Sand	6.65 7.04	1.27	0.25
	25	0-40	94.6	3.2	2.2	Sand	7.04	3.35	0.34
ain	25	40-150	95	2.9	2.1	Sand	1.64	1.08	0.3
li pl	26	0-40	70.2 70.4	19.6 7 8	10.2	Sandy loam	7.04	3.98	0.25
Ped		0-15	95.1	2.9	2.0	Sandy City Ioan	2.86	0.98	0.30
	27	15-75	89.1	5.5	5.4	Loamy sand	0.98	1.08	0.25
		75-110	95.0	2.8	2.2	sand	0.98	1.08	0.25
	28	20-20	93.0 94.9	2.8 2.9	2.2	Sand	0.14 7.04	1.15	0.20
		80-120	50.1	30.1	20.8	Clay loam	0.98	1.08	0.18
	29	0-30	84.3	13.3	2.4	Sandy loam	1.64	1.15	0.44
		0-40	20.6	19.1	60.3	Clav	1.64	1.55	0.34
	30	40-85	10.0	29.3	60.7	Clay	0.98	1.15	0.35
		85-145	58.9	10.3	29.8	Sandy clay	1.64	0.98	0.3
	31	20-20	95.0 20.6	2.9	2.1 60.3	Sand Clay	1.04	1.13	0.32

Table 2. Particle size distribution, texture class, Ca	aCO ₃ , Gypsum(^e	%) and O.M of	f the studied soil profiles.
--	---	---------------	------------------------------

Geomorphic unit	Profile	Depth	pH	EC		Cation	s (meq / L))		~~	Anions (1	meq/L)	~~~	SAR
	no.	(Cm)	1:2.5	100.3	Ca ⁺⁺	<u>Mg</u> ⁺⁺ 360.4	Na ⁺ 580.6	<u>K</u> [*]	Q	CO3	HCO3 ⁻	CF 611.8	SO4 ⁻	27
	1	30-90	7.9	61.2	365.4	182.8	332.6	6.6	5 5	-	8.25	356.4	572.75	16
	•	90-160	7.9	112.1	565.3	316.9	782.1	16.	2	-	12.34	793.3	859.4	29
-	2	0-70	7.8	20.4	108.2	56.8	91.8	8.4	ļ	-	4.3	107.2	153.7	8
-	-	70-120	7.8	32.5	190.65	89.3	149.2	10.	8	-	6.2	163.8	268.3	10
		0-25 25-60	8.0 7 7	200.1 73.4	1240.3 536.2	258.1	320.1	6 20. 93	9	-	2 11	3907.8	1489.1 704.02	12
	3	60-90	7.9	38.2	215.7	144.05	1601.3	3 10.1	2	-	3.05	185.09	349.95	10
_		90	7.7	17.1	87.1	50.4	75.8	11.	2	-	2.45	93.4	132.55	7
ion		0-20	7.7	25.6	125.8	70.2	127.8	9.4	-	-	2.87	142.0	187.93	10
ress	4	20-90	7.7	45.1	254.1 58.4	164.0 31.0	205.0	10.:	5	-	4.13	221.1	407.87	11
- Dep		0-60	7.8	60.1	350.45	165.0	341.0	15.0	0	-	10.41	391.45	469.59	16
-	5	60-125	7.7	90	522.0	304.1	495.0	30.4	4	-	12.03	590.4	747.97	19
-		0-40	7.6	60.2	388.9	152.0	317.8	15.	2	-	2.37	392.0	477.63	15
	6	40-110	7.5	13	64.0	35.0	61.0	9.0)	-	1.30	74.0	93.7	7
-		0-20	7.8	100.1	588.5	375.5	512.5	25	0	-	2.74	613.5	885.26	18
	7	20-60	7.7	98	580.0	360.0	510.0	21.	Ő	-	2.11	608.0	859.89	19
-		60-150	7.8	90.2	545.0	380.9	419.1	9.3	3	-	2.65	480.8	867.85	15
	8	0-20	7.8	51	312.0	112.0	308.0	7.6)	-	2.09	380.0	357.41	16
		0-50	7.7	27.8	120.5	63.4	188.4	3.1	,	-	1.98	215.8	157.52	15
	9	50-80	7.8	22.2	119.6	49.8	116.0	3.2		-	1.56	128.6	158.44	10
-		80-170	7.8	10	43.0	20.0	55.0	2.0)	-	1.32	62.0	56.68	8
	10	0-30	7.8	30	140.0	80.0	182.0	3.0)	-	1.62	195.0	208.38	14
	10	90-150	7.8	25	135.8	90.0 47.0	108.2	2.1)	-	1.01	162.5	173.46	12
		0-30	7.7	7.1	32.2	175	34	2.1		-	1.18	44.2	39.92	3
olair	11	30-100	7.8	24	14.2	6.2	104	4		-	1.63	111.3	199.37	25
luo -		100-150	7.8	27.3	168.5	67.05	129.1	4.2	2	-	1.67	145.3	221.83	9
eoli	12	55-115	7.8 7.9	13.1	71.3 578	20.2 354	97.1 797	2.4	•	-	5.41	840	80.75 894 59	29
A		115-125	7.8	148	780	521	890	29		-	6.20	970	1243.8	28
-		0-30	7.8	24	149	29	132	2		-	1.45	150	160.55	10
	13	30-110	7.9	15.8	78.2	38.2	88.1	3.1		-	1.28	105.2	100.72	9
-		0-50	7.8	24	<u>95.3</u> 108	45.4 75.0	120	9		-	1.40	133.9	180.36	10
	14	50-95	7.7	20	106	58	94	2		-	1.58	116	142.42	8
		95-145	7.9	19	105	50	90	2		-	1.54	105	140.46	8
		1.5	0-15	7.9	50.1	265.4	188.5	236.5	11	-	3.28	256.4	441.72	12
		15	15-55	7.8	40.2	251.8	108.6	197.4	5	-	3.04	224.8	334.96	11
	-		0.25	7.1	32	120	12	143	4	-	1.69	103	203.11	0
ui		16	0-35 25.60	7.8	10	88 146 5	38 62	08	1	-	1.45	102	104.55	87
plå		10	60 120	7.1	12	140.J 60	31	90 55	1	-	1.05	67	190.65 87.66	6
uo	-		0-120	7.0	22	120	54	100	3	-	1.54	115	160.30	8
ilo		17	50-170	81	174	97.2	453	81.1	32	-	1.01	107.2	117 55	7
Ae	-		0-70	7.8	20	110	49	98	3	-	1.53	110	148.47	8
		18	70-120	7.8	32.1	187.35	84.1	157.4	5.8	-	1.88	182.35	250.12	10
	-	10	0-30	7.7	16	85	40	81	2	-	1.41	95	111.59	8
		19	30-100	7.9	35	208	82.5	178	4	-	1.85	193	277.65	11
			0-60	7.9	52.6	328	145.7	278.1	11.3	-	1.25	298.7	462.75	14
		20	60-95	7.6	66	345	233	410	12	-	1.48	430	558.52	19
			95-155	7.6	99.1	640.5	323.8	514.2	8.3	-	2.36	561.5	922.64	18
	-	21	0-60	7.8	45	301	170	155	4.2	-	1.99	160	468.01	8
	_	21	60-150	7.8	50.2	298.8	187.5	212.9	5.1	-	1.48	232.8	468.52	11
		22	0-45	7.9	70.1	513.5	231.5	302.5	4.8	-	2.1	352.5	697.9	12
	_	22	45-80	7.9	20.6	98.8	47	120	2.8	-	1.4	137.8	128.6	11
		23	0-20	7.9	8	35	18	42	1	-	1.2	50	44.8	6
	-		20-120	7.8	24	142	69	100.2	1.8	-	1.72	120.9	190.28	8
		24	0-65	7.8	12.3	63	35	72	1.4	-	1.24	81.2	79.76	8
	-		65-150	7.8	12	60	32	61	3	-	1.3	70	84.7	7
-		25	0-40	/.8	9	38	20	49.5	1.9	-	1.2	55.8 25	52.8	
lair	-		40-150	7.8	20	20	12	30	4	-	1.1	35	29.9	0
ip		26	0-40 40.60	7.0 7.8	30 27 2	175	12 60.7	133	2	-	1./	1/0	255.5	11
bed	-		0.15	7.8	21.2	130	68	145.5	3	-	1.0	120	202.9	<u><u> </u></u>
н		27	15-75	7.8	304	140	75.4	148.2	51	-	1.09	166.8	203.31	10
		21	75-110	7.8	70.0	376.1	269.2	389.4	16	_	1.02	401.7	6473	17
	-		0-20	7.8	8	35	19	41	18	-	1.7	50.8	44.8	6
		28	20-80	7.7	12	64	30	61	1.6	-	1.3	70.6	84.7	7
			80-120	7.8	20	102	41	115	2.0	-	1.44	130	128.56	10
		20	0-30	7.8	21	111	56	104	2.0	-	1.52	120	151.48	9
	29	30-100	7.8	26	143	67	125	3	-	1.72	135	201.28	9	
			0-40	7.9	23.5	142	69.25	104	2	-	1.61	133.25	182.39	8
		30	40-85	7.8	19.4	160	53.2	91	2.4	-	1.55	110.2	140.45	7
	_		85-145	7.7	20.0	113	47	98	2	-	1.57	115	143.43	8
		31	0-20	7.8	15	75	27	92	1	-	1.28	105	88.72	10
		51	20-70	7.9	37	208	107	200	3	-	1.82	230	286.18	12

Land Evaluation:

Data input process is the operation of entering the spatial and non-spatial data into GIS database. The digital geomorphological map was used as base map in the database. The spatial analysis function in ArcGIS 10.4 was used to create the thematic layers of EC, Soil depth, CaCO3, and Gypsum contents. The thematic layers were matched to produce the soil capability map. The land capability classes were defined using the ratings and the methods of Sys and Verheye (1978) and Says et al. (1991)

Soil suitability classification for certain crops was done by selecting eighteen (18) crops to assess their convenience for cultivation in the studied area Sys et al. 1993. Selected crops can be grouped into three categories as follows:

- 1 field crops (Alfaalfa, barley, beans, Wheat, sorghum, sunflower, maize, and sesame)
- 2 vegetable crops (cabbage, green pepper, water melon, Pea, tomato and onion)3 – fruit trees(citrus, guava, mango, and olive).

RESULTS AND DISCUSSION

Based on the field observations, profiles description, interpretation of satellite images and geological and topographic maps the study area can be divided into three major geomorphic. Units namely, depression plain, Aeolian plain, and pediplain Fig (3). A brief note about the identified geomorphic units and morphological description, physical and chemical properties which are carried out as follows:

Fig. 3.Geomorphic units and soil profiles location of the studied area.

Depression plain:. It occupies the northwestern part of the study area and covering about feddan (548). The topography is almost flat; few hills or uplands from sandstone are scattered on the surface. The soil profile depths are deep to moderately deep(>50 cm). The soil texture class is sand, loamy sand, sandy loam, or sandy clay loam, with few to common fin gravels, and gypsum horizons. It represented by profiles Nos. 1, 2, 3, 4, 5, 6, 7 and 8.

The analytical data of soil profiles were given in tables 2 &3. The data revealed that CaCO₃ content ranged between 1.64 and 8.92% and tends to decrease with profile depths,

except for the soils of profile 5 where CaCO₃ tends to increase with depth. In profile 7 CaCO₃ content does not portray any specific pattern with the soil profile depth. Gypsum content is very low and varied from 1.27 to 5.45%. pH values varied from 7.5 to 8.0 indicating that these soils where slightly to moderate alkaline. Ec values varied between 13 to 200.1 ds/m(moderately to extremely saline). Soluble cations were dominated by Ca⁺⁺ followed by Na⁺, Mg⁺⁺, and K⁺, while soluble anions follows the order SO4⁻⁻ > cl-> HCO3⁻.

Aeolian plain soils: The surface level of this geomorphic unit ranges from 160 to 180 m. above sea level and located in the northern part of the study area and covering about (877) feddan. The topography is almost flat to gently undulating; ; many hills or uplands from sandstone (low to medium height) are scattered on the surface. The effective soil depth varied from 100 to 170 cm (deep to very deep) and consists of loose sand formed often by wind deposition, containing few to many fine gravels. The soil texture class varied from fine sand to sandy loam. It represented by profiles Nos 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 and 19.

Physical and chemical analyses of the fine fractions (tables 2,3) reveal that $CaCO_3$ content ranged from 0.93 to 9.34%. The distribution pattern of $CaCO_3$ does not portray any specific pattern with depth, except for the soils of profiles 15, 17, 18, and 19 where carbonate tends to decrease with depth. Gypsum content varied from 1.08 to 8.15 and their content is enough to the requirements of gypsic horizon.

With regard to the chemical composition of the soil extract data in table (3) indicates that pH values varied from 7.7 to 8.1 showing that these soils were slightly to moderate alkaline. The soils were moderate to extremely saline where Ec values ranged between 10 and 50.1 ds/m. the cations composition were dominated with Na+ and Ca++ followed by Mg⁺⁺ and K⁺. the anions composition was dominated by SO4⁼ followed by cl⁻, while HCO3- is the least abundant soluble anion.

Pediplain soils: It represented by profiles :20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 and 31. Soil elevation ranges from 160 to 190 m above sea level. It is located in the southern part of the study area and covering about (1607) feddan close to the mountain. The topography is gently undulating to undulating; many hills or uplands from sandstone (medium to height) are scattered on the surface; the soil contains common to many various sizes of stones. These soil have a coarse to fine classes varied texture from sandy to clay table (2) reveals that the studied soil profiles of pediplain unit have CaCO3 content ranged from 0.93% in the middle layer of profile 27 to 9.04% in the surface layer of profile 22.the distribution pattern of CaCO3 tends to decrease with profile depths, except the soils profiles 21 and 24 where CaCO3 content tends to increase with soil depth.Gypsum content was mainly less than 7.65%.

Table (3) pointed out that soils reaction values (pH) indicate that these soils are slightly to moderately alkaline as pH values varied from 7.6 to 7.9.Ec values ranged between 6 (slightly saline) to 99.1(very extremely saline). The distribution pattern of soluble cations in the studied soils are in general dollowed the descending order

Ca⁺⁺>Na⁺>Mg⁺⁺>k⁺, while soluble anions of SO4⁻⁻ and cl-> HCO3-.

Soil mapping units:

The soil mapping units of the studied area were extracted from the overlay of the main soil properties layers in the GIS environment such as soil texture, soil depth, salinity, caco3 and gypsum content.(fig 5,6,7,8 and 9).

Table 4.the distribution pattern of some soil properties in the studied area

Soil property	classification	Area (Feddan)	%
	Moderately deep	272.7	9%
Depth	deep	2757.3	91%
	Total	3030	100%
	4-8 ds/m	6.7	0.22%
ECa dC/m	8-16 ds/m	232.8	7.68%
ECe us/m	>16 ds/m	2790.5	92.1%
	Total	3030	100%
	<5%	836.2	27.6%
CaCO3	5-10%	21.93.8	72.4%
	Total	3030	100%
	<5%	2376.3	78.43%
Gypsum	5-15%	653.7	21.57%
	Total	3030	100%
	Clay	14.4 fed	0.48%
	Sandy Clay	93.6 fed	3.1%
	Sandy clay loam	383.1 fed	12.64%
texture	Loamy sandy	905.5 fed	29.88%
	Sandy loam	477.8 fed	15.77%
	sand	1155.6 fed	38.14%
	Total	3030 fed	100%

Land Evaluation:

The studied soils are evaluated by matching between their characteristics and their ratings outlined by Sys and Verheye(1978)to get their suitability for agriculture in the current and potential state. The current study deals with spatial analysis techniques to evaluate the agricultural land capability in the studied area. The geomorphic units of the studied area were delineated by using the digital elevation model, LandSAT 8 image, and ground truth data of the studied area. The produced map represents the land forms of the studied area is imported in a geo-database and considered as a base map

A- Current land capability:

Table (5) and Fig(10) showed that the current land capability index of the studied geomorphic units. Data showed that there are three capability classes in the study area namely, moderately suitable (S2), marginally suitable (S3) and not suitable (N1). These classes could be divided into four subclasses i.e. S2s1,n, , S3s1,n, S3t,s,n,and N1s1,n. The obtained data showed that the most limiting factors in the soils of depression plain and Aeolian plain are texture class , and salinity, and alkalinity. The most

limiting factors afficting the pedi plain soils are topography, physical properties(profile depth, texture) and salinity. The soils of pediplain were affected by soil texture and salinity and alkalinity with different intensity degrees(slight, moderate and severe)

Table 5. Currently and potential capability of the studied soils (according to Sys et al., 1991).

	<u>е</u>	ċ	Rating of factors													X 7							
$ \frac{5}{29} \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	morph unit	file No	Торо	graphy	Dra	inage	Tex	ture	De	pth	Ca carl	lcium bonate	G	ypsu	m	Salii alkal	nity/ linity	i	ndex	y (Class	U	NIT
V C P	, ē , [–]	roi		(t)	(d)	(S	1)	(\$	52)	(S3)		(S4)		(r	1)		(Ci)				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0	8	С	Р	С	Р	С	Р	С	Р	С	Р	C		P	С	Р	С	Р	(C P	C C	Р
2 90 100 100 100 52 52 100 100 84.50 100 37.9 49.88 S3 S3 S3 s1 3 95 100 100 65.5 65.5 100 100 80.3 100 49.54 65.08 S3 S2 S3 s1,n S2 s1 4 95 100 100 78.5 78.5 100 100 95 95 100 100 80.00 100 56.66 74.58 S2 S2 s1,n S3 s1,n		1	95	100	100	100	31.1	31.1	100	100	95	95	100) 1	100	80.00	100	22.45	29.5	55 N	1 S.	3 Nls ₁ ,n	$S3_{s1}$
5 3 95 100 100 100 68.5 68.5 100 100 95 95 100 100 80.3 S2 S3 s1 S2 s1 4 95 100 100 100 75.0 50.0 100 100 82.0 100 100 82.0 100 100 82.0 100 100 82.0 100 100 82.0 100 100 82.0 100 100 82.0 100 100 83.3 83.1 100 100 95 95 100 100 80.0 100 100 83.3 83.1 7 90 100 100 83.0 71.5 100 100 80.0 100 107.7 180.0 110 182.0 83.3 83.3 183.1 9 50 100 100 40.00 30.00 100 100 95 100 100 85.0 100 100 23.3		2	90	100	100	100	52.5	52.5	100	100	95	95	100) 1	100	84.50	100	37.9	49.8	38 S	3 S.	3 S3 s1,n	S3 s1
4 95 100 100 100 55.0 500 100 100 95 95 100 100 82.00 100 40.70 52.25 S3 52 S3 sign S2 sign 6 90 100 100 100 83.13 83.1 100 100 95 100 100 80.07 100 54.34 67.95 S2 S1 S2 sign N2 sign 7 90 100 100 100 56.35 60 60 71 71 75 60.00 100 1079 18.00 N1 N2 N1 sign S3 sign 9 95 100 100 100 48.88 100 100 95 100 100 80.00 100 77.4 46.36 S3 S3 sign S3 sign 10 95 100 100 100 30.00 30.0 100 95 100 100 80.00 103 75.4 83.0 S3 S3 sign S3 sign 10 95 100 <t< td=""><td>uo</td><td>3</td><td>95</td><td>100</td><td>100</td><td>100</td><td>68.5</td><td>68.5</td><td>100</td><td>100</td><td>95</td><td>95</td><td>100</td><td>) 1</td><td>100</td><td>80.13</td><td>100</td><td>49.54</td><td>65.0</td><td>)8 S</td><td>3 S.</td><td>2 S3 s1,n</td><td>S2 s1</td></t<>	uo	3	95	100	100	100	68.5	68.5	100	100	95	95	100) 1	100	80.13	100	49.54	65.0)8 S	3 S.	2 S3 s1,n	S2 s1
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} 5 & 95 & 100 & 100 & 100 & 785 & 785 & 100 & 100 & 95 & 95 & 100 & 100 & 8000 & 100 & 5668 & 7458 & S2 & S2 & S2 s_{11} & S1 s_{11} \\ \hline \\ \begin{array}{c} \begin{array}{c} 6 & 90 & 100 & 100 & 100 & 8313 & 83.1 & 100 & 100 & 95 & 95 & 100 & 100 & 8375 & 100 & 5952 & 7895 & S2 & S1 & S2 s_{11} & S2 s_{11} \\ \hline \\ \begin{array}{c} \begin{array}{c} \end{array} & 9 & 95 & 100 & 100 & 100 & 5630 & 563 & 60 & 60 & 71 & 71 & 75 & 75 & 6000 & 100 & 107 & 91 800 & N1 N2 N1 s_{467n} & S3 s_{11} \\ \hline \end{array} & 9 & 95 & 100 & 100 & 100 & 3000 & 300 & 100 & 100 & 95 & 95 & 100 & 100 & 8525 & 100 & 3754 & 4636 & S3 S3 S3 s_{11} & S3 s_{11} \\ \hline \end{array} & 9 & 95 & 100 & 100 & 100 & 3000 & 300 & 100 & 100 & 95 & 95 & 100 & 100 & 8520 & 100 & 3754 & 4636 & S3 S3 S3 s_{1n} & S3 s_{11} \\ \hline \end{array} & 11 & 95 & 100 & 100 & 100 & 3000 & 300 & 100 & 100 & 95 & 95 & 100 & 100 & 8520 & 100 & 2301 & 2850 N1 S3 N1 s_{1n} S3 s_{11} \\ \hline \end{array} & 11 & 95 & 100 & 100 & 100 & 3000 & 300 & 100 & 95 & 95 & 100 & 100 & 8100 & 100 & 2437 & 3353 N1 S3 N1 s_{2n} S3 s_{1n} S3 s_{11} \\ \hline \end{array} & 12 & 95 & 100 & 100 & 100 & 4000 & 400 & 100 & 95 & 95 & 100 & 100 8500 100 2597 3800 S3 S3 S3 s_{1n} S3 s_{1n} S3 s_{11} \\ \hline \end{array} & 15 & 95 & 100 & 100 & 100 3000 300 100 100 95 95 100 100 8500 100 2993 4627 73 S3 S3 s_{2n} S3 s_{1n} S3 s_{11} \\ \hline \end{array} & 15 & 95 & 100 & 100 100 3000 300 100 100 95 95 100 100 8500 100 2401 2850 N1 S3 N1 s_{2n} S3 s_{1n} S3 s_{1n} \\ \hline \end{array} & 16 & 95 & 100 100 100 3000 300 100 100 95 95 100 100 8500 100 2401 2850 N1 S3 N1 s_{2n} S3 s_{1n} S3 s_{1n} $	issi	4	95	100	100	100	55.0	55.0	100	100	95	95	100) 1	100	82.00	100	40.70	52.2	25 S	3 S.	2 S3 s ₁ ,n	S2 s1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	pre	5	95	100	100	100	78.5	78.5	100	100	95	95	100) 1	100	80.00	100	56.68	74.	58 S	2 S.	2 S2 s1,n	S1 s1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ď	6	90	100	100	100	83.13	83.1	100	100	95	95	100) 1	100	83.75	100	59.52	78.9	95 S	2 S	1 S2 s ₁ ,n	S2s1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		7	90	100	100	100	71.50	71.5	100	100	95	95	100) 1	100	80.00	100	54.34	67.9	93 S	2 S.	2 S2 s1,n	N2 s1,\$2,\$3,\$4
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		8	95	100	100	100	56.30	56.3	60	60	71	71	75	; [,]	75	60.00	100	10.79	18.0	00 N	1 N	2 N1 s1,s3,n	S3s1
$ \begin{array}{c} 10 & 95 & 100 & 100 & 100 & 30.0 & 30.0 & 100 & 100 & 95 & 95 & 100 & 100 & 85.00 & 100 & 37.54 & 28.50 & S3 & S3 & S3 S3 S1 S3 S1 \\ 11 & 95 & 100 & 100 & 100 & 30.00 & 30.0 & 100 & 100 & 95 & 95 & 100 & 100 & 81.50 & 100 & 24.37 & 33.53 & N1 S3 & N1 S1 N1 S1 S1 S1 S1 \\ 12 & 95 & 100 & 100 & 100 & 40.00 & 40.0 & 100 & 95 & 95 & 100 & 100 & 87.50 & 100 & 25.97 & 38.00 & S3 & S3 S3 S3 S1 S3 S1 \\ 13 & 90 & 100 & 100 & 100 & 48.75 & 48.7 & 100 & 100 & 95 & 95 & 100 & 100 & 85.00 & 100 & 29.93 & 46.27 & S3 & S3 S3 S1 S3 S1 \\ 15 & 95 & 100 & 100 & 100 & 48.75 & 48.7 & 100 & 100 & 95 & 95 & 100 & 100 & 80.00 & 100 & 30.19 & 39.71 & S3 S3 S3 S3 S1 S3 S1 \\ 15 & 95 & 100 & 100 & 100 & 40.02 & 30.0 & 100 & 100 & 95 & 95 & 100 & 100 & 86.09 & 100 & 24.01 & 28.50 & N1 S3 S3 S1 S3 S1 \\ 16 & 95 & 100 & 100 & 100 & 40.02 & 30.0 & 100 & 100 & 95 & 95 & 100 & 100 & 86.09 & 100 & 24.01 & 28.50 & N1 S3 S3 S1 S3 S3$		9	95	100	100	100	48.80	48.8	100	100	95	95	100) 1	100	85.25	100	37.54	46.	36 S	3 S.	3 S3 s1,n	S3 s1
11 95 100 100 100 300 300 100 100 95 95 100 100 9000 100 23.01 28.50 NI S3 NI sun S3 sl 12 95 100 100 100 35.31 35.3 100 100 95 95 100 100 81.50 100 24.37 33.53 NI S3 NI sun S3 sl 13 90 100 100 40.00 40.00 100 100 95 95 100 100 25.97 38.00 S3 S3 S3 sl S3 sl 14 95 100 100 44.75 48.7 100 100 95 95 100 100 80.0 103 30.1 S3 S3 sl S3 sl 16 95 100 100 44.15 41.8 100 100 95 100 100 88.69 100 24.01 28.50 NI S3 NI sun S3 sl 101 101 100	_	10	95	100	100	100	30.00	30.0	100	100	95	95	100) 1	100	85.00	100	37.54	28.	50 S	3 S.	3 S3 s1,n	S3 s1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	lion plair	11	95	100	100	100	30.00	30.0	100	100	95	95	100) 1	100	90.00	100	23.01	28.	50 N	1 S.	3 N1 si,n	S3 s1
13 90 100 100 400 400 100 100 95 95 100 100 2597 38.00 S3 S3 </td <td>12</td> <td>95</td> <td>100</td> <td>100</td> <td>100</td> <td>35.31</td> <td>35.3</td> <td>100</td> <td>100</td> <td>95</td> <td>95</td> <td>100</td> <td>) 1</td> <td>100</td> <td>81.50</td> <td>100</td> <td>24.37</td> <td>33.5</td> <td>53 N</td> <td>1 S.</td> <td>3 N1 s₁,n</td> <td>S3 s1</td>		12	95	100	100	100	35.31	35.3	100	100	95	95	100) 1	100	81.50	100	24.37	33.5	53 N	1 S.	3 N1 s ₁ ,n	S3 s1
Q 14 95 100 100 100 48.75 48.7 100 100 95 95 100 100 85.00 100 29.93 46.27 S3 S3 S3 s1 S3 s1 15 95 100 100 100 41.81 41.8 100 100 95 95 100 100 80.00 100 24.01 28.50 NI S3 S3 s1, s1, s1, s3, s1 16 95 100 100 100 30.00 30.0 100 95 95 100 100 24.01 28.50 NI S3 S3 s1, s1, s1, s3, s1 19 95 100 100 100 85.00 100 48.15 62.99 S3 S2 S3 s1, s1, s1, s3, s1 S3 s1 20 95 100 100 85.00 100 48.50 100 21.66 28.50 NI S3 NI s1, n S3 s1 21 95 100 100 30.00 30.0 100 100 95 100 100 <t< td=""><td>13</td><td>90</td><td>100</td><td>100</td><td>100</td><td>40.00</td><td>40.0</td><td>100</td><td>100</td><td>95</td><td>95</td><td>100</td><td>) 1</td><td>100</td><td>87.50</td><td>100</td><td>25.97</td><td>38.0</td><td>00 S</td><td>3 S.</td><td>3 S3 s1,n</td><td>S3 s1</td></t<>		13	90	100	100	100	40.00	40.0	100	100	95	95	100) 1	100	87.50	100	25.97	38.0	00 S	3 S.	3 S3 s1,n	S3 s1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	e0	14	95	100	100	100	48.75	48.7	100	100	95	95	100) 1	100	85.00	100	29.93	462	27 S	3 S.	$3 S3 s_1,n$	S3 s1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<`	15	95	100	100	100	41.81	41.8	100	100	95	95	100) 1	100	80.00	100	30.19	39.7	71 S	3 S.	$3 S3 s_1,n$	S3 s1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		16	95	100	100	100	30.00	30.0	100	100	95	95	100) 1	100	88.69	100	24.01	28.	50 N	1 S.	3 N1 si,n	S3 _{s1}
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	in in	17	90	100	100	100	66.25	66.3	100	100	95	95	100	100	85	5.00 10	00 4	8.15 (52.99	S3	S2	S3 s1,n	S2s1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	pla	18	90	100	100	100	30.00	30.0	100	100	95	95	100	100	84	1.50 10	$\frac{0}{2}$	1.67	28.50	N1	S3	N1 s1,n	S3s1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ч п	19	95	100	100	100	<u> 55.00</u>	20.0	100	100	95	95	100	100	85	$\frac{0.00}{00}$ 10	$\frac{10}{10}$ $\frac{4}{2}$	$\frac{2.19}{1.66}$	02.20 19.50	<u>S5</u>	<u>S2</u>	<u>S3 Si,n</u>	S2s1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		20	95	100	100	100	30.00	30.0	100	100	95 95	95 95	100	100	- 00 - 80	$100 \ 100 $	\tilde{n} $\frac{2}{2}$	1.00 1	28.50	N1	- 53	$N1 s_1, n$	S3 \$1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$\frac{21}{22}$	95	100	100	100	73.19	73.2	80	80	90	90	95	95	77	7.31 10	$\frac{10}{10}$ $\frac{2}{3}$	3.07 ±	50.07	S3	S2	S3s1,2s3n	S2s1.s2.s3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		23	95	100	100	100	30.00	30.0	100	100	95	95	100	100	85	5.50 10	0 2	3.15	28.50	N1	S3	N1 s1,n	S3s1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ain	24	95	100	100	100	30.00	30.0	100	100	95	95	100	100	90	0.00 10	00^{-2}	4.37 2	28.50	N1	S3	N1 s1,n	S3 s1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ld	25	95	100	100	100	30.00	30.0	100	100	95 70	95 79	100	100	91	.88 10	$\frac{10}{24}$	4.88	28.50	NI	S3	Nl si,n	S3sl
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	edi	20	90	100	100	100	30.00	00.9 30.0	100	100	/ð 05	/ð 05	82 100	83 100	00 8/	0.00 IC	n^{2}	5.70	24.13 28.50	33 N1	33	55 S1,11	SS 51,2,53,4 S2 c1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ч	$\frac{27}{28}$	90	100	100	100	33.50	33.5	100	100	95 95	95 95	100	100	91	50 10	n^{2}	510 3	31.83	S3	- 53	S3tsin	S3s1
30 90 100 100 100 65.88 65.9 100 100 95 95 100 100 85.00 100 47.88 62.60 S3 S2 S3 _{tsln} S2s1 31 90 100 72 100 62.56 62.6 60 60 91 91 96 96 80.50 100 19.01 32.81 N1 S3 N1 _{utsls2n} S3s1,s2,s3		29	<u>90</u>	100	100	100	75.00	75.0	90	90	95	95	100	100	85	5.00 10	$\tilde{0}$ $\tilde{4}$	9.06	54.13	S3	S2	S3 tsl.2n	S2s1.s2
31 90 100 72 100 62.56 62.6 60 60 91 91 96 96 80.50 100 19.01 32.81 N1 S3 N1 utst.2n S3s1,22,s3		30	90	100	100	100	65.88	65.9	100	100	95	95	100	100	85	5.00 10	0 4	7.88 (52.60	S 3	S2	S3 _{tsl,n}	S2 s1
		31	90	100	72	100	62.56	62.6	60	60	91	91	96	96	80	0.50 10	0 1	9.01	32.81	N1	S3	N1 tds1,2,n	S3s1,s2,s3

(50-25)

S1 : soil depth (cm) , S2 : Texture , S3 : Caco₃ , S4 : Gypsum and n= salinity & alkalinity Si : high suitable , S2 : moderately suitable , S3 : marginal suitable , N : not suitable

Fig .10. Current land capability map of the study area.

Potential land capability:

Further land improvements are required to correct or reduce the severity of limitations exiting in the studied area. These are such as 1) leveling the undulating surface. 2) leaching of soil salinity and reclamation of alkalinity existing in the soils, 3) using gypsum as soil amendment, 4) continuous application of organic manure to improve soil-physiochemical properties and fertility status, 5) application of modern irrigation systems, such as: drip and sprinkler to save irrigation water. By applying the previous improvement practices potential suitability of the studied soils could be amlurated to four suitability classes, namely highly suitable (S1), moderately suitable(S2), marginally suitable(S3), and not suitable(N1). This could be divided into four sub classes namely $S1_{s1}$, $S2_{s1}S2_{s1,s2}$, $S3_{s1,and}$ N2_s (table 6) and fig (11)

(<25)

₽.=						Suitability in	idices f	or diffe	rent c	rops.					
85		Fi	eld crops			,	Vegetał	ole crop	s				Fruits		
ic &	Crop	S	Si		SS	Crop	5	Si	C	lass	Cron	S	Si	Cl	ass
Ъч	Crop -	с	р	С	р	- Crop	с	р	с	р	- Crop	С	р	с	р
Depression	Alfalfa Barley Beans Sesame Sorghum Sunflower Wheat Maize	26.85 20.83 4.35 25.52 25.34 17.72 20.70 21.01	59.60 54.16 14.87 58.25 58.19 46.70 56.30 50.24	S3 N1 N2 S3 S3 N1 N1 N1	S2 S2 N2 S2 S2 S3 S2 S2 S2	Cabbage Green pepper Pea Watermelon Tomato Onion	23.84 16.32 18.88 25.90 11.32 16.51	54.68 35.08 49.59 60.86 27.56 34.05	N1 N1 S3 N1 N1	S2 S3 S3 S2 S3 S3	Citrus Guava Mango Olives	10.24 24.48 14.41 36.54	25.04 60.12 29.83 68.18	N2 N1 N1 S3	S3 S2 S3 S2
Aeolien Plain	Alfalfa Barley Beans Sesame Sorghum Sunflower Wheat Maize	24.65 17.55 4.62 25.46 23.02 18.69 17.54 21.44	56.29 50.1 14.75 59.61 52.08 47.14 51.85 49.15	N1 N1 N2 S3 N1 N1 N1 N1 N1	S2 S2 N2 S2 S2 S2 S3 S2 S3 S2 S3	Cabbage Green pepper Pea Watermelon Tomato Onion	25.28 11.54 19.45 32.26 10.08 10.47	55.12 23.98 49.15 69.61 19.01 21.18	S3 N2 N1 S3 N2 N2	S2 N2 S3 S2 N2 N2	Citrus Guava Mango Olives	7.64 27.27 10.75 39.28	17.31 63.11 20.63 71.59	N2 S3 N2 S3	N2 S2 N2 S2
Pediplain	Alfalfa Barley Beans Sesame Sorghum Sunflower Wheat Maize	28.32 22.46 8.40 23.38 28.93 19.57 21.49 24.14	64.28 55.33 26.53 57.20 61.76 49.88 57.86 55.46	S3 N1 N2 N1 S3 N1 N1 N1 N1	S2 S3 S3 S2 S2 S2 S3 S2 S2 S2	Cabbage Green pepper Pea Watermelon Tomato Onion	31.18 25.10 21.50 27.76 15.48 23.94	65.96 50.94 54.78 60.95 38.47 47.98	S3 S3 N1 S3 N1 N1	S2 S2 S2 S2 S3 S3	Citrus Guava Mango Olives	15.05 28.23 20.87 39.02	31.65 64.47 40.80 65.63	N1 S3 N1 S3	S3 S2 S3 S2

Table 6. Current and Potential Suitability classification of the studied soil profiles.

C: current

P: potential

Fig. 11. Potential land capability map of the study area

Soils of grad(I) S1_{s1} :

This unit occupies an area of about (6 fed). It represented soils of depression plain (profiles 6), capability index (Ci) is 78.95%. these soils have slight intensity of soil texture.

Soils of grade (II) $(S2_{s1})(S2_{s1,s2})$:

It is occupies an area of about (787 fed) . and represent the soils of depression plain (profiles 3,4,5,and 7), soils of Aeolian plain (profiles 17 and 19) and soils of pediplain(profiles 22,29,30)capability index (Ci) values varied from 50.07 to 74.58. these soils have moderate to very severe intensity of texture classes as soil limitation.

Soils of grade (III) (S3_{s1}):

Capability indix (Ci) of this unit varied from 28.5 to 49.88 this unit occupies an area of about (2228 fed). and represent the soils of dipression plain (profiles 1 and 2), Aeolian plain (profiles 9,10, 11, 12,13, 14,15,16, and18) and soils of pediplain (profiles 20,21,23, 24,25,26,27,and 31). These soils characterized by very severe to moderate intensity of soil texture as soil limitation.

Soils of grade (IV) N2s

It is represented by profile 8 (depression plain) and occupies an area of about (9 fed) . where capability indix (Ci) was 18.0 . These soils have severe intensity of soil texture and soil profile depth and moderate intensity of CaCO3 and gypsum limitations.

Land suitability classification for specific crops:

Eighteen crops (field crops, vegetable crops, and fruit trees)were selected to know their suitability for cultivation in the study area. Prevailing climatic condition taking in consideration.

By using parametric approach of land index mentioned by Sys et al. (1991) and (1993), the obtained data throw matching soil properties together there with crop requirements, Tables (8 & 9) led to the current and potential suitability index for each of the studied crops

Currently land suitability: According to Sys et al. (1993) (1) **Current land suitability for selected crops could be evaluated**

land suitability of specific crops as given as follows: (A) Depression plain Soils

Marginally Suitable (S3) for Alfalfa , Sesame , Sorghum , Watermelon and Olives , and not suitable (N1) for all the studied crops.

(B) Aeolian plain soils

Marginally Suitable (S3) for Sesame , Cabbage , Watermelon , Guava and Olives , and not suitable (N1) for all the studied crops.

(C) Pediplain Soils

 $\label{eq:marginally Suitable (S3) for Alfalfa , Sorghum , Cabbage , Green pepper , Watermelon , Guava and Olives, and not suitable (N1) for all the studied crops.$

(2) Potential land suitability:

According to Sys et al. (1993) the potential land suitability for selected crops could be evaluated after

verifying aforementioned land improvement the potential land suitability of specific crops as given as follows:

(1) Depression plain Soils

moderately suitable (S2) for Alfalfa, Barley, Sesame, Sorghum, Wheat, Maize, Cabbage, Watermelon, Guava and Olive and marginally suitable (S3) for Sunflower, Green pepper, Pea, Tomato, Onion, Citrus and Mango, and not suitable (N2) for beans.

(2) Aeolian plain soils

moderately suitable (S2) for Alfalfa, Barley , Sesame, Sorghum , Wheat, Cabbage, Watermelon, Guava. and Olives Marginally Suitable (S3) for Sunflower, Maize and Pea and not suitable (N2) for Beans, Green Pepper, Tomato, Onion, Citrus and Mango.

(3) Pediplain Soils

Moderately suitable (S2) for of Alfalfa, Sesame, Sorghum, Wheat, Maize, Cabbage, Green Pepper, Pea, Watermelon, Guava and Olive and Marginally suitable (S3) for Barley, Beans, , Sunflower, Tomato, Onion, Citrus, and Mango.

REFERENCES

- Arafat, S.M.(2003)The utilization of geo-information technology for agricultural development and management in Egypt. Diffuse pollution conference, Dublin
- Bandyopadhyay, s., R.K. Jaiswal, V.S. Hedge and V.j ayaraman (2009). Assessment of land suitability potential for agriculture using a remote sensing and GIS based approach. International Journal of remote sensing 30(4) 879-895
- Burt(2004) Soil survey laboratory manul. Soil survey investigation report No. 4
- Dobos, E., B.Norman, W. Brus, M. Lance, J. Chris and M. Erika (2002). The use of DEM and satellite images for regional scale soil database. 17th world congress of soil sciences(WCSS), 14-21 August 2002 Bangkok. Thailand.
- Ehlers, M., M.A. Jadkowski, R.R. Howard and D.E. Brousten (1990). Application of spot data for regional growth analysis and local planning photogrametric Engineering and remote sensing 56: 1975.
- FAO,(1990). Guide line for soil profile description. FAO. International Soil Reference Information Center, Rome.

- FAO,(1976). A framework for land evaluation: Soil Pull., No. 32, FAO. Rom. Italy.
- Kalkhan, M.A., T.J. Stohigren, G.W.Chong, D. Lisa and R.M. Reich(2000). Apredictiv spatial model of plant diversity integration of remote sensing data, GIS and spatial statistics 8th Biennial Remote sensing application conference. Aibuquerque. NM.
- Khater, E.A; M.A. Mostafa; E.M. Soliman; H. H. Hassona and M.S.Ibrahim (2008). Studies on Soil Deposition Mode, Profile Development and Suitability for Specific crops at El Bahariya Oases, Egypt. Egypt. J. Soil Sci. 48, No. 1, pp. 1-15.
- Martin, D. and S.K.Saha(2009). Land evaluation by integrating remote sensing and GIS for cropping system analysis in a watershed. Current science 96(4):569-575.
- Mostafa M. A; E. A. Khater; E. M. Soliman; H. H. Hassona and M. S. Ibrahim(2008). Physiographic Distribution Imbalance of Bahariya Oases as Limitations For Agricultural purposes. J. Environ. Sci., vol. (16), No. (2) 1110-0826.
- Page, A.L. (1982). Methods of Soil A nalysis., Soil sci. Soc. Amer.Inc. Pupl., Madison, Wisconsin, USA.
- Said, R.C. (2002) The geology of Egypt. Elsevir publishing company, New york, USA
- Shahin, R.R., M.A. Abdel-Hamid and Sh.I. Abdel-Aal(1996). Contamination of groundwater in Bahariya Oasismby some heavy metals. Egypt. J. soil sci.,36(1-4):119-132
- Sys, C. and W. Verheye (1978). An attempt to the evaluation of physical land characteristics for irrigation according to FAO Framework for land evaluation. Int. Train. Cent. For Post Graduate, Soil Scientists.
- Sys, C.; E. Van Ranst and J. Debaveye (1991). Land evaluation Part 1& 2. Int. Train. Cent. For Post -Graduate, Soil Scientists, Univ. ,Ghent, Belgium.
- Sys, C.; E. Van Ranst ; J. Debaveye and F. Beernaert (1993). Land evaluation . Part 3 Crop requirements. General Administration for Development cooperation, Belgium.
- Weng, Q. (2001). A remote sensing-GIS evaluation of urban expansion and its impact on surface temperature in zhujin delta south China. International Journal of urban and regional studies. 22, 445.

تقييم بعض أراضي الواحات البحرية والتخطيط الأمثل لاستغلالها زراعيا إبراهيم محمد عبد الله

معهد بحوث الأراضي و المياه و البيئة – مركز البحوث الزراعية

تعد واحات البحرية من المناطق الواعدة للتوسع الزراعي في مصر ، والجدير بالذكر أن مسح التربة التفصيلي وتقييم الأراضي ومدى ملاءمتها للزراعة بعتبر من أهم الخطوات لتحقيق هذا الهدف والهدف من هذا البحث هو دراسة خصائص اراضي البويطي لتقييم قدرتها الانتاجية وصلاحيتها لزراعة المحاصيل الرئيسية باستخدام الاستشعار عن بعد (RS) ، نظم المعلومات الجغرافية (GIS) ، ونموذج sys لتقييم الأراضي حيث تم اختيار 31 قطاعا ارضيا للتربة (من أصل 158 تم وصفها في منطقة الدراسة وتحديد احداثيتها باستخدام جهاز ال(GPS). وتم وصف المظاهر المورفولوجية وتم أخذ عينات من القطاعات التحاليل المعملية. وفقًا لعمل RS و SJ في منطقة الدراسة وتحديد احداثيتها باستخدام جهاز ال(GPS). وتم وصف المظاهر المورفولوجية وتم أخذ عينات من القطاعات التحاليل المعملية. وفقًا لعمل RS و SJ في منطقة الدراسة وتحديد احداثيتها باستخدام جهاز ال(GPS). وتم وصف المظاهر المورفولوجية وتم أخذ عينات من القطاعات التحاليل المعملية. وفقًا لعمل RS و SJ بت التعرف على ثلاث وحدات أرضية. هذه الوحدات هي منخفض Bopression plain (% 18.6) ، السهل الهوائي القطاعات التحاليل المعملية. وفقًا لعمل RS و SJ التحاتي Pediplain و (%3.04). تم إجراء الارتباط بين الوحدة الجيومور فولوجية والتربة ثم خرائط التربة التي تم انشاؤ ها باستخدام برنامج S.3. على خصائص التربة ، تم تقييم صلاحية التربة المدروسة حسب ملاءمتها للزراعة. الوضع الحالي ، تم تصنيفهم إلى فئات القرات الخاصة بهم وهي مناسبة بشكل متوسطة الصلاحية (SJ.04%) ، هامشية (SZ =8.5.8%) ، وغير ملائمة (SZ =2.2%). وعناي عنه على عمي مدى التوبة والتي تشمل القوام والملوحة والقلوية والتضاريس و عمق قطاع التربة ورجات شدة مندة معنو مشو مثوسطة وشديدة). يمكن التغلب على بعض مداحية القربية والقلوية والمالوحة والقلوية والتضاريس و عمق قطاع التربة ورجات شدة مختلفة (خفيفة ومتوسطة وشديدة). يمكن التغلب على بعص هذه المشاكل (الملوحة و القلوية و النصار يس تحسين الأراضي في المستقبل. يمكن تصنيف الصلاحية المستقبلية (الكامنة) للتربة التي تمت دراستها إلى عالية الصلاحية (و 25.2%) ، هامشيًا الصلاحية (درجاح») ، وغير صالحة دائما (SZ =3.0). على معن هذه المشاكل (الملوحة الموية التصار س في المشيكل (الملوحة والقورية والتصاريس) من خلال وحريي إلى والكامن. وقد أشارت النتئيج إلى أن هذه التربة غير معائمة) لل