The Arab Journal of Scientific Research
http://aiesa.org/2017/09/the-arab-journal-of-scientific-research/

Complex impedance analysis and relationships

 with electrical conductivity, and dielectric constantsFathy Salman

Physics department, Faculty of Science, Banha University,
Egypt

Introduction

AC impedance spectroscopy is a valuable tool for studying both the bulk transport properties of a material and the ac conductivity and the dielectric properties. The principle of the impedance analysis method is based on measurements of the sample impedance taken over a wide range of frequencies and then analysed in the complex impedance plane. The mathod was firstly applied to solid electrolytes problems by Bauerle ${ }^{(19)}$ and then used by many workers for various superionic conductors. The impedance analysis method requires the determination from the measurements two parts of the complex impedance of the sample $Z^{*}=Z^{\prime}+\mathrm{J} Z^{\prime \prime}$. The main parameters Rand C are deduced from the analysis of impedance method

Theoretical background:

The impedance is defined as the Z is the complex ratio of the applied (ac) voltage $\mathrm{V}(\omega)$ to the resultant current $\mathrm{I}(\omega)$ at frequency ω

$$
\begin{equation*}
Z=\frac{V(\omega)}{I(\omega)} \tag{1}
\end{equation*}
$$

The impedance is most directly interpreted when written in polar form, can be expressed in terms of the the modulus $|Z|$ and the phase angle φ

$$
\begin{equation*}
\mathbf{Z}^{*}=\mathbf{V}^{*} / \mathbf{I}^{*}=|Z| \mathrm{e}^{\varphi} \tag{2}
\end{equation*}
$$

Where the magnitude $|Z|$ represents the ratio of the voltage difference amplitude to the current amplitude, while the argument φ gives the phase difference between voltage and current and j is the imaginary unit.
Using Euler's relationship:

$$
\begin{equation*}
Z^{*}=|Z| \quad \cos \varphi+\mathrm{j}|Z| \sin \varphi \tag{3}
\end{equation*}
$$

The impedance is then expressed as

$$
\begin{align*}
& Z^{*}=\mathrm{Z}^{\prime}+\mathrm{J} Z^{\prime \prime} \tag{4}\\
& \quad \mathrm{Z}^{\prime}=|Z| \cos \varphi \tag{5}\\
& Z^{\prime \prime}=|Z| \sin \varphi
\end{align*}
$$

The main parameters deduced from the analysis of
impedance method are Rand C
In Cartesian form \mathbf{Z}^{*} is defined as

$$
\begin{equation*}
Z^{*}=\mathbf{V}^{*} / \mathbf{I} *=\mathrm{R}+\mathbf{J} \mathbf{X} \tag{7}
\end{equation*}
$$

where the real part of impedance is the resistance R and the imaginary part is the reactance X. In case of a capacitor Zc
$=1 / \mathrm{j} \omega \mathrm{C}$ i,e. $\mathrm{X}=\mathrm{X}_{\mathrm{C}}=(-1 / \omega \mathrm{c})$. The capacitor is a result of
the sample's geometry, while the resistor represents the resistivity of the bulk This impedance depends on the frequency and is entirely capacitive.

$$
\begin{equation*}
\mathrm{Z}^{*}=\mathrm{R}+\mathrm{j}(-1 / \omega \mathrm{C}) \tag{8}
\end{equation*}
$$

From above relations we obtain :

$$
\begin{equation*}
\mathrm{R}=\mathrm{Z} \tag{9}
\end{equation*}
$$

$$
\begin{aligned}
& -1 / \omega \mathrm{C}=\mathrm{Z}^{\prime \prime} \\
& \mathrm{C}=-1 / \omega \mathrm{Z}^{\prime \prime}
\end{aligned}
$$

(10)

$$
\begin{equation*}
\operatorname{Tan} \varphi=Z^{\prime} / Z \quad \text { Or } \quad \operatorname{Tan} \delta=Z^{\prime} / Z^{\prime} \tag{11}
\end{equation*}
$$

Table

F (Hz)	Z (Ohm)	Q	Z^{\prime} $=\|\mathbf{Z}\| \cos \varphi$	$Z^{\prime \prime}$ $=\|\boldsymbol{Z}\| \sin \varphi$	C $=\mathbf{1} / \omega Z^{\prime \prime}$	R $=\mathrm{z}^{\prime}$	$\tan \delta$ $=\mathrm{z}^{\prime} / \mathrm{z}^{\prime}$,
-	-	--					

Data Presentation

Complex Impedance Plot

If the real part Z^{\prime} is plotted on the x -axis and the imaginary part Z"
on the y-axis of a chart, a so called "Nyquist plot," or complex plane impedance diagram, is revealed. As shown

Vol. 2
in Figure, this plot has the shape of a semicircle. Notice that in this plot the y-axis was chosen as negative notation and that each

Figure 1. Nyquist Plot with Impedance Vector
point on the Nyquist plot is the impedance at one frequency [1]. On the Nyquist plot the impedance can be represented as a vector of length $|\mathrm{Z}|$. The angle between this vector and the x -axis is φ, or "phase angle" which also has a negative notation, as (from Eq. 1-11):

There is a parameter $\tau=R C$ called "time constant," which is associated with this circuit, and a corresponding "characteristic circular" frequency $\omega_{c}=1 / \tau$ and "characteristic" or "critical relaxation" frequency. At very high frequencies the impedance is completely capacitive, while at low frequencies it becomes completely resistive and approaches the value of R, which equals the diameter of the Nyquist plot semicircle. The phase angle φ tends towards -90° at high frequency and towards 0° at low frequency, and critical frequency f_{c} corresponds to a midpoint transition where the phase angle is -45° and $\mathrm{Z}^{\prime}=$ $Z "=R / 2$.The diameter of the semicircle is taken as the bulk resistance.Then

$$
\sigma_{\mathrm{b}}=\frac{1}{R_{b}} \cdot \frac{\mathrm{t}}{\mathrm{a}}
$$

The Nyquist Plot in Figure 1 results from the electrical circuit of Figure 2. The semicircle is characteristic of a single "time constant". Impedance plots often contain several semicircles. Often only a portion of a semicircle is seen.

Figure 2. Simple Equivalent Circuit with One Time Constant

Another popular presentation method is the Bode Plot. The impedance is plotted with log frequency on the X axis and both the absolute values of the impedance $\left(|Z|=Z_{0}\right)$ and the phase-shift on the Y-axis.Unlike the Nyquist Plot, the Bode Plot does show frequency information.

Ac conductivity $\sigma(\omega)$ is calculated by using the relation,

$$
\sigma(\omega)=\frac{1}{\mathrm{R}} \times \frac{\mathrm{t}}{\mathrm{a}}
$$

where R is the resistance, (t$)$ and (a) are the thickness and the area

Dielectri constant ε^{\prime} is calculated using the following relation:

$$
\varepsilon^{\prime}=\frac{c}{\varepsilon_{o}} \times \frac{t}{a}
$$

where C is the capacitance $\varepsilon_{o}=8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}, \mathrm{t}$ and a are the thickness and the area.

Dielectric Loss $\varepsilon^{\prime \prime}$ is calculated using the following relation:

$$
\varepsilon^{\prime \prime}=\underline{\varepsilon^{\prime}} \tan \delta
$$

where $\delta=(90-\varphi), \varphi$ is the phase angle.

Conclusions

The impedance measurements of the sample is taken in terms of the the modulus $|Z|$ and the phase angle φ taken over a wide range of frequencies. The values of Z ' and Z '' can be found , R and C are deduced._Ac conductivity $\sigma(\omega)$, dielectri constant ε^{\prime} and dielectric Loss $\varepsilon^{\prime \prime}$ are determined.

References

The following sources were used in preparing this application note
Bauerle J E 1069 J Phys. Chem. Solids 302657.
Mackdonald J R (ed) 1987. Impedance spectroscopy emphasizing solid state materials and systems (New York Wiley).

The Equivalent Circuit of Impedance

The simplest model for an electrode - sample system under an applied voltage is a capacitor and resistor in parall. Figure a. The capacitor is a result of the sample's geometry, while the resistor represents the resistivity of the bulk.The impedance of such circuit at frequency ω consists of the real part R and the imaginary part $1 / \square \mathbf{c}$ and is written as :

$$
\frac{1}{Z}=\frac{1}{R}+j \omega c
$$

The value Z can put in the form ;

$$
Z=R\left[\frac{1-j \omega \tau}{1+\omega^{2} \tau^{2}}\right]
$$

Which can be separated into the real part Z^{\prime} and the imaginary part $Z "$ as :

$$
Z \fallingdotseq \frac{R \omega \tau}{1+\omega^{2} \tau^{2}}
$$

$Z^{`}=\frac{R}{1+\omega^{2} \tau^{2}}$

By ellimainating $\omega \square$ these two equations (1.10) and (1.11) can be combined and written in the form of a circle :

$$
Z^{2}-Z^{\prime} \mathrm{R}+\mathrm{Z}^{\prime \prime 2}=0
$$

Adding $\mathrm{R}^{2} / 4$ to both sides of equation (1.12) one obtains

$$
(Z-1 / 2 R)^{2}+Z^{\prime \prime 2}=(1 / 2 R)^{2}
$$

Comparing this equation with the standard form of the equation of a circle, one can see that the Z-plane plot is a semicircle in the first quadrant with center at $\quad(1 / 2 R, 0)$ and with a radius $1 / 2 \mathrm{R}$ fig 3.1.b. It can be shown also that at the maxium of the semicircle $\omega \square=1$ where $\square=\mathrm{RC}$ is the time constant or the relaxation time of the circuit .

Figure (1) : Complex impedence plot for the parallel circuit $R C$.

So, when from the complex impedance measurements when only one semicircle obtained and this semicircle originates in the $(0,0)$ point ,it means that only one resistance R and one capacity c both parallel combined, can be described to the sample in such a case, these should be the bulk resistance and capacity of the sample .

Vol. 2

Figure (2,3.4\&5) : Complex impedence plots for simple circuits RC of different combinations $a, b c$, d, e, f and g respectivley.

Nyquist and Bode representation of complex impedance data for ideal electrical circuits

(Nyquist Plot)

The impedance analysis method requires the determination from the measurements at each frequency f two parts of the impedance: the real part Z^{\prime} and the imaginary part Z". The real

