# Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.



The journal of Toxicology and pest control is one of the series issued twice by the Egyptian Academic Journal of Biological Sciences, and is devoted to publication of original papers related to the interaction between insects and their environment.

The goal of the journal is to advance the scientific understanding of mechanisms of toxicity. Emphasis will be placed on toxic effects observed at relevant exposures, which have direct impact on safety evaluation and risk assessment. The journal therefore welcomes papers on biology ranging from molecular and cell biology, biochemistry and physiology to ecology and environment, also systematics, microbiology, toxicology, hydrobiology, radiobiology and biotechnology.

www.eajbs.eg.net

Egypt. Acad. J. Biolog. Sci., 7(1): 163-175 (2015) **Egyptian Academic Journal of Biological Sciences** F. Toxicology & Pest control ISSN: 2090 - 0791 www.eajbs.eg.net



New Approach Based on Nanotechnology in Baculovirus Protection

A. El-Helaly<sup>1</sup> and W. A. A. Sayed<sup>2</sup>

1-Department of Economic Entomology and Pesticides, Faculty of Agriculture Cairo University, Giza,

2-Biological Application Department, Nuclear Research Center, Atomic Energy Authority, Abo-Zaabel, Egypt & Middle Eastern Regional Radioisotope Center for Arab Countries, Dokki, Giza, Egypt.

#### **ARTICLE INFO**

**Article History** Received:1/11/2015 Accepted:15/12/2015

Key words: Nano Aluminum Oxide Nano Zinc **SpliMNPV** Spodoptera littoralis squash plants electron microscope

#### ABSTRACT

Antioxidants proved decade ago to be promising protective additives to Baculoviruses against deleterious effect of UV in sunlight, Present semi field experiments' tests the role of nano antioxidants in providing better protection for baculoviruses. The treatments with Spodoptera littoralis nuclear polyhedrosis virus (SpliMNPV), consisted of (Nano Aluminum Oxide with or without SpliMNPV LC<sub>90</sub>, and Nano Zinc Oxide with or without SpliMNPV LC90) at five different concentrations.100, 200, 300, 400 and 500 ppm for different investigation periods of artificial UV source for maximum 5 then 10 hours in laboratory then 50 ml / squash plant with five replications, on which neonate larvae of Spodoptera littoralis were exposed daily. Larval mortality was recorded till the  $15^{\text{th}}$  day post application. Results are based on laboratory and leaf-bioassays to test Lethal Infectivity Time to 50% (LIT<sub>50</sub>) of population. The results showed that LIT<sub>50</sub> 82.759 hours and 52.500 hours for additive nano zinc oxide and nano aluminum oxide; respectively at 500 ppm concentration while it gave 14.482 with virus alone treatment and 100.788 hours with Cacao 5% as positive control, the mechanism of protection was studied through transmission electron microscope. The total antioxidants activity was determined using DPPH (2, 2-diphenyl-1-picrylhydrazyl) antioxidant assay technique as a first record to use this technique at this type of investigations. The obtained result suggested the possible capability of nano antioxidants in prolonging the virus activity on plant foliage under small scale semi-field application besides it suggests to do DPPH antioxidant assay technique first in the future with any candidate before the bioassay due to its clear image about the antioxidants activity.

#### **INTRODUCTION**

Spodoptera littoralis as a common pest on many crops (Bulmer et al. 2009, Zhang and Xiao-zhen 2010, Cloyd and Bethke 2011) and considered as one of the most series pest for many different crops in Africa and Europe (Horowitz et al., 1994 and Smagghe and Degheele, 1997) was selected in the present study as a model to assess the prolonging in viral activity. Nanotechnology is emerging as a highly attractive tool for formulation and enhancing and offering new active ingredients Leiderer and Dekorsy, 2008.

Enhanced resistance towards insecticides and environmental hazards along with the restrictive use of many pesticides it is important to find out new strategies to replace older ones which are perceived to carry higher safety and environmental risks (Kida et al., 2007). Nanoparticles possess distinct physical, biological and chemical properties associated with their atomic strength (Roy 2009). They can be arranged or assembled into ordered layers, or layers (Ulrich et al., 2006). mine Nanotechnology, a promising field of research of pesticides and pest control (Matsumoto et al. 2009 and Harper Nano-pesticides 2010). and nanoencapsulated pesticides are expected to reduce the volume of application (Gojova et al. 2007 and Pan et al., 2009). Nano antioxidants found to be folded stronger than natural one (Vardeman et al., 2007). The action of nano oxides is greatly depending on its mineral composition, type, insect species, environmental conditions or (Subramanyam and Roesli, 2000). The mode of action of nano aluminum and zinc oxides has not vet been elucidated, and detailed toxicity studies are needed to understand how it works and also to determine whether it constitutes a good alternative for insect pest control. Recently, novel types of nano particulate material, nano aluminum and zinc oxides have been found to induce mortality in insects (Stadler et al., 2010 and Debnath et al., 2001). Therefore the present study was conducted to the current interest on nanomaterial-based technology for both baculovirus prolonging period of action and as a synergistic effect.

#### MATERIALS AND METHODS Insect

*Spodoptera littoralis* (Boisd.) was used as test insect and reared under laboratory conditions on a semi synthetic diet of Shorey and Hale 1956 26°C±2 and 12 hours D/N duration lightening.

#### Virus Inoculum

A Local isolates of (*Spli*MNPV) was originally isolated in Egypt by Abul Nasr1956.

# Nano materials

Nano Aluminum Oxide and Nano Zinc materials were tested supplied by Nano Tech. Egypt.

## Laboratory Irradiation test

Simulated sunlight UV (SUV) was used where a set of four UV lamps (Ultra-Vitalux, OSRAM. Germany) and Ludcke. 1996) (Huber was established at unit of virology, department of economic entomology and pesticide, Faculty of Agriculture Cairo Virus with or without University. additives resembling 200 fold LC<sub>90</sub> were spread inside a Petri dish. After air drying, the dishes with the virus film on surface were exposed to the UV sources. Screening trial irradiation divided into two progressive steps. The virus after irradiation was re-suspended according to Cisnero et al. (2002. and the bioassay according to (Fritsch and Huber, 1985). The plates were incubated at 26±2°C and 60±5% R.H. under the laboratory conditions.

#### Semi Field Experiment

200 pots of squash were cultured in glass house, 140 squash pots only were used, 5 replicates for each concentration and for single period located at the unit of virology, Faculty of Agriculture, Cairo University. One concentration of nano aluminum oxide and nano zinc oxide additives was prepared 500 ppm and (5% w/v) of cacao and kept in the fridge till these additives mixed with virus to give final concentration of  $LC_{90}$ , Virus suspension treatments were applied separately to squash foliage using one liter hand sprayer. Leaves were randomly collected from treated / untreated pants at zero time, 10, 24, 48, 96, and 168 hours post application and kept individually.

Each leaf was placed into a glass bottle, on which 10 starved neonate larvae were allowed to feed for 3hr only, before transferred daily to plastic cubs with diameters of 3 cm in radius base and height of 5 cm and full of semi artificial diet of Shorey and Hale 1956 till its half. Then covered with double layer of soft paper tissue and the larval mortality were recorded till death or pupation this was modification of (Shapiro *et al.*, 2008) method.

# **DPPH** assay

The measurement of the DPPH activity radical scavenging was performed according to methodology described by Brand-Williams et al., 2008. The samples were reacted with the stable DPPH radical in an ethanol solution. The reaction mixture consisted of adding 0.5 mL of sample, 3 mls of absolute ethanol and 0.3 mL of DPPH radical solution 0.5 mM in ethanol. When reacts with an DPPH antioxidant compound, which can donate hydrogen, it is reduced. The changes in color (from deep violet to light yellow) were read [Absorbance (Abs)] at 517 nm after 100 min of reaction using a UV-VIS spectrophotometer (DU 800; Beckman Coulter, Fullerton, CA, USA). The mixture of ethanol (3.3 mL) and sample (0.5 mL) serve as blank. The control solution was prepared by mixing ethanol (3.5 mL) and DPPH radical solution (0.3 mL). The scavenging activity percentage (AA %) was determined according to Mensor et al., 2005.

#### **Electron microscope**

*Spli*NPV mixed with nano aluminum or with nano zinc oxide, and then emerged each sample above sucrose gradient, and then the resulted bands were washed twice in distilled water and Scanning electron microscope (SEM). For SEM (JOEL-JSM 5600, JAPAN)., the OB suspensions were prepared using negative staining . The coated samples were mounted in and visualized and photographed at various magnifications. The sizes of the OBs were measured directly from the amplified photograph using a scale and dividing the value by the magnification of the photograph (Rabindra *et al.*, 2003).

# Statistical analysis

Concentration-mortality regressions were calculated to determine the effectiveness of tested material as UV additives for the *Spli*NPV. Slope and  $LC_{50s}$  values were calculated according to the method described by Finney (1971).

The potential of the material to prolong the virus persistence as described by (Muro and Paul, 1985). to insure the potential of the tested material to prolong the virus persistence .for DPPH The experiment was done in triplicate for each substance. The results were expressed as percentage decrease with respect to control values and compared by one-way ANOVA and Turkey's test. A difference was considered statistically significant if p<0.05.

#### **RESULTS AND DISCUSSION**

Two nano materials dissolved in water additives containing antioxidants were evaluated in three progressive steps, first one was under artificial UV sunlight for 300 min as maximum, followed by another experiments for 600 min as maximum to give clear picture of these additives and their role in protection. Finally these materials examined under Egyptian sunny field conditions. The results were as following: Table (1) shows that % of mortality 5 hours later gave 8.69 % only with virus alone treatment while it gave 60.00, 62.50, 67.34, 75.51, and 72.00 % with nano oxide aluminum at different concentrations of 100, 200, 300, 400 and 500 ppm; respectively while cacao give 54.00 %.

| Irradiation       | Mortality % among larvae tested viruses |                                                                        |         |         |         |                                                                                                                                                                                                                                                                |          |  |  |  |
|-------------------|-----------------------------------------|------------------------------------------------------------------------|---------|---------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|--|--|
| exposure period   | SpliNPV alone                           | SpliNPV alone NPV + nano aluminum oxide additives/ ppm and Cacao at 5% |         |         |         |                                                                                                                                                                                                                                                                |          |  |  |  |
|                   |                                         | NAO 100                                                                | NAO 200 | NAO 300 | NAO 400 | NAO 500                                                                                                                                                                                                                                                        | Cacao 5% |  |  |  |
| Zana              | 10.00                                   | 87.23                                                                  | 95.83   | 93.47   | 95.83   | 96.00                                                                                                                                                                                                                                                          | 96.00    |  |  |  |
| Zero              | (49/49)                                 | (41/47)                                                                | (46/48) | (43/46) | (46/48) | (48/50)                                                                                                                                                                                                                                                        | (48/50)  |  |  |  |
| 30                | 81.63                                   | 100.00                                                                 | 91.83   | 100.00  | 100.00  | 100.00                                                                                                                                                                                                                                                         | 96.00    |  |  |  |
| 30                | (40/49)                                 | (48/48)                                                                | (45/49) | (49/49) | (50/50) | m and Cacao at           NAO 500           96.00           (48/50)           100.00           (48/48)           97.91           (47/48)           69.95           (31/47)           72.00           (36/50)           18.36           (9/49)           439.329 | (48/50)  |  |  |  |
| 60                | 40.81                                   | 83.33                                                                  | 100.00  | 100.00  | 100.00  | 97.91                                                                                                                                                                                                                                                          | 92.00    |  |  |  |
| 00                | (20/49)                                 | (40/48)                                                                | (47/47) | (50/50) | (46/46) | n and Cacao a<br>NAO 500<br>96.00<br>(48/50)<br>100.00<br>(48/48)<br>97.91<br>(47/48)<br>69.95<br>(31/47)<br>72.00<br>(36/50)<br>18.36<br>(9/49)<br>439.329                                                                                                    | (46/50)  |  |  |  |
| 100               | 23.40                                   | 67.34                                                                  | 74.00   | 64.58   | 69.56   | 69.95                                                                                                                                                                                                                                                          | 78.00    |  |  |  |
| 100               | (11/47)                                 | (33/49)                                                                | (37/50) | (31/48) | (32/46) | (31/47)                                                                                                                                                                                                                                                        | (39/50)  |  |  |  |
| 200               | 8.69                                    | 60.00                                                                  | 62.50   | 67.34   | 75.51   | 72.00                                                                                                                                                                                                                                                          | 54.00    |  |  |  |
| 300               | (4/46)                                  | (30/50)                                                                | (30/48) | (33/49) | (37/49) | (36/50)                                                                                                                                                                                                                                                        | (27/50)  |  |  |  |
| Control*          | 0.00                                    | 14.89                                                                  | 13.04   | 20.40   | 18.75   | 18.36                                                                                                                                                                                                                                                          | 0.00     |  |  |  |
| Control           | (0/50)                                  | (7/47)                                                                 | (6/46)  | (10/49) | (9/48)  | (9/49)                                                                                                                                                                                                                                                         | (0/50)   |  |  |  |
| LIT <sub>50</sub> | 64.747                                  | 423.404                                                                | 552.564 | 421.393 | 692.380 | 439.329                                                                                                                                                                                                                                                        | 406.757  |  |  |  |

Table 1: Average rates of mortality among *S littoralis* neonate larvae treated with *Spli*NPV either alone or in combination with nano aluminum oxide or Cacao at 5 % concentration, all exposed to *different UV irradiation periods*.

DW + Virus or DW + Virus and nano aluminum oxide

The calculated lethal inactivation time for 50% of the tested S. littoralis neonate larvae was 64.747 minutes this activity increased to 423.404, 552.564, 421.393, 692.380 and 439.329 minutes by adding nano aluminum oxide at different concentrations of 100, 200, 300, 400 and 500 ppm; respectively (Fig. 1) while cacao gave 406.757. Nano aluminum oxide 400ppm concentration singled out with 10.693 folds of potency followed by other concentrations giving 8.534, 6.785, 6.539 and 6.508 with 200, 500, 100 and 300 ppm; respectively while it gave 6.282 folds with cacao treatment (Fig. 1). Table (2) shows that % of mortality 5 hours later gave 8.69 % only with virus alone

treatment while it gave 68.75, 85.10, 80.00 and 85.41 % with nano zinc oxide at different concentrations of 100, 200, 300, 400 and 500 ppm; respectively while cacao give 54.00 %.

Median lethal inactivation for 50% of population increased with all nano zinc oxide concentration to give 696.477, 726.032, 388.390, 1588.304 and 2369.214 minutes with nano zinc oxide and Potency folds of 6.539, 11.213, 5.998, 24.53 and 36.59 fold; with nano zinc oxide at different concentrations of 100, 200, 300, 400 and 500 ppm; respectively where it gave 406.757 min LIT50 and 6.282 folds of potency with cacao and only 64.747 min with virus alone treatment. (Fig. 2).



Fig. 1: LIT<sub>50</sub> (Median lethal inactivation time) and Potency among *S littoralis* neonate larvae treated with *Spli*NPV either alone or in combination with nano aluminum oxide isolates or Cacao at 5% concentration.

| Irradiation       | Mortality % among larvae tested viruses                      |         |          |          |          |          |          |  |  |
|-------------------|--------------------------------------------------------------|---------|----------|----------|----------|----------|----------|--|--|
| exposure period   | SpliNPV NPV + nano zinc oxide additives/ ppm and Cacao at 5% |         |          |          |          |          |          |  |  |
|                   | alone                                                        | NZO 100 | NZO 200  | NZO 300  | NZO 400  | NZO 500  | Cacao 5% |  |  |
| Zero              | 10.00                                                        | 100.00  | 100.00   | 100.00   | 100.00   | 100.00   | 96.00    |  |  |
|                   | (49/49)                                                      | (49/49) | (50/50)  | (47/47)  | (49/49)  | (49/49)  | (48/50)  |  |  |
| 30                | 81.63                                                        | 100.00  | 97.95    | 100.00   | 100.00   | 100.00   | 96.00    |  |  |
|                   | (40/49)                                                      | (48/48) | (48/49)  | (46/46)  | (46/46)  | (48/48)  | (48/50)  |  |  |
| 60                | 40.81                                                        | 94.00   | 89.58    | 93.87    | 100.00   | 100.00   | 92.00    |  |  |
|                   | (20/49)                                                      | (47/50) | (43/48)  | (46/49)  | (47/47)  | (47/47)  | (46/50)  |  |  |
| 180               | 23.40                                                        | 83.67   | 86.00    | 83.33    | 81.25    | 100.00   | 78.00    |  |  |
|                   | (11/47)                                                      | (41/49) | (43/50)  | (40/48)  | (39/48)  | (48/48)  | (39/50)  |  |  |
| 300               | 8.69                                                         | 68.75   | 85.10    | 80.00    | 85.41    | 100.00   | 54.00    |  |  |
|                   | (4/46)                                                       | (33/48) | (40/47)  | (40/50)  | (41/48)  | (49/49)  | (27/50)  |  |  |
| Control*          | 0.00                                                         | 12.24   | 6.38     | 22.00    | 24.00    | 22.91    | 0.00     |  |  |
|                   | (0/50)                                                       | (6/49)  | (3/47)   | (11/50)  | (12/50)  | (11/48)  | (0/50)   |  |  |
| LIT <sub>50</sub> | 64.747                                                       | 696.477 | 726.0322 | 388.3900 | 1588.304 | 2369.214 | 406.757  |  |  |

Table 2: Average rates of mortality among *S littoralis* neonate larvae treated with *Spli*NPV either alone or in combination with nano zinc oxide or Cacao at 5% concentration, all exposed to different UV irradiation periods.



Fig. 2: LIT<sub>50</sub> (Median lethal inactivation time) and Potency among *S littoralis* neonate larvae treated with *Spli*NPV either alone or in combination with nano aluminum zinc isolates or Cacao at 5% concentration.

The nano aluminum oxide showed to single out as a strong protective material where it give 0.00% of reduction at all UV periods of investigation (Table 3) while it gave 18.37, 59.19, 76.60 and 91.13 with 30, 60, 180 and 300 min with virus alone treatment; respectively and 0.00, 0.00, 026.05, and 24.00 with nano aluminum oxide and finally it gave 0.00, 4.00, 18.00 and 42.00 with cacao at the same previous periods; respectively.

Table 3: Average rates of reduction among *S littoralis* neonate larvae treated with *Spli*NPV either alone or in combination with nano aluminum oxide, nano zinc oxide or Cacao at 1% concentration, all exposed to different UV irradiation periods.

| Irradiation | Mortality % among larvae tested with |                               |             |          |  |  |  |  |
|-------------|--------------------------------------|-------------------------------|-------------|----------|--|--|--|--|
| period      | <i>Spli</i> NPV<br>alone             | NPV + The indicated additives |             |          |  |  |  |  |
| (min)       |                                      | NAO 500 ppm                   | NZO 500 ppm | Cacao 5% |  |  |  |  |
| 30          | 18.37                                | 0.00                          | 0.00        | 0.00     |  |  |  |  |
| 60          | 59.19                                | 0.00                          | 0.00        | 4.00     |  |  |  |  |
| 180         | 76.60                                | 26.05                         | 0.00        | 18.00    |  |  |  |  |
| 300         | 91.13                                | 24.00                         | 0.00        | 42.00    |  |  |  |  |

Prolonged period of UV application up to 10 hours at second stage showed that virus mixed with cacao gave 11.584 LIT<sub>50</sub> hours while it gave 8.338 hours with virus mixed with nano aluminum oxide treatment and the protection reached to 134.251 with virus mixed with nano zinc oxide treatment while it give only 1.626 hour with virus alone treatment. (Table 4 & Fig. 3) the

mortality % gave 23.40, 2.38, 2.08 and 0.00 with virus alone treatment 3, 5, 7 and 10 hours post investigation; Respectively while it gave 80.00, 80.00, 57.44 and 38.00 with nano aluminum oxide treatment mixed with virus 89.79, 81.25, 88.00 and 78.00 % with nano zinc oxide mixed with virus and 92.00, 80.00, 74.00 and 54.00% with cacao mixed with virus treatment.

Table 4: Average rates of mortality and reduction in virus activity among *S littoralis* neonate larvae treated with *Spli*NPV either alone or in combination with nano aluminum oxide, nano zinc oxide or Cacao at 5% concentration, all exposed to different UV irradiation periods.

| Irradiation       | Mortality % among larvae tested with |       |                           |       |                   |       |                   |       |  |  |
|-------------------|--------------------------------------|-------|---------------------------|-------|-------------------|-------|-------------------|-------|--|--|
| periods /hours    | <i>Spli</i> NPV                      | alone | NPV + indicated additives |       |                   |       |                   |       |  |  |
|                   |                                      |       | NAO                       |       | NZO               |       | Cacao             |       |  |  |
|                   | M%                                   | R%    | M%                        | R%    | M%                | R%    | M%                | R%    |  |  |
| Zero time         | 100.00<br>(48/48)                    |       | 100.00<br>(48/48)         |       | 100.00<br>(47/47) |       | 100.00<br>(50/50) |       |  |  |
| 3                 | 23.40<br>(11/47)                     | 76.6  | 80.00<br>(40/50)          | 20.00 | 89.79<br>(44/49)  | 10.21 | 92.00<br>(46/50)  | 8.00  |  |  |
| 5                 | 2.38<br>(1/42)                       | 97.62 | 80.00<br>(40/50)          | 20.00 | 81.25<br>(39/48)  | 18.75 | 80.00<br>(40/50)  | 20.00 |  |  |
| 7                 | 2.08<br>(1/48)                       | 97.92 | 57.44<br>(27/47)          | 42.56 | 88.00<br>(44/50)  | 12.00 | 74.00<br>(37/50)  | 26.00 |  |  |
| 10                | 0.00<br>(0/49)                       | 100   | 38.00<br>(19/50)          | 62.00 | 78.00<br>(39/50)  | 22.00 | 54.00<br>(27/50)  | 46.00 |  |  |
| Control DW        | 0.00<br>(0/50)                       |       | 0.00<br>(0/50)            |       | 0.00<br>(0/50)    |       | 0.00<br>(0/50)    |       |  |  |
| LIT <sub>50</sub> | 1.626                                |       | 8.338                     |       | 134.251           |       | 11.584            |       |  |  |



Fig. 3: Average rates of reduction in virus activity expressed in mortality rates among *S littoralis* neonate larvae treated with *Spli*NPV either alone or in combination with aluminum oxide, nano zinc oxide or cacao at 5% concentration, all exposed to different UV irradiation periods.

The reduction was 100% in case of virus alone treatment while it decreased

gradually when virus mixed with nano aluminum oxide, cacao and nano zinc

oxide where it gave 62, 46 and 22: Respectively. Third and last evaluation was in semi field under Egyptian sunny conditions investigated on squashes gave the same trend. Virus alone treatment gave 60.00, 42.00, 6.00, 2.00 and 2.00% Mortality 10, 24, 48, 96 and 168 hours post investigation; Respectively while it gave 100.00, 80.00, 78.00, 44.00, 26.00 and 14.00 % mortality with nano aluminum oxide treatment, 93.47, 92.00, 68.00, 47.91 and 22.44 with nano zinc oxide mixed with virus treatment and finally it gave 94.00, 80.00, 82.97, 56.25 and 26.53 with cacao mixed with virus treatment at the same previous post investigation periods (Table 5).

The median lethal inactivation gave 14.482 hours only with virus alone treatment while it increase gradually with cacao where it gave 100.788 and it gave 82.759 and 52.500 hours with nano zinc oxide and nano aluminum oxide, respectively. (Table 5) at the same trend both cacao and nano zinc oxide gave the lowest reduction % where they gave 69.47 and 75.47% of reduction in order while it increased to 86.00 with nano aluminum oxide mixed with virus and 96.00 with virus alone treatment. (Fig. 4)

Table 5: Average rates of mortality and reduction in virus activity among *S littoralis* neonate larvae treated with *Spli*NPV either alone or in combination with nano aluminum oxide, nano zinc oxide or Cacao at 5% concentration, all exposed to different natural sunlight irradiation periods.

|                   | Mortality % among larvae tested with |       |                           |       |         |       |         |       |  |
|-------------------|--------------------------------------|-------|---------------------------|-------|---------|-------|---------|-------|--|
| Irradiation       | <i>Spli</i> NPV alone                |       | NPV + indicated additives |       |         |       |         |       |  |
| periods /hours    |                                      |       | NAO                       |       | NZO     |       | Cacao   |       |  |
|                   | M%                                   | R%    | M%                        | R%    | M%      | R%    | M%      | R%    |  |
| Zero time         | 98.00                                |       | 100.00                    |       | 97.91   |       | 96.00   |       |  |
|                   | (49/50)                              |       | (49/49)                   |       | (47/48) |       | (48/50) |       |  |
| 10                | 60.00                                | 38.00 | 80.00                     | 20.00 | 93.47   | 1 11  | 94.00   | 2.00  |  |
|                   | (30/50)                              | 38.00 | (40/50)                   | 20.00 | (43/46) | 4.44  | (47/50) |       |  |
| 24                | 42.00                                | 56.00 | 78.00                     | 22.00 | 92.00   | 5.01  | 80.00   | 16.00 |  |
|                   | (21/50)                              | 56.00 | (39/50)                   | 22.00 | (46/50) | 3.91  | (40/50) | 10.00 |  |
| 48                | 6.00                                 | 92.00 | 44.00                     | 56.00 | 68.00   | 20.01 | 82.97   | 14.00 |  |
|                   | (3/50)                               | 92.00 | (22/50)                   | 30.00 | (34/50) | 29.91 | (39/47) | 14.00 |  |
| 96                | 2.00                                 | 96.00 | 26.00                     | 74.00 | 47.91   | 50.00 | 56.25   | 39.75 |  |
|                   | (1/50)                               | 90.00 | (13/50)                   | /4.00 | (23/48) | 30.00 | (27/48) |       |  |
| 168               | 2.00                                 | 96.00 | 14.00                     | 86.00 | 22.44   | 75.47 | 26.53   | 69.47 |  |
|                   | (1/50)                               |       | (7/50)                    |       | (11/49) |       | (13/49) | 09.47 |  |
| Control DW        | 0.00                                 |       | 0.00                      |       | 0.00    |       | 0.00    |       |  |
|                   | (0/50)                               |       | (0/50)                    |       | (0/50)  |       | (0/49)  |       |  |
| LIT <sub>50</sub> | 14.482                               |       | 52.500                    |       | 82.759  |       | 100.788 |       |  |



Fig. 4: Average rates of reduction in virus activity expressed in mortality rates among *S littoralis* neonate larvae treated with *Spli*NPV either alone or in combination with aluminum oxide, nano zinc oxide or cacao at 5% concentration, all exposed to different periods of natural sunlight.

As it is illustrated in tables 1 and 2 both nano aluminum oxide and nano zinc oxide alone caused death to *Spodoptera littoralis* neonate larvae where it gave 14.89, 13.04, 20.40, 18.75 and 18.36 mortality % with 100, 200, 300, 400 and 500 ppm concentrations of nano aluminum oxide alone treatment, and 12.24, 6.38, 22.00, 24.00 and 22.91 mortality % with the same concentrations of nano zinc oxide while it gave 0.00% for both distilled water and cacao alone treatment. Further investigation on this point was done, and the role of these materials to enhance virus alone treatment studied and the results showed in Table 6.

 Table 6: Average rates of mortality among S littoralis neonate larvae treated with serial concentrations of SpliNPV either alone or in combination with nano aluminum oxide, nano zinc oxide.

|                     | Mortality % among larvae tested viruses |                           |          |          |             |          |         |  |  |  |
|---------------------|-----------------------------------------|---------------------------|----------|----------|-------------|----------|---------|--|--|--|
| The virus           | <i>Spli</i> NPV                         | NPV + indicated additives |          |          |             |          |         |  |  |  |
| concentration       |                                         | 300 ppm                   |          | 400      | 400 ppm     |          | 500 ppm |  |  |  |
|                     | aione                                   | NAO                       | NZO      | NAO      | NZO         | NAO      | NZO     |  |  |  |
| 1 V 10 <sup>6</sup> | 94.00                                   | 98.00                     | 100.00   | 100.00   | 100.00      | 100.00   | 100.00  |  |  |  |
| 1 A 10              | (47/50)                                 | (49/50)                   | (48/48)  | (48/48)  | (50/50) (47 | (47/47)  | (50/50) |  |  |  |
| 1 V 10 <sup>5</sup> | 88.00                                   | 100.00                    | 94.00    | 88.00    | 95.83       | 97.91    | 92.00   |  |  |  |
| 1 A 10              | (44/50)                                 | (49/49)                   | (47/50)  | (44/50)  | (46/48)     | (47/48)  | (46/50) |  |  |  |
| 1 V 10 <sup>4</sup> | 38.00                                   | 34.00                     | 40.00    | 40.81    | 43.75       | 44.89    | 58.00   |  |  |  |
| 1 A 10              | (19/50)                                 | (17/50)                   | (20/50)  | (20/49)  | (21/48)     | (22/49)  | (29/50) |  |  |  |
| $1 \times 10^3$     | 22.00                                   | 38.00                     | 46.00    | 34.00    | 40.00       | 38.00    | 54.00   |  |  |  |
| 1 A 10              | (11/50)                                 | (19/50)                   | (23/50)  | (17/50)  | (20/50)     | (19/50)  | (27/50) |  |  |  |
| $1 \times 10^2$     | 12.00                                   | 22.44                     | 18.36    | 22.00    | 26.00       | 34.00    | 44.00   |  |  |  |
| 1 A 10              | (6/50)                                  | (11/49)                   | (9/49)   | (11/50)  | (13/50)     | (17/50)  | (22/50) |  |  |  |
| aantuol*            | 0.00                                    | 20.40                     | 22.00    | 18.75    | 24.00       | 18.36    | 22.91   |  |  |  |
| control*            | (0/50)                                  | (10/49)                   | (11/50)  | (9/48)   | (12/50)     | (9/49)   | (11/48) |  |  |  |
| LC <sub>50</sub>    | 8761.472                                | 3335.458                  | 2705.959 | 4077.694 | 1688.323    | 1868.256 | 520.407 |  |  |  |

\*DW + Virus or DW + Virus and nano aluminum oxide or nano zinc oxide

The median lethal inactivation dose found to be 8761.472 PIBs with virus alone treatment while it decreased regularly nano zinc oxide mixed with virus to give 3335.458, 4077.694, and 1868.265 with 300, 400 and 500 ppm concentrations and 2705.959, 1688.323 and 520.407 only with nano zinc oxide mixed with virus treatment, besides nano zinc oxide mixed with virus gave 44% mortality % and 34.00% with nano aluminum oxide mixed with virus with sublethal dose  $1 \times 10^2$  PIBs where it gave only 12% mortality % with virus alone treatment. Remarkable effort have been done previously in order to protect baculoviruses (Shapiro et al., 2007a, b; Shapiro et al., 2008 and El Salamouny et al., 2009, Deotale et al., 2007 Hong et al, 1996; Mahajan and Sharma 2004 and Nautiyal and Venkataraman 2005, El-Helaly et al., 2009, El-Helaly 2013

and El-Helaly *et al.*, 2013) This work is the first record to use nanotechnology in Baculovirus protection or DPPH assay as a parameter.

Nanomaterials including polymeric nanoparticles, iron oxide nanoparticles, gold nanoparticles, and silver ions have been exploited as pesticides. (Al-Samarrai 2012) and their potential for use in insect pest management (Bhattacharyya et al., 2010) such as Helicoverpa armigera (Vinutha al., 2013), Synthesized silver et nanoparticles possessed excellent antilice and mosquito larvicidal activity (Javaseelan et al., 2011) and cotton lef worm Spodoptera littoralis(El-bendary and El-Helaly 2013) have been reported. So the present paper tried to test other nanoparticles and tested their effects alone or in combination with SpliNPV. Our gained results were in the same trend

with (Nel et al., 2006). They suggested that nanomaterial may control Sitophilus Mode of action granaries. occur destruction of the natural water Barrier (Leiderer and Dekorsy, 2008). Consequently, increase of zinc dose in its normal molecule size, led to the accumulations of zinc in the larval hemolymph and fat body, and more zinc was accumulated in fat body than in hemolymph of Spodoptera litura Fabricius. Powell et al., 2005 found that The mode of action can be mentioned in specific points as a result of interaction of free radicals with DNA. Besides there are some findings of role of nano antioxidants to cause damage of all components of a cell (Gurr et al. 2005, Nel et al. 2006 and Ashe 2011) Consequently, while the exact mechanisms of the antibacterial action had not vet been clearly understood, it had been suggested that the rule of reactive oxygen species

(ROS) generated on the surface of the particles, zinc ion release, membrane dysfunction, and nanoparticles internalization were the main cause of cell swelling (Nair *et al.*, 2008)..

# **Electron microscope**

Electron microscopic (EM) studies revealed typical baculovirus OBs of type Nuclepolyhedrovirus (NPV) with polyhedral structures and rod shaped nucleocapsids (NCs) Fig 5-1 and 5-3). Under SEM the OBs of viruses appeared bacilliform shaped of dimensions  $277.7 \times$ 41.6 nm (Fig. 5-3). elongated with parallel sides and two straight ends, measuring the sizes of  $277.7 \times 41.6$  nm (SpliNPV) coating the virus resulted into great large diameters (Fig. 5-4, 5-5, and These findings agreed with 5-6). Rabindra et al., 2003 and BaiHuiMin et al., 2011besides in fig 5-3 the virogenic stroma was closely conjugated with nano zinc oxide, which may play a role in baculovirus protection.



Fig. 5: *Spli*NPV virus in combination with nano aluminum oxide (2, 4, 5) or nano zinc oxide under scanning electron microscope (1. 3 and 6).

# **DPPH** assay

oxides exhibited All nano antioxidant activity with higher values of Brand-Williams W. Cuvelier M. E. antioxidant activity for nano zinc oxide (95.7%) followed by nano aluminum oxide, (p>0.05). (74.1%) where cacao gave only (34.2%) The DPPH free radical assay can be considered reliable and Bulmer M.S. Bacheletb I. Ramanb R. reproducible because in all products the coefficient of variation is lower as the DPPH assay is a spectrophotometric method. Variations in plant material, method. extraction processing and antioxidant assays employed might affect Cloyd R. A. and Bethke J. A. (2011). the concentrations of active compounds that could be reflected in the antioxidant activity Mensor et al., 2005. Previous findings explain why nano zinc oxide was singled out and could be a proper Deotale R. O. Dawane P. N. Biswane K. protective and synergistic material to baculoviruses

# REFERENCES

- Abul-Nasr S. (1956). Polyhedrosis-virus disease on cotton leaf worm, Prodenia litura F. Bull. Entomol. Soc. Egypt, Econ. Ser., 40:321-332.
- Al-Samarrai А (2012). Μ Nanoparticles alternative as to pesticides in management plant diseases-a review. Int. J. Scient. Res. Publ. 2 (4):1–4.
- Ashe B. (2011). A Detail investigation to observe the effect of zinc oxide nanoparticles and Silver in biological system. Μ Sc thesis Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela-769008, Orissa, India. pp.110.
- Bai H. M. Wang Yun L. X. Mao H. T.; Li Y. Han S. Shi Z. and Chen X. W. (2011). Isolation and characterization of a novel Alphanodavirus. Virology Journal, 8(311).
- Bhattacharyya A. Bhaumik A. Rani P. U. Mandal S. and Epidi T. T. (2010). Nanoparticles – a recent

approach to insect pest control. Afr. J. Biotechnol. 9 (24): 3489-3493.

- Berset C. (1995). Use of a free radical evaluate method to antioxidant activity. Lebenson Wiss Technol, 28:25-30.
- Rosengaus B. and Sasisekharan R. (2009). Targeting an antimicrobial effector function in insect immunity as a pest control strategy. PNAS. 106(31):12652-12657
- Impact of neonicotinoid insecticides on natural enemies in greenhouse and interiorscape environments. Pest Manage. Sci. 67(1): 3-9.
- D. and Borker S. L. (2007). Effectiveness of UVprotectants on the activity of NPV against Helicoverpa chickpea. armigera(Hubner) on Journal of Entomology Research. 31(1): 33-35.
- El Salamouny S. Shapiro M. Ling K. S. and Shepard B. M. (2009). Black tea and lignin as Ultraviolet protectants for armyworm the beet nucleopolyhedrovirus. Journal of Entomological Science, 44(1): 50-58.
- El-bendary H. M. and El-Helaly A. A. (2013). First recordnanotechnology in Silicanano-particlesa agriculture: potential new insecticide for pest control. App. Sci. Report.4 (3): 2013:241-246
- El-Helaly A. (2013). Additives For A Baculovirus Against Ultraviolet Effect. Applied Science Reports. 4 (1):187-191
- El-Helaly A. El-Salamouny S. Khattab M. El-Sheikh M. and Elnagar S. (2009). Preliminary evaluation of natural antioxidants UVas protectants of Spodoptera littoralis nucleopolyhedrovirus,

(Baculoviridae). 4th conference on recent technologies in agriculture" challange of agriculture modernization" Cairo university, Faculty of Agriculture.1:7-13.

- El-Helaly M. Khattab A. S. El-Salamouny M. El-Sheikh S. Elnagar M. (2013). Promising additives to protect the activity of Baculovirus biocontrol agent under field sunlight conditions in Egypt. *Journal of Life Sciences* 7: 495-500.
- Finney D. J. (1971). Probit analysis. 3rd ed., *Cambridge Univ.*, *Cambridge U.K.*
- Fritsch E. and Huber J. (1985). codling Inactivation of moth granulosis viruses ultraviolet by radiation and temperature. deutshen Nachrichtenblatt des pfanzenchutzdientes, 37(6): 84-88.
- Gojova A. Guo B. Kota R S. Rutledge J C. Kennedy I M. and Barakat A I (2007). Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: effect of particle composition. Environmental Health Perspectives, 115, 403–409.
- Gurr J. Wang A. A. S. Chen C. and Jan K. (2005). Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicol., 213: 66–73.
- Harper S. (2010). New Approaches Needed to Gauge Safety of Nanotech-Based Pesticides, Researchers Urge. Phys. Chem. 4(33): 2010-2012.
- Hong T. D. Linington S. Ellis R. H. (1996). Seed storage behaviour: a compendium.Handbooks for Genebanks: No. 4.
- Horowitz, A. R.. Forer G. and Ishaaya I. (1994). Insecticide resistance management as a part of an IPM strategy in Israeli cotton fields. In Challenging the future, Proc. of the World Cotton Research Conference, I, ed. G. A. Constable and W. W. Forresater. Csiro, Australia, 1994, pp. 537-544.

- Huber J. and Ludcke C. (1996). UVinactivation of baculoviruses: the bisegmented survival curve. Bulletin OILB/SROP. 19(9): 253-256.
- Jayaseelan C. Rahuman A. A. and Rajakumar G. (2011). Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heartleaf moonseed plant, Tinospora cordifolia Miers. Parasitol Res. 109(1):185–194
- Kida T. Oka M. Nagano Y. Ishiwata X. and Zheng J. (2007). Synthesis and Application of Stable Copper Oxide Nanoparticle Suspensions for Nanoparticulate Film Fabrication Fabrication.J. Amer. Cera. Soc., 90(1): 107-110.
- Leiderer P. and Dekorsy T. (2008). Interactions of nanoparticles and surfaces Tag derm Äundlichen PrÄufung: 25. April. URL: http://www.ub.unikonstanz.de/kops/ volltexte /2008 / 5387/; http://nbnresolving.de/urn:nbn:de:bsz:352-opus-53877
- Mahajan S. Sharma Y. K. (2004). Production of rayon grade pulp fromMoringa oleifera.Indian Forester. 110(3): 303-306.
- Matsumoto S. Christie R. Nishiyama N. Miyata K. and Ishii A. (2009). Environment-responsive block copolymer micelles with a disulfide cross-linked core for enhanced siRNA delivery. Biomacromol. 10: 119-127.
- Mensor L. L. Menezes F. S. Leitao G. G.
  Reis A. S. dos Santos T. C. Coube C.
  S. (2001). Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytother Res 15: 127-130.
- Muro E. M. Paul J. I. (1985). Laboratory evaluation of new ultraviolet absorbers for protection of Douglas-fir tussock moth (Lepidoptera: Lymantriidae)

baculovirus. Journal of Economic Entomology. 78. 951-957.

- Nair S. Sasidharan A. and Raina S. (2008). Role of size scale of Zn O. nanoparticles on toxicity toward bacteria and osteopath cells. J. Mater Sci. 20: 235-241.
- Nautiyal B. P. Venkataraman K. G. 2005. Moringa (Drumstick)- An ideal tree for social forestry; growing conditions and uses- part I: Myoforest.23(1):53-58.
- Nel A. Xia T. Madler L and Li N (2006). Toxic potential of materials at the nano level. Science, 311: 622–627.
- Pan Z. Lee W. Slutsky L. Clark R A. Pernodet N. and Rafailovich M. H. (2009). Adverse effects of titanium dioxide nanoparticles on human dermal fibroblasts and how to protect cells. Small. 5: 511-520.
- Powell C. Swenberg J. S. and Rusyn I. (2005). Expression of base excision DNA repairs genes as a biomarker of oxidative DNA damage. Cancer Lett. 229:1-11.
- Rabindra J. Swamiappan R. M. Parthasarathy R. Subramanian. S. Kennedy J. S. Sathiah N. and Rajasekaran B. (2003). Isolation and DNA characterization of a nuclear polyhedrosis virus from the looperBoarmia (Ascotis) selenaria (Lepidoptera: Geometridae). Pest Management in Horticultural Ecosystems, 9(1): 49-53.
- Roy S. C. (2009). There is plenty of holes at the bottom: The other side of Nano. Sci. Cult. 75(1-2): 1-3.
- Shapiro M. El Salamouny S. Shepard B.M. (2008). Green tea extracts as ultraviolet protectants for the beet armyworm, Spodoptera exigua nucleopolyhedrovirus. Biocontrol Science and Technology. 18 (6): 591-603.
- Shapiro M. Shepard B. M. Lopez R. (2007a). Effect of speices upon activity of gypsy moth

(Lepidoptera;Lymantriidae).Journal of Entomological Science.42:82-91.

- Shapiro M. Shepard B. M. Lopez R. (2007b). Effect of medicinal herbs upon the biological activity of the gypsy moth nucleoplyhedrosis virus.BiocontrolScience and Technology. 18:605-617.
- Shorey H. Hale R. L. 1965. Mass rearing of the larvae of nine noctuid species on a simple artificial medium. *Journal of Economic Entomology*. 58:522-524.
- Smagghe G. and Degheele D. (1997).
  Comparative toxicity and tolerance for the ecdysteroid mimic tebufenozide in a laboratory strain of cotton leafworm (Lepidoptera: Noctuidae). J. Econ. Entomol., 90: 278-282.
- Stadler T. Buteler M. Weaver D.K. (2010). Novel use of nanostructured alumina as an insecticide. Pest Management Science 66: 577- 579.
- Debnath N. Das S. Seth D. Chandra R. Bhattacharya, S. Ch. Goswami, A . 2001. Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.). Journal of Pesticide Science 84, 99e105.
- Subramanyam B. Roesli R. (2000). Inert dusts. In: Subramanyam, Bh., Hagstrum, D.W. (Eds.), Alternatives to Pesticides in Stored-product IPM. Kluwer Academic Publishers, Boston, MA, pp. 321e380
- Ulrich S. (2006). Solid-phase micro extraction in biomedical analysis. J. Chromatogr. A. 902: 167-194.
- Vardeman E. A. Arthur F.H. Nechols J.
  R. Campbell J. F. (2007). Effi cacy of surface applications with diatomaceous earth to control Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) in stored wheat. Journal of Stored Product Research, 43: 335e341.
- Vinutha J. S Bhagat D. and Bakthavatsalam N. (2013). Nanotechnology in the management

of polyphagous pest *Helicoverpa armigera*. J. Acad. Indus. Res. 1(10):606–608.

Zhang S. and Xiao-zhen Y. E (2010). Impacts of chemical insecticides on extracellular protease and chitinase activities of Metarhizium anisopliae. J. Fujian College Forest, 4: 289-292.

#### **ARABIC SUMMERY**

# إتجاه جديد للنانوتكنولوجى في حماية الفيروسات العصوية المغلفة

ألكسندرا الهلالى – وحيد أحمد عبد الحميد\*

قسم الحشرات الإقتصادية و المبيدات – كلية الزراعة – جامعة القاهرة \*قسم التطبيقات البيولوجية- مركز البحوث النووية- هيئة الطاقة الذرية - أبو زعبل – مصر ومركز الشرق الأوسط للنظائر المشعة للدول العربية – الدقى – جيزة- مصر

# ملخص

أثبتت مضادات الأكسدة من عدة عقود إنها مواد حامية واعدة للفير وسات العصوية المغلفة للتاثير المضاد لأشعة الشمس فوق البنفسجية. الدراسة نصف الحقلية الحالية إختبرت دور مضادات الأكسدة النانوية في إمداد الفيروسات العصوية المغلفة بالحماية. المعاملات المخلوطة مع فيروس دودة ورق القطن البوليهدروزي النانوي شملت (نانو ألومنيوم أوكسيد مع أو بدون الفيروس SpliMNPV LC90 أو نانو زينك أوكسيد مع أو بدون الفيروس (SpliMNPV LC عند خمس تركيز ات مختلفة ١٠٠، ٢٠٠، ٢٠٠، ٤٠٠ و ٥٠٠ جزء في المليون و تم تعريض التركيزات المختلفة لمصدر ضوء صناعي للأشعة فوق البنفسجية لمدد تصل الي ٥ ثم ١٠ ساعات كحد أقصبي في المعمل ثم تطبيق ٥٠ مللي /نبات الكوسة مع إستخدام خمس مكررات / معاملة، و التي فيها تم تعريض يرقات حديثة الفقس لدودة ورق القطن يوميا. تم تسجيل موت اليرقات يوميا وحتى اليوم الخامس عشر بعد المعاملة. النتائج مبنية على التقدير الحيوي معمليا و على أور اق النبات في التجربة نصف الحقلية لحساب الوقت اللازم لموت ٥٠% من التعداد (LIT50). الدر اسات أظهرت أن LIT50 بلغ ٨٢.٧٥٩ ساعة و ٥٠.٥٠ ساعة بالنسبة للمواد المضافة نانو زنك أوكسيد و نانو ألو منبوم أو كسبد على الترتبب، عند تركبز ٥٠٠ جزء في الملبون ببنما أعطي ١٤.٤٨٢ مع معاملة الفيروس منفردا و أعطت ٧٨٨ . ١٠٠ ساعة مع الكاكاو ٥ % كمادة مقارنة إيجابية. ميكانيكية الحماية تم در استها بإستخدام تكنيك 2. (DPPH (2, 2-(diphenyl-1-picrylhydrazyl لتقدير مضادات الأكسدة كتسجيل سباق لإستخدام مثل هذا التكنيك في مثل هذا النوع من الدر اسات. النتائج المتحصل عليها إقترحت إحتمالية مقدرة المواد النانوية المضادة للأكسدة في إطالة كفاءة الفيروس على أوراق النباتات تحت التجربة نصف الحقلية المصغرة كما تقترح لعمل تقدير لكفاءة مضادات الأكسدة DPPH أو لا في المستقبل مع أي مادة مضافة يتم ترشيحها قبل عمل التقدير الحيوي نظر اللصورة الواضحة الي يعطيها عن كفاءة مضادات الأكسدة