Efficiency of Diple 2x ((*Bacillus thuringiensis* var. *kurstaki*) alone and its mixture with two insecticides against the Egyptian cotton leaf worm *Spodoptera littoralis* (Lepidoptera: Noctuidae).

Aziza. E. Abdel-Aal and El- Shikh .T.A

Plant Prot. Res. Inst., Agric. Res. Cent., Dokki, Giza, Egypt.

ABSTRACT

The Efficiency of the bioinsecticide, Diple 2x (Bacillus thuringiensis) alone and its mixtures with two insecticides on cotton leafworm Spodoptera littoralis (Boisd) was investigated. Data indicated that Lufenuron was the highest effective insecticides against both the 2nd and the 4th instar larvae of *S. littoralis* followed by Methomyl and B.t., respectively .All tested mixtures decreased the toxicity according to Co-Toxicity factor the tested mixture (B.t + Lufenuron) gave the high level of antagonism effect followed by the mixture (B.t + Methomyle). The field efficiency of tested insecticides (when used singular) can be arranged according to the general mean of reduction percentage during two seasons in a descending order as follows: Lufenuron, Methomyle and B.t. The addition of B.t. to Lufenuron gave raising the general mean of reduction percentage during two seasons in contrast the other tested insecticide gave a reduction but less than when applied without added to Bt. The same trend of effects were obtained when applied the two tested insecticides at the half recommended rate alone or mixed with the same dose of Bt on S. littoralis but with less level of reduction in case of (Bt+Lufenuron) mixture. Also the three toxicants affected the Chitinase ,prptease and acetycholinesterase enzymes.

INTRODUCTION

The entomopathogenic bacteria, Bacillus thuringiensis represents a good example for biological controlof insect pests. This bacterium, proved to be a highly successful for controlling some agricultural insect pests (Mohamed et al., Resistance to pesticides 2005). is probably the biggest challenge facing pesticides research today. Consequently, insecticides from different chemical groups with different mode of action and also some of their combination should be tested against Spodoptera littoralis to help developing a sound control program in the future (Ghoneim, 2002).

The combination of such bioactive agent with insecticides was investigated as attempt to increase their efficiency on *Spodoptera littoralis* and reduce the amounts of insecticides release in the environment which is appreciable from the environmental safety point of view (Aly and Eldahan,1987).

The aim of the work:-

The objective study was to evaluate the susceptibility of 2^{nd} and 4^{th} instars of S.littoralis to *Bacillus* thuringiensis, methomyle and chitin synthesis inhibitors Lufenuron. In addition assessment the joint action of the combinations of B.t when applied alone or mixed with the complete or half recommended rate of the same tested insecticides against S. littoralis. Also determine the effect of these insecticides on some enzymes activity.

MATERIAL AND METHODS Tested Insecticides:

- 1- *Bacillus thuringiensis* subsp. *kurstaki* Berliner (diple2x) contain 32000 IU/mg as bioinsecticide, 300 gm /feddan.
- 2- Methomyle 90% SP ,300 gm / feddan.
- 3- Lufenuron, 160 ml /feddan.

Laboratory Experiment:

A laboratory strain of the cotton leafworm *S. littoralis* (Boisd.) was reared in the laboratory under constant conditions of 25° C±1 and $70 \pm 5\%$ RH and kept of any contamination with chemicals till the time of study as described by El-Defrawi *et al.* (1964).

A. Toxicity tests:

A series of concentrations (in water) for each insecticide was prepared on the active ingredient (a.i) based on ppm by diluting the commercial formulation. Castor-bean leaves were dipped for 30 seconds in each concentration then left to dry for one hour. The 2nd and 4th instars larvae of each tested strain were confined with treated leaves in glass jars covered with muslin for 24 hrs. Test also included a non treated control in which leaves were dipped in water (as a check). Treated leaves were then removed and fresh untreated leaves provided for four days. Three replicates (each of 20 larvae) were tested for each concentration. The average of mortality percentage was corrected using Abbott's formula (1925). The corrected mortality percentage of statistically each compound was computed according to Finney (1971). corresponding From which the concentration probit lines (LC-p lines) were estimated in addition to determine 25, 50 and 90% mortalities, slope values of tested compounds were also estimated. In addition, the efficiency of different compounds was measured by comparing the tested compound with the most effective compound by using the following equation:

Toxicity index = LC_{50} of the most effective compound / LC_{50} of the tested compound x 100 (Sun, 1950).

B. Determination of the joint action:

The tested insecticides were applied each at LC_{25} level when used singly. To test the joint action of the tested insecticides, equal volumes of the two insecticides were added together

[Diple 2x and each insecticide 1:1 (w/w)]. Three replicates with twenty larvae each were used in each treatment. Mortality counts were recorded after five days of treatment. To determine the effect of applying pairs of insecticides, the expected LC_{25} concentrate of each insecticide in the paired combination was calculated from its corresponding LC-p lines, there for, the expected mortality for the mixture of two insecticides was the sum of the expected mortalities of each in of the concentrate used the combination. To evaluate the joined effect of the different pairs of used insecticides, the equation of the cotoxicity factor of Mansour et al., (1966) was applied.

This factor was employed to differentiate the results into three categories. A positive factor of (+20) or more meant potentiation.a negative factor of (-20) or more meant antagonism, and any intermediate value (i.e. between -20 and +20) was considered only additive effect.

II. Field Experiment:

Experiments were conducted at district, kalvobia Governorate kaha during the two successive seasons 2010 and 2011 to evaluate the field efficiency of the bioinsecticide Diple 2x (Bacillus thuringiensis subsp. kurstaki Berliner) alone and mixed with the complete or half recommended rate of one insecticides (Methomyl) and one insect growth regulators (Lufenuron) on cotton leafworm S. littoralis (Boisd.). The fields were cultivated with Giza 86 cotton variety and the normal agricultural practices were applied. The experimental area was divided into plots of 42 m^2 each and the treatments were arranged in randomized complete blocks with four replicates each. Plots were isolated from each other by unplanted corridors (1 m width) that separated replicates. A motor sprayer was used to spray the chemical dilutions. The volume of spray solution was 40 litres /feddan. A pre-treatment count was measured for each treatment so as control. Post treatment count was recorded after 3,7 and10 days the initial effect was calculated at day 3 post treatment, the general mean residual effect was calculated as the mean reduction percentages of larvae observed at days 7 and 10 post treatment. After ,the appropriate amounts of counting each compound were extended with water and sprayed with ULV motor .Hand picking of egg masses was continued daily after spraying up to the end of the experiment and the collected egg masses were destroyed .Initial and reduction percentages in larvae counting were calculated according to Henderson and Tilton (1955).

III-Determination of biochemical aspects:-A-Preparation of samples for biochemical studies:

The 4th instars larvae of both field and laboratory strain was fed on castor oil leaves treated with LC_{50} of tested compounds till the 6th instar. The collected larvae were placed in clean jars, and then starved for 4 hours. Samples of haemolymph were collected from the larvae by puncturing aproleg into tube and kept under freezing condition at-50°C.

B-Enzyme assays :

1- Determination of Chitinase activity:

Chitinase was assayed using 3,5dinitrosalicylic acid reagent to determine the free aldehydic groups of hexoaminase liberated on chitin digestion according to the method described by Ishaaya and Casida (1974).

2-Determination of Protease activity:

The proteolytic activity was determined by the casein digestion method described by Ishaaya *et al.* (1971).

3-Determination of acetylcholine esterase activity:

The activity of acetylcholine

esterase (AChE) was measured according to the method described by Simpson *et al.* (1964).

RESULTS AND DISCUSSION I. Laboratory Experiment: A. Toxicity tests:

Data presented in Table (1) showed that Lufenuron was the highest effective insecticides against the 2nd instar larvae of S. littoralis followed by methomyle and B.t, respectively. The toxicity index being, 0.004577 and 51.0986 % for Bt and methomyle based Lufenuron 100% on LC_{50} of .Concerning the efficiency of tested insecticides against the 4th instar larvae of S. littoralis (Table 2), also Lufenuron was the most effective insecticides Methomyle followed by and B.t. respectively. The toxicity index being 0.003426 and 50.798 % for Bt and Methomyle based on LC₅₀ of Lufenuron 100%, respectively. The obtained results of lufenuron toxicity are in agreement with those obtained by Haga *et al.* (1984) who reported that Chlorfluazuron is very toxic to insects because it metabolizes slowly inside the insect body. The toxicity of lufenuron against S. littoralis larvae was some what similar to that of the Teflubezuron against S. littoralis (Aziza et al. 2011)

The toxicity of *B. thuringiensis* is investigated by Abd El-Aziz (2000) who classified lepidopteran larvae into three types based on their susceptibility to: crystalline endotoxin; which caused insects mortality by preparations of crystalline δ - endotoxin alone. They also, found that spores of bacterium are not responsible crystalline for the increase of toxicity, in some cases, mid gut pH may closer neutrality, allowing be to germination or the action of endotoxin may cause a decrease in pH so that germination can occur. They also indicated that insects were susceptible to endotoxin but the effect was enhanced by the presence of spores. They also

indicated that spore-endotoxin mixtures only killed insects. The mid gut pH of most susceptible larvae was too alkaline to allow spore germination but was suitable for dissolution and activation of protoxin. Abd-El wahed *et al.*, (2010) and Aziza *et al.* 2011 recorded that *B. thuringiensis* are toxic to larvae of Lepidoptera upon ingestion.

Table 1: Susceptibility of 2nd instar larvae of cotton leafworm, *Spodoptera littoralis* (Boisd.) to tested insecticides.

Tested	$LC_{25}(ppm)$	LC ₅₀ (ppm)	LC ₉₀ (ppm)	Slope	Toxicity
	its limits at	its limits at	its limits at		index (%)
Insecticides	95%	95%	95%		
Bacillus	2931.21	20321	565720	0.76 ± 0.2	0.004577
thuringiensis	(1261-7254)	17532-41233.5	76246-841E+5		
Methomyle	0.91	1.82	2.304	6.94 ± 0.8	51.0986
	1.004 -1.167	1.2211.412	1.77-2.048		
Lufenuron	0.30	0.93	1.96	0.67±0.2	100
	0.095-1.890	0.056- 0.212	3.821-64.754		

Toxicity index = LC_{50} of the most effective insecticide / LC_{50} of the tested insecticide x 100.

Table 2: Susceptibility of 4th instar larvae of cotton leafworm, *Spodoptera littoralis* (Boisd.) to tested insecticides.

	$LC_{25}(ppm)$	$LC_{50}(ppm)$	$LC_{90}(ppm)$	Slope	Toxicity index
Tested	its limits at	its limits at	its limits at 95%		(%)
Insecticides	95%	95%			
Bacillus	1526.21	35321	59657	0.76 ± 0.2	0.003426
thuringiensis	(1861-1254)	(27532-14233)	(76246-321E+5)		
Methomyle	1.51	2.382	3.304	6.94 ± 0.8	50.798
	(2.01 -0.867)	(3.22-1.822)	1.77-2.048		
Lufenuron	0.93	1.21	0.926	0.53±0.2	100
	(1.92-2.89)	(2.25-0.82)	(1.821-0.67)		

B- The joint action of Bt and both toxicants:-

The joint action data of the combinations of B.t with each other tested insecticides against 2^{nd} instars larvae of *S. littoralis* at LC₂₅ level are shown in Table (3). Data clearly indicated that the two tested mixtures decreased the toxicity of the 2^{nd} instar according to Co-Toxicity factor. The tested mixture (B.t + lufenuron) gave the high level of antagonism effect – 52.55 compared with -29.98 for (B.t + methomyle) mixture. While (B.t + methomyle) and (B.t + lufenuron) gave -

17.454 and -24.92 Co-Toxicity factor in case of 4th instars treatment respectively. Concerning the joint action of combination produced antagonism effect when tested on both instars larvae of S. littoralis except in case of B.t + methomyl mixture produced additive effect for 4th instar treatment. It could be concluded that both tested combinations didn't have positive effect on but in contrast it gave negative effects under laboratory condition. So, unfavorable the bioinsecticide (Diple 2x) mixed with tested insecticides Methomyle or Lufenuron.

Efficiency of Diple *thuringiensis* var. *kurstaki* alone and its mixture with two insecticides 65 against

	2 nd instars larvae			4 th instars larvae		
	Expected (%)	Observed (%)	Co-Toxicity	Expected (%)	Observed (%)	Co-Toxicity
	mortality	mortality	factor	mortality	mortality	factor
B.thuringiensis						
+Methomyle	47.31	36.54	- 29.98	40.22	33.2	- 17.454
B thuringiensis						
+Lufenuron	58.32	38.23	- 52.55	53.3	40.38	-24.92

Table 3: Joint action of the tested mixture of insecticides against 2nd instars larvae of *Spodoptera littoralis* (Boisd.) at LC₂₅ level.

C- Field experiments:-

Data in Table (4) showed that the field efficiency of the bioinsecticide, Diple 2x (*Bacillus thuringiensis*) alone and other complete dose of two insecticides on cotton leafworm *S. littoralis* (Boisd.) during 2010 and 2011 seasons .The initial effect (after three

days from spraying), Lufenuron was the highest in activity gave 81.9 and 74.85% reduction in infestation followed by methomyl gave (51.7 and 41.2) whereas *Bacillus thuringiensis* gave the least effect (26.6 and 25 %) reduction during 2010and 2011 seasons, respectively.

Table 4: Field efficiency of Diple 2x (Bacillus thuringiensis), Methomyle and Lufenuron on cottonleafworm during 2010 and 2011 seasons.

				Reduction %					
ents of ion / an		uc	efor ing	ct ss	Residual effect (days)		éct	mear ction	ean of ons
Treatm	Rate applicat fedda	Seaso	No. be sprayi	Initial effe After 3 day	After 7days	After 10days	Mean of % Residual eff	General of % Redu	General m two seas
B.t	200gm	2011	95	26.8	43.5	56.4	49.95	38.37	40.26
		2012	120	25	41	44.5	33.9	58.9	
Lufenuron	300 gm	2011	85	81.9	85	92.3	88.65	85.3	77.37
		2012	100	74.85	75.4	77.4	76.4	71.2	
Methomyle	160 mll	2011	90	51.7	60.5	68.8	64.4	58.1	54.17
		2012	122	41.2	45.9	72.6	59.25	50.23	
Control		2011	92	90	-	-			
		2012	112	110					
	200gm+300 gm	2011	90	86.4	89.8	94.3	92.4	89.4	
Bt+ Lufenuron	(complete dose)	2012	110	76.8	83.3	87.9	85.6	81.2	85.3
	200gm+160 ml	2011	96	41.6	49	66	57.5	49.55	
Bt+Methomyle	(compete dose)	2012	135	24.4	38.8	43.3	41.05	32.725	41.138
	200gm+150 gm	2011	102	75	80	85	82.5	78.5	
Bt+ Lufenuron	(half dose)	2012	112	63.8	71	82.3	67.65	65.7	70.35
	200gm+80 ml	2011	95	30.2	84.5	67.8	56.15	46.8	47.69
Bt+Methomyle	(half dose)	2012	115	37.4	54.8	64.78	59.79	48.59	

Regarding the mean of residual effect percentage for tested IGR, Lufenuron showed the highest residual effect gave 88.65 and 67.4% followed by Methomyl and B.t with values (64.4 and 59.2%) and (49.9 and 33.9%) during two seasons, respectively. The efficiency of tested insecticides (when used singular) can be arranged according to the general mean of reduction percentage of two seasons in a descending order as follows: Lufenurone, Methomyle and BT they were 77.37,54.17 and 40.26 respectively.

Concerning the field efficiency of B.t when mixed with other complete dose

of either IGR or insecticide on cotton leafworm *S. littoralis* (Boisd.), data indicate the addition of B.t to Lufenuron gave raising the general mean of reduction percentage during two seasons with value 85.41% reduction, in contrast the other tested insecticide gave a reduction but less than when applied without added to Bt (41.138%).

The same trend of effects were obtained when applied the two tested insecticides at the half recommended rate alone or mixed with the same dose of Bt on *S. littoralis* but with less level of reduction in case of Bt+Lufenuron mixture (Table4).

Based on the LC_{50} values, the highest larvicidal activity of the selected insecticides alone was exhibited by chlorpyrifos. fenpropathrin and thuringiensin (Radwan et al. 1993). Mohamed and Ahmed (1990) reported that, in leaf-dip bioassays using castor leaves, sethoxydim (at 1 and 0.1%) the activity of *B. thuringiensis* against 2nd instar larvae of the noctuid S. littoralis, whereas fluazifop at the same conc. was antagonistic. Al-Zubadi et al., (1988) investigated the compatibility of Bactospeine (a commercial preparation of *B. thuringiensis* subsp. thuringiensis) with several chemical insecticides in Iraq . Effective control of S. littoralis was achieved with mixtures of Bactospeine (at half the recommended dosage) with Decis 2.5% EC [deltamethrin], Sevin 85% WP [carbaryl] or Sumithion 50% EC [fenitrothion]. El-Hamaky et al. (1990) applied Cyfluthrin, triazophos and thiodicarb alone or as mixtures with B. thuringiensis (as Bactospeine) to cotton fields in Egypt, and the initial and residual mortality to 2nd and 4th instar larvae of the noctuid S. littoralis on treated leaves were determined in the laboratory. All treatments caused 95% initial mortality, but the microbial

pesticide did not increase knockdown performance. Positive correlations were found between residual mortality and insecticide concentrations, as well as for feeding periods on treated leaves. Negative correlations were found for time after treatment. *B. thuringiensis* did not potentiate residual performance of the chemical insecticides.

Biochemical studies:-

Activity of Chitinase and protease: Results in table (5) indicated that both chitinase and prptease activity increased significantly in case of Lufenuron treatment while there is no significant difference for both Methomyl and Bt. Chitinolytic enzymes are usually produced from cells in epidermis, gut, salivary glands or fat body of insects (Kramer and Koga, 1986). Chitinolytic enzymes have been demonstrated in the moulting fluid which appears in the space between the old and the new cuticles during ecdysis and secreted by the hypodermis (Kimura, 1976), and in the integument (Koga et al., 1989).Both enzymes Chitinase and protease are essential for digestion of old endocuticle in moulting process. So any change in this enzyme activity may attributed to the inference of the IGRs with this process.

 Table 5: Enzymatic Activity Spodoptera littoralis Larval haemolymph Treated with LC₅₀ of some Insect Growth Regulators.

IGRS	Enzymatic activity					
	Chitinase	Protease				
	µgNAGA/min/ml	AChBr/min./ml± S.E.	OD X 100/ hr./ml			
Bacillus thuringiensis	3.21±.0.23b	$17.9 \pm 1.3b$	89.3±0.042 b			
Methomyle	3.92±0.30b	$13.52 \pm 2.3c$	90±0.056 с			
Lufenuron	6.35±0.042a	29.14 ±1.3a	132±0.042 a			
Control	3.80±0.05b	$18.21 \pm 0.29b$	85.3±1.5 b			

Activity of Acetyl cholinesterase: The data in Table (5) indicated that the Acetyl cholinesterase activity decreased significantly for Methomyl treatment but insignificantly for Bt treatment .On the other hand Lufenuron increase the Acetyl cholinesterase activity significantly. Methomyl act as carbamate insecticide through excitation of the insect nervous system, which in turn cause alteration in the function of nicotinic and GABAgated ion channels which leads to involuntary muscle contractions and tremors (Salgado *et al.*, 1998). According to such an activity, it was expected that such insecticide may produce cytotoxic action either in neurons or non-target cells.

The cytotoxic action in neurons alter the may neurotransmitter mechanisms through interfering methomyl processes of with the production of acetylcholine in the synaptic region which affect in turn the activity of the acetycholinesterase to be in form of false inhibition.

REFERENCES

- Abbott, W.S. (1925). A method of computing the effectiveness of an insecticide. J. Econ. Entomol., 18 : 265 267.
- Abd El-Aziz, S.H. (2000). Physiopathological studies on bacterial infection of cotton leaf worm, Spodoptera Littoralis. M. Sc. Thesis, Fac. of Scie. Ain Shams Univ.
- Abd Elwahed,M.S.,Fayza M.Ahmed, Aziza E.Abdel-aal and Marwa M.Abdelaziz (2010). The potency of three commercial bioagents, Protecto, Viruset, and mixture of them Profect on the Egyptian cotton leaf worm *Spodoptera littoralis* (Lepidoptera: Noctuidae).
- Aly M. I. and A. A. El-Dahan (1987). Efficicy of *Bacillus thuringiensis* (Berliner) and its insecticides combinations against cotton leafworm *Spodoptera littoralis* (Boisd). J. Agric. Sci. Mansoura Univ. 12(1) 190-196.
- Al-Zubadi, A. N. O.; A. S. A. Ali and T. A. Aldergazali (1988). Compatibility of microbial the insecticide 'Bactospeine' with some chemical insecticides for control of three lepidopterous pests in protected agriculture. Journal of Agriculture and Water Resources Research, Plant Production, 7(2): 277-291.
- Aziza E Abdel-Al, Hanan H osman and Naglaa F. Ryad. (2011). The effect of Teflubenzuron and *Bacillus thuringiensis* on some Haematolgical parameters of Cotton leaf worm *Spodoptera littoralis*

(BOISD),and albino Rats.Egyptian Journal of Biological pest Control.

- El-Defrawi, M. E. ; A. Toppozada ; N. Mansour and M. Zeid (1964).
 Toxicological studies on Egyptian cotton leafworm *Prodenia litura* (F.).
 I. Suceptibility of different larval instar to insecticides. J. Econ. Entomol., 57(4):591-593.
- El-Hamaky, M. A.; A. F. Refaei; M. A. Hegazy and N. M. Hussein (1990). Knock-down and residual activity of certain insecticides, Bacillus *thuringiensis* and their binary mixtures against the cotton leafworm, Spodoptera littoralis (Boisd.) in cotton fields. Mededelingen van de Faculteit Landbouwwetenschappen, Rijksuniversiteit Gent, 55(2b): 593-599.
- Finney, D.J. (1971). Probit analysis. A Statistical Treatment of the Sigmoid Response Curve. 7th Ed., Cambridge Univ. Press, England.
- Ghoneim Y. F. (2002). resistance to insecticides, IGRs and interaction effect between their mixtures on cotton leafworm *Spodoptera littoralis* (Boisd.). J. Agric Sci. Mansoura Univ., 27(7) 4965-4974.
- Haga, T.; Toki, T.; Koyangio, T. and Nishiyamo, R. (1984). Structureactivity relationships of benzoylphenylurea. Internat. Cong. Entomol., Hamburg (FRG).
- Henderson, C.F. and E.W. Tilton (1955). Test with acaricides against the brown wheat mite. J. Econ. Entomol. 48: 157-161.
- Ishaaya, I. and Casida, J. E. (1974). Dietary TH 6040 alters composition and enzyme activity of housefly larval cuticle. Pestic. Biochem. Physiol. 4: 484-490.
- Ishaaya, I.; I. Moore and D. Joseph (1971) Protease and amylase activity in larvae on the Egyption cotton worm, *Spodoptera littoralis*. J. Insect Physiol. 17: 45-953.

Kimura, S. (1976). The chitinase

system in the cuticle of the silkworm *Bombyx mori*. Insect Biochem., 6: 479-482.

Koga, D.; H. Fujimoto; T. Funakoshi; T. Utsumi and A. Ide (1989). Appearance of chitinolytic enzymes in itegument of *Bombyx mori* during the larval-pupal transformation. Evidence for zymogenic forms. Insect. Biochem., 19 (2): 123- 128.

Kramer, K. J. and D. Koga (1986).Insect Chitin: Physical state, synthesis, degradation and metabolic regulation.Insect Biochem., 16 (6): 851-877.

- Mansour, N. A.; M. E. El-Defrawi; A. Toppozada and M. Zeid (1966). Toxicological studies of the Egyptian cotton leafworm *Prodenia litura*. VI–Potentiation and antagonismof organophosphorous and carbamate insecticides. J. Econ. Entomol., 59 (2): 307-311.
- Mohamed, S. H. and S. A. Ahmed (1990). Susceptibility of the cotton leafworm to mixtures of commercial *Bacillus thuringiensis* with chemical herbicides, and sensitivity of the pathogen to the herbicides. Assiut Journal of Agricultural Sciences, Vol. 21(5):341-351.

- Radwan, H. S. A.; G. E. S. A. El-Ghar;
 Z. A. El-Bermawy and L. T. M. Zidan (1993). Joint action of abamectin and thuringiensin with selected insecticides applied to cotton leafworm, *Spodoptera littoralis* (Boisd.). Bulletin of the Entomological Society of Egypt, Economic Series, No. 20, pp. 185-196.
- Simpson, D. R.; Bull, D. L. and Lindquist, D. A. (1964). A semimicro technique for the estimation of cholinesterase activity in bullweevil. Ann. Ent. Soc. Am. 57(3) 367-377.
- Sun, Y.P. (1950). Toxicity index an improved method of comparing the relative toxicity of insecticides. J. Econ. Ent., 43:45-53.
- Salgado, V. L. (1998). Studies on the mode of action of spinosad: Insect symptoms and physiological correlates. Pest. Biochem. Physiol., 60: 91-102.
- Zidan, Z. H.; G. M. Moawad; S. A. Emara and F. E. El-Sweerki (1996). **Biological** activities of certain nontoxic compounds against the cotton Spodoptera leafworm, littoralis Annals Agricultural (Boisd). of Science (Cairo), No. Special Issue, pp. 265-278.

ARABIC SUMMARY

تقدير مدى فاعلية المركب الحيوى دايبل 2x بمفردة او مختلطا بمبيديين على دودة ورق القطن سبودوبترا ليتورا ليتوراليس حرشفية الاجنحة نوكتويدى.

عزيزة السيد عبد العال حسين - طارق عفيفي عبد الحميد الشيخ معهد بحوث وقاية النباتات- مركز البحوث الزراعية – الدقي- جيزة.

تقدير مدى فاعلية المركب الحيوى دايبل 2x بمفردة او مختلطا بمبيديين على دودة ورق القطن سبودوبترا ليتوراليس أوضحت النتائج ان مركب اللوفينورون اكثر المركبات تأثيرا على كلا العمرين الثانى والرابع لدودة ورق القطن يلية مركب الميثوميل ثم المركب البكتيرى أدت المعاملة بكلا المخلوطيين الى نقص السمية تبعا لمعامل السمية حيث ادى الخلط بمركب اللوفينورون الى اكبر تأثير مضاد يلية الخلط بالميثوميل. السمية تبعا لمعامل السمية حيث ادى الخلط بمركب اللوفينورون الى اكبر تأثير مضاد يلية الخلط بالميثوميل. السمية تبعا لمعامل السمية حيث ادى الخلط بمركب اللوفينورون الى اكبر تأثير مضاد يلية الخلط بالميثوميل. تقدير المركبات المعامل السمية حيث ادى الخلط بمركب اللوفينورون الى اكبر تأثير مضاد يلية الخلط بالميثوميل. تقدير المركبات المستخدمة فى التجربة الحقلية منفرده رتبت تبعا للمتوسط العام للخفض تنازليا كما يلى ليفنورون ،ميثوميل والمركب البكتيرى فى كلا الموسميين 2000 الى 2000 أدت المعاملة بخلط المركب البكتيرى ليفنورون ،ميثوميل والمركب البكتيرى فى كلا الموسميين 2000 أدت المعاملة بخلط المركب البكتيرى ليفنورون ،ميثوميل والمركب البكتيرى فى كلا الموسميين والال أدى أدت المعاملة بخلط المركب البكتيرى ليفنورون ،ميثوميل والمركب البكتيرى فى كلا الموسميين ما 2000 أدت المعاملة بخلط المركب البكتيرى ليفنورون ،ميثوميل والمركب المركب المركبات الموسميين والمرك ين من الموسمي أدين المام أدين الموسى ليفنورون ،ميثوميل والمركب المركبات ولى الموسميين والمن ين والمركب واليفينورون ،ميثوميل والمركب المركب الموسميين والمن اليفينورون ،ميثوميل والمركب الموسمي ولين الموسميين والمونورون ،ميثوميل والمركب الموسمين ولموسميين والموسمي الموسمي الموسمين والمركب الموسمين ولي ألموسمين والموسمي والموسمين والموسمين الموسمين والموسمين ولموسمي وليفين والموسمين والموسمين والموسمين والموسمين والموسموس والموسموس الموسمي والموسمي ولي الموسمي ولموسموس والموسمي والموسموس الموسمي والموسموس والموسموس والموسموس والموسموس والموسموس والموسموس والموسموس والموسموس والموسموسي والموسموسموس والموسموسموسي والموسموسموسي والموسموس والموسموس والموسموس والموسموس والموسموسموس والموسموسموسموسموس والموسموسموسي والموسموس والموسموسموس والموسموس وولموس والموسموس والموسموسموسموسموس والموسموسموسموسموسمووسموسموس والم